
Formal methods of quantum program analysis

Matthew Amy

School of Computing Science, Simon Fraser University

APS March Meeting
Chicago, March 16th, 2022

1 / 23

What is this talk about?

Formal methods of quantum program analysis

precise, mathemati-
cal methods of rea-
soning about hard-
ware & software

quantum determine the be-
haviour of a program,
typically for the pur-
pose of optimization or
verification

This talk: the design of analysis-based quantum program optimizations

2 / 23

What is this talk about?

Formal methods of quantum program analysis

precise, mathemati-
cal methods of rea-
soning about hard-
ware & software

quantum determine the be-
haviour of a program,
typically for the pur-
pose of optimization or
verification

This talk: the design of analysis-based quantum program optimizations

2 / 23

Why optimize quantum programs?

Expectation Reality

3 / 23

The bread-and-butter of quantum program optimization

Everyone’s first circuit optimization: merge adjacent gates

T T † =

T T = S

Next level: commute gates first

T

T †
=

T T †

=

4 / 23

Gate cancellation
Then

Programs:

Optimizations: semantics-based

Kissinger & van de Wetering, Reducing T-count with the ZX-calculus. Phys. Rev. A (2020). 5 / 23

Gate cancellation
Now

Programs:

Optimizations: back to rewrite-based

Need formal methods for hybrid programs!

Ittah et al., Enabling Dataflow Optimization for Quantum Programs. ACM Trans. Quant. Comput. (2022).

6 / 23

Gate cancellation
Now

Programs:

Optimizations: back to rewrite-based

Need formal methods for hybrid programs!
Ittah et al., Enabling Dataflow Optimization for Quantum Programs. ACM Trans. Quant. Comput. (2022).

6 / 23

Program analysis has entered the chat

7 / 23

Static program analysis

Goal is to prove properties about the program instead of
computing the full semantics

Semantics:
▶ A description of what a program does in some formal

mathematical language
▶ E.g., the matrix (semantics) of a circuit (program)

t
• • T

T • •

|

=

1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

▶ A language can have many different semantics which expose

different aspects of its behaviour
▶ E.g. control-flow paths of a parallel program

▶ Usually, too hard (or impossible) to compute precise semantics

8 / 23

Abstraction

Static analysis uses sound abstraction and approximation to make
the problem of proving properties tractable

▶ Abstraction: only retain relevant properties

E.g. value of x is negative

▶ Approximation: occurs when we can’t prove the desired
property

(-) + (+) = ???

Executions Properties
τ1

τ2 P

Trick is to compute a property which is precise but sound
9 / 23

Example: Constant propagation

Want to know when variables are constant

Analysis-based approach (reaching definitions analysis):

▶ Abstraction: which definitions may reach a location

▶ Only one definition reaches =⇒ variable is constant

1 x := 1 ;
2 y := 2 ;
3 i f (x <= y) {
4 x := 0 ;
5 } e l s e {
6 x := 3 ;
7 }
8
9 z := x* f oo (y) ;

10 / 23

Example: Constant propagation

Want to know when variables are constant

Analysis-based approach (reaching definitions analysis):

▶ Abstraction: which definitions may reach a location

▶ Only one definition reaches =⇒ variable is constant

1 x := 1 ;
2 y := 2 ;
3 i f (x <= y) { // x := 1 , y := 2 reach
4 x := 0 ;
5 } e l s e {
6 x := 3 ;
7 }
8
9 z := x* f oo (y) ; // x := 0 , x := 3 reach

10 / 23

Example: Constant propagation

Want to know when variables are constant

Analysis-based approach (reaching definitions analysis):

▶ Abstraction: which definitions may reach a location

▶ Only one definition reaches =⇒ variable is constant

1 x := 1 ;
2 y := 2 ;
3 i f (1 <= 2) {
4 x := 0 ;
5 } e l s e {
6 x := 3 ;
7 }
8
9 z := x* f oo (y) ; // x := 0 r e a ch e s

10 / 23

Example: Constant propagation

Want to know when variables are constant

Analysis-based approach (reaching definitions analysis):

▶ Abstraction: which definitions may reach a location

▶ Only one definition reaches =⇒ variable is constant

1 x := 1 ;
2 y := 2 ;
3 i f (1 <= 2) {
4 x := 0 ;
5 } e l s e {
6 x := 3 ;
7 }
8
9 z := 0* f oo (y) ;

10 / 23

Applying analysis to quantum program
optimization

11 / 23

The phase folding optimization

Merge phase gates by proving their arguments are equal
▶ Analogous to classical dataflow optimizations

▶ must-analysis
▶ flow- and context-sensitive, path-insensitive

▶ Applies to hybrid quantum-classical programs
▶ Poly-time, strictly gate-count decreasing

▶ And fast in practice!
▶ 100’s of qubits & 1, 000, 000’s of gates in seconds

▶ Provably sound

M. Amy, Formal Methods in Quantum Circuit Design. PhD thesis (2019).

12 / 23

Phase-folding in simple circuits

Definition (Sum-over-paths)

