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The reversible circuit construction zoo

» ancilla-free multiply-controlled iX gates [Sel13, GS13]

[

» T-count 4 measurement-assisted Toffoli [Jones13]

-

Nz

» ancilla-free, T-count 8 relative-phase Toffoli-4 [Mas16]

]

407 N
&

» T-count 4 temporary logical-AND [Gid18]
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Generalize these constructions and unify them within a
framework of reusable, automatable design techniques.
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Gate Ancillary state T-count Valid Notes

Ur.g |00) 27(Ur) +7(Ug) +8 =

Ur.g - 27(Ur) +21(Ug) + 4 - Relative phase in the controls

Ur.g = 27(Ur) + 7(Ug) + 4 = Relative phase in the controls & targe
A (X) |z) 16(k — 1) k>6  Prior art

Ae(X®) |z) 8(k—2)+4 k>2  Relative phase in the controls & ancilla
Ai(X) |z) 16(k —2) k>4

A (X) |0) 16(k —3) or 16(k —3)+4 k>4  Measurement-assisted

Ak (iX) - 16(k —2) + 4 k>6  Prior art; Relative phase in the controls
Ak (iX) 16(k —3) + 4 k>4  Relative phase in the controls

Ae(X?®) = 16(k —4) + 4 k>5  Relative phase in the controls

A(X*) = 8(k—2) k>3 Relative phase in the controls & target
Ak(X*) |0y®™ 4m+8(k — m—2) k>5  Relative phase in the controls & target
Us, |z) 8(k—1) k>2

Us, - 4(k—1) k>2  Relative phase in the controls & target
3-AND |0) 8 = Prior art; Relative phase in the controls
3-AND - 3or4 - Relative phase; Measurement-assisted
k-AND |0) 16(k —3) + 4 k>4

k-ANDT = Oor16(k—4)+4 k>6 Measurement-assisted

k-AND |0) 8(k—2) k>3  Relative phase in the controls

k-ANDT = 8(k—4)or8(k—4)+4 k>4  Relative phase; Measurement-assisted
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It's a process. It's a process. It's a process
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Classical oracles

Given a Boolean function & : Z’2‘ — Zp, we want to implement

()b ) = by @ )
— ————

Typical solutions use clean ancillas to store temporary values
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Suppose f(xi,...,X6) = X1X2X3X4X5 -+ X1 X2X3X4X6
—~ —~ ———

—

With one clean ancilla we can factor as x;xox3xa(xs5 + x6) and write

x1
X2
X3
X4

X5

X6
=

2\ v
>
v~ 1>
71
/ -
Ly @
= ( &—(0)
5 y @ x1x2x3xa (X5 + X6)

¢
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Suppose f(xi,...,X6) = X1X2X3X4X5 -+ X1 X2X3X4X6

With one clean ancilla we can factor as x;xox3xa(xs5 + x6) and write

X1 X1
X2 X2
X3 X3
X4 X4
X5 X5
X6 b X6
0 —D ©— 0
y © Y ® x1x2x3x4(X5 + Xp)

Out of space! Now what?
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Unused data qubits can also be used as temporary scratch space

We call these dirty ancillas

N
(% a@%ﬁ%?) HH (99)
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Back to our example

The 4 control Toffoli can be written using Toffolis and 2 dirty
ancillas [BBC+95]
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Putting it all together,
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Relative phase

te D, we have the following equivalence

l(-\ -

37 D Dt | /

U el
~ N \//‘\:"—'/ N

~ %
We say Uy implements an oracle Ur up to relative phase if for
some diagonal gates D, D/,

7 N

DUs = Ur = UsD'
<y e
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Brief history of relative phases

Pre-history

>

>

| 2

(Margolus ??77) Toffoli can be implemented up to phase with
3 two-qubit gates vs. 5 two-qubit gates exactly

(DiVincenzo and Smolin 1994) "relative phases are
dangerous”

(Barenco et al. 1995) "it's fine if only classical computations
in the middle..."

