Matthew Amy
School of Computing Science, Simon Fraser University

APS March Meeting
Chicago, March 16th, 2022

1/23

What is this talk about?

Formal methods

precise, mathemati-
cal methods of rea-
soning about hard-
ware & software

of quantum

|

quantum

determine the be-
haviour of a program,
typically for the pur-
pose of optimization or
verification

2/23

What is this talk about?

Formal methods

precise, mathemati-
cal methods of rea-
soning about hard-
ware & software

of quantum

|

quantum

determine the be-
haviour of a program,
typically for the pur-
pose of optimization or
verification

This talk: the design of analysis-based quantum program optimizations

2/23

Why optimize quantum programs?

Expectation Reality

Physicists demonstrate that 15=3x5 about
half of the time

by: Elliot Williams 19 August 2012

78 Comments

September 29,2015

never been done before,” said Erk Lucero, the
paper's lead author. Now a postdoctoral researcher
in experimental quantum computing at IBM, Lucero
was a doctoral student in physics at UCSB when
the research was conducted and the paper was
written,

“What is important is that the concepts used in
factoring this small number remain the same when
factoring much larger numbers," said Andrew
Cleland, a professor of physics at UCSB and a
collaborator on the experiment. "We just need to
The device in the photomicrograph was used to run the Scale up the size of this processor to something
first soli-state demonstration of Shor's algorim. Itis much larger. This won't be easy, but the path
made up of four phase qubits and five superconducting forward is dlear.”

ors, for a total of nine engineered quantum
antum computing to cryptography is lready wellknown, this summer has seen a elements. The quantum processor measures on
lurry of acthty o I or a recar quarter inch square. Credit: UCSB

Practical applications motivated the research,
‘according to Lucero, who explained that factoring
verylarge numbers is at the heart of cybersecurity
protocols, such as the most common form of

3/23

The bread-and-butter of quantum program optimization

Everyone's first circuit optimization: merge adjacent gates

[THT - =
= sk

Next level: commute gates first

7

4/23

Programs:
OPENQASM 2.0;
include "gelibl.inc";

areg q[5];
cex qfo],q[1],q[4];

cex q[2],q[41,q[3];
ccx q[0],q[1],q[4];

® N o Oh W N R

Optimizations: semantics-based

Kissinger & van de Wetering, Reducing T-count with the ZX-calculus. Phys. Rev. A (2020). 5/23

Programs:
qs.circ Q@ENT(%qb_0, %r_0, %n) {

%qb_1 qs.H %qb_0
%qb_2, %r_1 affine.for %i

iter_args (%qb_i_0 %qb_0, %r_i_O

%qt_0, %rem = qs.extract %r_i_0[%i]
%qb_i_1, %qt_1 = gs.CX %gb_i_0, %qt_0
%r_i_1 = gs.combine Y%rem[%il, %qt_1

affine.yield %qgb_i_1, %r_i_1
:s return %gb_2 Yr_1 next iteration values
0 -2, =

}

final value of each quantum argument

loop-carried values
0 to %n «

%r_0) {

Optimizations: back to rewrite-based

1 %al, %b1 = gs.CX %a0@, %bo 1
2 %a2, %b2 = gs.CX %al, %b1l , 2
3 %a3 = gs.H %a2 3 %a3

qs.H %a@

Ittah et al., Enabling Dataflow Optimization for Quantum Programs. ACM Trans. Quant. Comput. (2022).

6/23

Programs:
gqs.circ QENT(%qb_0, %r_0, %n) {
'/.qb_l = gs.H '/.qb_O loop-carried values
%gb_2, %r_1 = affine.for %i = 0 to %n «
iter_args(%qb_i_0 = Y%qb_0, %r_i_0 = %r_0) {
%qt_0, %rem = qs.extract %r_i_0[%i]
%gb_i_1, %qt_1 = gs.CX %qb_i_0, %qt_0
%r_i_1 = gs.combine Y%rem[%il, %qt_1
affine.yield %qgb_i_1, %r_i_1
}

qs.return '/.qb_2 . Yr_1 next iteration values

} final value of each quantum argument

Optimizations: back to rewrite-based

1 %al, %b1 = gs.CX %a0@, %bo 1
2 %a2, %b2 = gs.CX %al, %b1l , 2
3 %a3 = gs.H %a2 3 %a3 = gs.H %a@

Need formal methods for hybrid programs!