Any circuit over Clifford+RZ can be represented as

|x⟩ 7→ 1
√
2
k

∑
y∈Zk

2

e iP(x,y)|f (x, y)⟩

where f is affine and P : Zn+k
2 → R/2π is a phase polynomial

P(x, y) =
∑
z∈Zn

azχz(x, y), χz(x) = x1z1 ⊕ · · · ⊕ xnzn

▶ RZ gates contribute to exactly one term of P

▶ Can be implemented with one RZ gate per term

▶ Optimize by replacing gates contributing to the same term with a
single gate

M. Amy, D. Maslov, M. Mosca, Polynomial-time T -depth Optimization via Matroid Partitioning, TCAD
(2014).

13 / 23

Example

As sums-over-paths,

S :|x⟩ 7→ ix |x⟩

T :|x⟩ 7→ ωx |x⟩, ω = e
πi
4

CNOT :|x⟩|y⟩ 7→ |x⟩|x ⊕ y⟩

We can step through the circuit to track the effect of phase gates

• • T

T • •

14 / 23

Example

As sums-over-paths,

S :|x⟩ 7→ ix |x⟩

T :|x⟩ 7→ ωx |x⟩, ω = e
πi
4

CNOT :|x⟩|y⟩ 7→ |x⟩|x ⊕ y⟩

We can step through the circuit to track the effect of phase gates

|x⟩ • • T

|y⟩ T • •

State: |x⟩|y⟩

14 / 23

Example

As sums-over-paths,

S :|x⟩ 7→ ix |x⟩

T :|x⟩ 7→ ωx |x⟩, ω = e
πi
4

CNOT :|x⟩|y⟩ 7→ |x⟩|x ⊕ y⟩

We can step through the circuit to track the effect of phase gates

• |x⟩ • T

|x ⊕ y⟩ T • •

State: |x⟩|x ⊕ y⟩

14 / 23

Example

As sums-over-paths,

S :|x⟩ 7→ ix |x⟩

T :|x⟩ 7→ ωx |x⟩, ω = e
πi
4

CNOT :|x⟩|y⟩ 7→ |x⟩|x ⊕ y⟩

We can step through the circuit to track the effect of phase gates

• |x⟩ • T

T |x ⊕ y⟩ • •

State: ωx⊕y |x⟩|x ⊕ y⟩

14 / 23

Example

As sums-over-paths,

S :|x⟩ 7→ ix |x⟩

T :|x⟩ 7→ ωx |x⟩, ω = e
πi
4

CNOT :|x⟩|y⟩ 7→ |x⟩|x ⊕ y⟩

We can step through the circuit to track the effect of phase gates

• • |x⟩ T

T |y⟩ • •

State: ωx⊕y |x⟩|y⟩

14 / 23

Example

As sums-over-paths,

S :|x⟩ 7→ ix |x⟩

T :|x⟩ 7→ ωx |x⟩, ω = e
πi
4

CNOT :|x⟩|y⟩ 7→ |x⟩|x ⊕ y⟩

We can step through the circuit to track the effect of phase gates

• • |x ⊕ y⟩ T

T • |y⟩ •

State: ωx⊕y |x ⊕ y⟩|y⟩

14 / 23

Example

As sums-over-paths,

S :|x⟩ 7→ ix |x⟩

T :|x⟩ 7→ ωx |x⟩, ω = e
πi
4

CNOT :|x⟩|y⟩ 7→ |x⟩|x ⊕ y⟩

We can step through the circuit to track the effect of phase gates

• • T |x ⊕ y⟩
T • |y⟩ •

State: ωx⊕yωx⊕y |x ⊕ y⟩|y⟩ = ix⊕y |x ⊕ y⟩|y⟩

14 / 23

Example

As sums-over-paths,

S :|x⟩ 7→ ix |x⟩

T :|x⟩ 7→ ωx |x⟩, ω = e
πi
4

CNOT :|x⟩|y⟩ 7→ |x⟩|x ⊕ y⟩

We can step through the circuit to track the effect of phase gates

• • S |x ⊕ y⟩
• |y⟩ •

State: ωx⊕yωx⊕y |x ⊕ y⟩|y⟩ = ix⊕y |x ⊕ y⟩|y⟩
Both T gates can be replaced with a single S gate

14 / 23

Example

As sums-over-paths,

S :|x⟩ 7→ ix |x⟩

T :|x⟩ 7→ ωx |x⟩, ω = e
πi
4

CNOT :|x⟩|y⟩ 7→ |x⟩|x ⊕ y⟩

We can step through the circuit to track the effect of phase gates

• • S |x⟩
• • |y⟩

State: ix⊕y |x⟩|y⟩

14 / 23

What about hybrid programs?

Consider a simple imperative hybrid quantum-classical language

S :: = U q

| c ← meas q

| S1; S2
| if E then S1 else S2

| while E do S

Problem: can no longer explicitly represent as a sum-over-paths!

As a program analysis:
Rather than compute a single sum-over-paths, prove two
gates can be merged in every execution

15 / 23

What about hybrid programs?

Consider a simple imperative hybrid quantum-classical language

S :: = U q

| c ← meas q

| S1; S2
| if E then S1 else S2

| while E do S

Problem: can no longer explicitly represent as a sum-over-paths!