Modern history

>
>

vyYyy

(Selinger 2013) 4 T gate relative phase Toffoli

(Giles and Selinger 2013) ancilla-free, relative phase
multiply-controlled Toffoli gate

(Jones 2013) 4 T-gate Toffoli
(Maslov 2016) 8 T-gate relative phase 4-qubit Toffoli
(Gidney 2018) 4 T-gate temporary logical AND
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The cciX gate

Peter Selinger's cciX gate [Sell3]:

°

-

X
D &

[rite{To{H}

Selinger used the cciX gate as an efficient primitive for temporary

products A~ N
—o—
T 71T
0'giX iX1 0
o D
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The Cody Jones Toffoli

Cody Jones’s main observations were:

1. the relative phase could be corrected with a single ST gate if
the ancilla is clean, and

2. the temporary product could be uncomputed without T
gates by using measurement and classical control
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Craig Gidney later [Gid18] turned these observations into primitives
for computing and uncomputing 2-bit products
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Multiply-controlled iX

Giles & Selinger [GS13] discovered a multiply-controlled iX gate
by replacing the CNOTs in Selinger's cciX circuit with
multiply-controlled Toffoli gates

T-count scaling: 16k + O(1)
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Maslov's relative phase Toffoli-4

\ Wl
Vv

[
)
SE=

Dmitri Maslov [Mas16] realized that the final Toffoli gate can be
dropped, giving a relative phase 4-qubit Toffoli with T-count 8:

X
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Conjugation by H gates swaps state and (—1) phases

vy @ F(x)) (v] < (—1)770 1) 1y

A ——

Or, as circuits
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X

= Yy ® ®

y
2z - -Telemelre—:

The relevant computation is ccZ gate
xyz) — (—1)7% |xyz

up to a relative phase independent of z
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A closer look at cciX

—

X
=y ’ y
& DdrsTbrereAborTe- -

The relevant computation is ccZ gate
[xyz) = (=1)% |xyz)

up to a relative phase independent of z

D

In particular, w?~ Y&+ (xSy®2)—(x®2) — ixy!—llxyz, where Y is
the relative phase.
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Replacing x and y in (—1)*# with oracles fo) and g!x! gives

=B () —20E(X)+28F(X)SE() _ (F(x)e()(_1)2F()e().

~———

so the Giles-Selinger construction gives a method of multiplying
oracles up to phase
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Can we a priori find the relative phase that reduces T-count?
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General construction of relative phases

The Boolean Fourier expansion,

1 _
XL Xn = 5oy > (-pPl @Lxlx)
~— SC{1,...,n}

decomposes a diagonal gate over {CNOT, Rz} [AAM18]

RO} {Rz(0/2) Fb{ Rz(—0/2) |-

0 Y = O Ty X
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General construction of relative phases

The Boolean Fourier expansion,

1 _
XU Xn = ooy Z (—1)'5| Lys(xty ey xn),
SC{1,...,n}
decomposes a diagonal gate over {CNOT, Rz} [AAM18]
Rz(0/2)

RO — TR0/} {R(C0/2)] -

Dropping terms that depend on the target gives a relative phase!

Ty Tz (x®y) - (x@2) - (y©2)+(xDyS2)
-
52— (y©2)+(x®y®z)—(xpzD

— PYE (y®z)+(xdyPz)—(xP2)
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The relevant computation is in the phase, but the final Toffoli just
cleans the state garbage
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The relative phase Toffoli-4

/N w

—— w
—e— = X / X
BE , L
T T T T Z D wx
T T .

@

The relevant computation is in the phase, but the final Toffoli just
cleans the state garbage

Conjugating with Hadamard gates instead swaps it into the phase

—

Y (1) |2 @) (2] 4 1wy (Z1) 12y (z @ wxy ]
D ——
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Applying to our oracle multiplication circuit...

/ R T R

ifel| &) f-g _ : f g f
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Applying to our oracle multiplication circuit...