Ittah et al., Enabling Dataflow Optimization for Quantum Programs. ACM Trans. Quant. Comput. (2022).
6/23

7/23

Static program analysis

Goal is to prove properties about the program instead of
computing the full semantics

Semantics:
» A description of what a program does in some formal
mathematical language
» E.g., the matrix (semantics) of a circuit (program)

1000
C)T}—E%_o,‘oo
—&{T]-& ~ oo o
0001

» A language can have many different semantics which expose
different aspects of its behaviour
» E.g. control-flow paths of a parallel program

» Usually, too hard (or impossible) to compute precise semantics

8/23

Abstraction

Static analysis uses sound abstraction and approximation to make
the problem of proving properties tractable

» Abstraction: only retain relevant properties
E.g. value of x is negative

» Approximation: occurs when we can't prove the desired
property
() + (+) =772

Executions Properties

Trick is to compute a property which is precise but sound
9/23

Example: Constant propagation
Want to know when variables are constant

Analysis-based approach (reaching definitions analysis):
» Abstraction: which definitions may reach a location

» Only one definition reaches = variable is constant

1 x = 1;

2y = 2;

3 if (x<=1y) {
4 x = 0;
5 } else {

6 x = 3;
7}

8

9 z := xxfoo(y);

10/23

Example: Constant propagation
Want to know when variables are constant

Analysis-based approach (reaching definitions analysis):
» Abstraction: which definitions may reach a location

» Only one definition reaches = variable is constant

1 x = 1;

2y = 2;

3 if (x<=y) { // x (=1, y := 2 reach
4 x = 0;

5 } else {

6 x = 3

7}

8

9 z := xxfoo(y); // x = 0, x := 3 reach

10/23

Example: Constant propagation
Want to know when variables are constant

Analysis-based approach (reaching definitions analysis):
» Abstraction: which definitions may reach a location

» Only one definition reaches = variable is constant

O© 0O NOOT WD

z := xxfoo(y); // x = 0 reaches

10/23

Example: Constant propagation
Want to know when variables are constant

Analysis-based approach (reaching definitions analysis):
» Abstraction: which definitions may reach a location

» Only one definition reaches = variable is constant

O© 0O NOOT WD

10/23

11/23

The phase folding optimization

Merge phase gates by proving their arguments are equal
» Analogous to classical dataflow optimizations
» must-analysis
» flow- and context-sensitive, path-insensitive
» Applies to hybrid quantum-classical programs
» Poly-time, strictly gate-count decreasing
» And fast in practice!
» 100's of qubits & 1,000,000's of gates in seconds

» Provably sound

M. Amy, Formal Methods in Quantum Circuit Design. PhD thesis (2019).
12/23

Phase-folding in simple circuits

Definition (Sum-over-paths)

Any circuit over Clifford4+Rz can be represented as
l (x,y)
Zyezk 70x,3)

where f is affine and P : Zg*k — R/27 is a phase polynomial

= Z aZ)(Z(x7 y)7 XZ(X) = X121 D---D XnZn
zeZ"

» R gates contribute to exactly one term of P

» Can be implemented with one Rz gate per term

» Optimize by replacing gates contributing to the same term with a
single gate

M. Amy, D. Maslov, M. Mosca, Polynomial-time T-depth Optimization via Matroid Partitioning, TCAD
(2014).

13/23

As sums-over-paths,

S :x) = i¥|x)
T :|x) = w*|x), w=e
CNOT :[x)ly) = [)lx @ y)

We can step through the circuit to track the effect of phase gates

P r7:1 ba

N>

fanY

{14

N>

14 /23

As sums-over-paths,

S :x) = i¥|x)
T :|x) = w*|x), w=e
CNOT :[x)ly) = [)lx @ y)