As a program analysis:
Rather than compute a single sum-over-paths, prove two
gates can be merged in every execution

15 / 23

Designing an analysis

To prove two gates can be merged, need to know when their arguments
are the same across every control flow path

Key idea: track the relations between program locations

▶ E.g. the equation CNOT |x⟩|y⟩ = |x⟩|x ⊕ y⟩ can be written as a
relation between the input and output values

CNOT |x⟩|y⟩ = |x ′⟩|y ′⟩ where x ′ = x , y ′ = x ⊕ y

▶ Explicitly, keep a set of relations which must hold

{x ′ = x , y ′ = x ⊕ y}

Free optimizations: it’s always safe to assume no relations hold

▶ E.g. U|x1 · · · xn⟩ = |x ′1 · · · x ′n⟩

T • Z T

? • •
−→

S • Z

? • •

16 / 23

Designing an analysis

To prove two gates can be merged, need to know when their arguments
are the same across every control flow path

Key idea: track the relations between program locations

▶ E.g. the equation CNOT |x⟩|y⟩ = |x⟩|x ⊕ y⟩ can be written as a
relation between the input and output values

CNOT |x⟩|y⟩ = |x ′⟩|y ′⟩ where x ′ = x , y ′ = x ⊕ y

▶ Explicitly, keep a set of relations which must hold

{x ′ = x , y ′ = x ⊕ y}

Free optimizations: it’s always safe to assume no relations hold

▶ E.g. U|x1 · · · xn⟩ = |x ′1 · · · x ′n⟩

T • Z T

? • •

−→
S • Z

? • •

16 / 23

Designing an analysis

To prove two gates can be merged, need to know when their arguments
are the same across every control flow path

Key idea: track the relations between program locations

▶ E.g. the equation CNOT |x⟩|y⟩ = |x⟩|x ⊕ y⟩ can be written as a
relation between the input and output values

CNOT |x⟩|y⟩ = |x ′⟩|y ′⟩ where x ′ = x , y ′ = x ⊕ y

▶ Explicitly, keep a set of relations which must hold

{x ′ = x , y ′ = x ⊕ y}

Free optimizations: it’s always safe to assume no relations hold

▶ E.g. U|x1 · · · xn⟩ = |x ′1 · · · x ′n⟩

T • Z T

? • •
−→

S • Z

? • •

16 / 23

Meet-over-paths

For branching classical control, a relation holds if and only if it
holds on all control-flow paths
▶ =⇒ take intersection of relations across branches

Example

Consider the program

c ← meas q1; if (c) then {X q2; Tq3} else {Z q2; T
†q3}

The circuits along each control flow path are

{|0⟩⟨0| ⊗ X ⊗ T , |1⟩⟨1| ⊗ Z ⊗ T †}

For the first circuit the relations {x ′ = 0, y ′ = 1⊕ y , z ′ = z} hold, while
for the second we have {x ′ = 1, y ′ = y , z ′ = z}. The only relation that
holds in both paths is {z ′ = z}. Hence the overall effect is

|xyz⟩ 7→ |x ′y ′z ′⟩ such that z ′ = z

17 / 23

Putting it all together

Phase analysis for the quantum WHILE language, semi-formally

JRℓ
Z (θ)Ka = |x⟩ 7→ eθℓx |x⟩

JX Ka = |x⟩ 7→ |1⊕ x⟩
JCNOTKa = |x⟩|y⟩ 7→ |x⟩|x ⊕ y⟩
JmeasKa = |x⟩ 7→ |x ′⟩

JUKa = |x1x2 . . . xn⟩ 7→ |x ′1x ′2 . . . x ′n⟩
Jc(U)Ka = |x1⟩|x2 . . . xn⟩ 7→ |x1⟩|x ′2 . . . x ′n⟩

JS1; S2Ka = JS2Ka ◦ JS1Ka
Jif E then S1 else S2 Ka = JS1Ka ∩ JS2Ka

Jwhile E do S Ka = ∩∞i=0JS1K
i

18 / 23

The optimization

Run phase analysis and normalize P up to the computed relations.
Then, for any term

∑
ℓ∈S θℓ of P

1. Select some ℓ0 ∈ S

2. Set θℓ0 ←
∑

ℓ∈S θℓ

3. Set θℓ ← 0 for all ℓ ∈ S \ {ℓ0}

Theorem (Soundness)

If P contains a term
∑

ℓ∈S θℓ, then the gates at locations ℓ ∈ S
can be replaced with a single RZ (

∑
ℓ∈S θℓ) gate

19 / 23

Performance

Need hybrid benchmarks to actually test the interesting parts!

20 / 23

Conclusion

21 / 23

Take-aways

▶ Need new methods of optimizing hybrid quantum programs
▶ Static program analysis is a powerful tool for tackling this

problem
▶ Get a lot of things for free
▶ Takes a lot of the guesswork away
▶ Existing tools & frameworks for proving correctness

▶ Think about proving properties rather than rewriting!

22 / 23

Thank you!

23 / 23

	Motivation
	Program analysis has entered the chat
	Applying analysis to quantum program optimization
	Conclusion