L 7
Z[if'gf-g; - f (g f
il

Can we iterate unbalanced multiplication?
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Setting_fi(x) = x;, and g; = f; - g;_1 generates high degree,
non-Toffoli oracles wita Tow T-count, up to phase

HHT et HAHT]

For example, ga(x1, X2, X3,X4) = X1X2X3X4 + X1X4 + X3X4

» T-count: 4(k —1) Q/@ k

» Previous best: 16(k — 1) + O(1)

» Matches multiplicative complexity-based synthesis
without using ancillas
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Target-dependant relative phase

The extra terms previously arise from iterating with a
target-dependant relative phase

We can eliminate target-dependant phases by matching them up
with uncomputations:

= /f* (g*) (f*)TJ Call
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Construction of a multiply-controlled Toffoli up to relative phase:

X X* ()t HTH o) HAF
/N N\

()

o

o /

kL)

\\ g

X*HTHx Hrt Hx)

Problem: scales non-linearly!
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Can we build efficient relative phase Toffolis with ancillas?
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ly @ F() (y] <2 (<1)7700 |y (]

Recall the compute phase o?%nco Toffoli:
X1

X1
o 1 AN
o \
L \
=i b a1 ® xix2
SR &—bD 3 ® X 00x3
y D D Y ® X1X0X3Xa
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State garbage = relative phase
ly @ F(x)) (] &5 (-1 1) ¢y

Recall the compute phase of the Barenco Toffoli:

X1 X1

X2 X2

X3 X3

X4 X4
rl; ER AL SH
_@2 —H N N Hi—_ a2

y N N y D x1x2Xx3X4

Rather than uncompute the temporary values in red, we can trade
them for a relative phase
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fanY
V

()
fanY
N

T-count: 8(k — 1) — 4 for k controls
Previous best: 8(k — 1) for k controls
Matches the usual clean ancilla construction
Still not good enough!

fanY
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Getting it down to a single number (of ancillas)
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Getting it down to a single number (of ancillas)

Barenco's dirty ancilla Toffoli gives a uniform recursive
construction, but with exponential gate count since each recursive
stage needs to clean up its garbage

A A

\
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By swapping to the phase space, we can catalyze an auxiliary
dirty ancilla that doesn’t need to be cleaned

—
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» T-count: 8(k — 1) — 4 for k controls with one ancilla
~—~——————

» T-count: 16(k — 2) for k controls with phase correction

» Previous best: 16(k — 1)
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We can now use the single dirty ancilla Toffoli to bootstrap a
relative-phase ancilla free Toffoli

— 2

==_ x 1T Ty

» T-count: 8(k —2)
» Previous best: 16(k —2) + 4

> Reduces T-count for < [452] clean ancillas
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compute uncompute

I
T

It
T
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A closer look at Jones' T-count 4 Toffoli

compute uncompute

The uncompute circuit works because

H|xy) = \f Zg 1)97 \z

which leaves a phase of 0 if measurement returns 0, o
otherwise
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Termination by X-basis measurements

More generally, terminating an ancilla in the temporary state
|f(x)) is equivalent to an X basis measurement and a classically
controlled (—1)) phase:
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Termination by X-basis measurements

More generally, terminating an ancilla in the temporary state
|f(x)) is equivalent to an X basis measurement and a classically
controlled (—1)®) phase:

However, correction is not Clifford if deg(f) > 3
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Temporary products

Gidney revived Jones’ work by turning it into a temporary product

X —o— X e X —e— X

yWEy: yjry:
Xy o —ixHst] xy

Can we construct similar (resource-efficient) compute/uncompute
pairs?

4 ——— ——
‘ I ——— Y

o

40/ 46



Uncomputing Maslov's Toffoli

T-count: 3.5 on average (vs. 8)
—

X1

L . * Xk_o

]
0

T-count: 8(k —4) + 2 on average (vs. 16(k — 2))
w

Xk—1

Xk
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» T-count 8(k — 2) to compute

» T-count 8(k —4) or 8(k — 4) + 4 to uncompute

» Lowest T-count, ancilla free compute & uncompute
circuits for k-control products
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Conclusions
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Conclusions

In this talk...
» classes of degree k functions with T-count 4(k — 1)
» temporary logical-k-ANDs with T-count down to 8(k — 2)

» measurement-assisted uncomputation of a k-AND with
average T-count 8(k —4) + 2

Main takeaway: improvements can be made by designing
oracles with both phase and state in mind
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Thank you!

46 / 46



	Overview
	Oracle implementation
	Generalizing Selinger's construction
	Generalizing Jones' construction
	Conclusion