We can step through the circuit to track the effect of phase gates

|)(> P F_i:W ba

ly)——{ T+

N>

N>

State: |x)|y)

14 /23

As sums-over-paths,

S :x) = i¥|x)
T :|x) = w*|x), w=e
CNOT :[x)ly) = [)lx @ y)

We can step through the circuit to track the effect of phase gates

——x S T4

—b—|x o y)—{TH&

N>

State: |x)|x @ y)

14 /23

As sums-over-paths,

S :x) = i¥|x)
T :|x) = w*|x), w=e
CNOT :[x)ly) = [)lx @ y)

We can step through the circuit to track the effect of phase gates

)(> P F_i:W ba

|
|
—{THx®y)—€

N>

N>

State: W*®Y|x)|x D y)

14 /23

As sums-over-paths,

S :x) = i¥|x)
T :|x) = w*|x), w=e
CNOT :[x)ly) = [)lx @ y)

We can step through the circuit to track the effect of phase gates

IX\ o r5:1 ba

—&{THb—y)

N>

State: w*®Y|x)|y)

14 /23

As sums-over-paths,

S :x) = i¥|x)
T :|x) = w*|x), w=e
CNOT :[x)ly) = [)lx @ y)

We can step through the circuit to track the effect of phase gates

S—Ixey)—T-p—

fan)

> TH4

N\
k<
~

State: WY |x @ y)|y)

14 /23

As sums-over-paths,

S :x) = i¥|x)
T :|x) = w*|x), w=e
CNOT :[x)ly) = [)lx @ y)

We can step through the circuit to track the effect of phase gates

yanY

D T Hx @ y)—p—
|

ly)——

fan)
L

al
N

N>

State: WY WY |x @ y)|y) = ¥ |x D y)|y)

14 /23

As sums-over-paths,

S :x) = i¥|x)
T :|x) — w¥|x),
CNOT :[x)|y) = [x)|[x © y)

We can step through the circuit to track the effect of phase gates

fan)
N>
fn)
>

|y

State: W*PYW*|x @ y)|y) = ¥ |x @ y)

S S|Hx e y)—4

S

)—

ly)

b

Both T gates can be replaced with a single S gate

14 /23

As sums-over-paths,

S :x) = i¥|x)
T :|x) = w*|x), w=e
CNOT :[x)ly) = [)lx @ y)

We can step through the circuit to track the effect of phase gates

S sHp—1x)

an
N\
fanY
N\
\<
~

State: ¥ |x)|y)

14 /23

Consider a simple imperative hybrid quantum-classical language

S:=Ugqg
| ¢ < meas q
| S1; 52
| if E then S; else Sp
| while E do S

Problem: can no longer explicitly represent as a sum-over-paths!

15/23

What about hybrid programs?

Consider a simple imperative hybrid quantum-classical language

S:=Ugq
| ¢« meas q
| S15 S
| if E then S; else S;
| while E do S

Problem: can no longer explicitly represent as a sum-over-paths!
As a program analysis:

Rather than compute a single sum-over-paths, prove two
gates can be merged in every execution

15/23

Designing an analysis

To prove two gates can be merged, need to know when their arguments
are the same across every control flow path

Key idea: track the relations between program locations

» E.g. the equation CNOT |x)|y) = |x)|x @ y) can be written as a
relation between the input and output values

CNOT[x)ly) = [X')]y’) where X' = x,y' =x & y
» Explicitly, keep a set of relations which must hold

X'=xy' =xaoy}

16/23

Designing an analysis

To prove two gates can be merged, need to know when their arguments
are the same across every control flow path

Key idea: track the relations between program locations

» E.g. the equation CNOT |x)|y) = |x)|x @ y) can be written as a
relation between the input and output values

CNOT|x)|y) = |x")|y’) where X' = x,y' = x®y
» Explicitly, keep a set of relations which must hold
{xX'=xy =xoy}
Free optimizations: it's always safe to assume no relations hold

» Eg Ulxi- - xp) = x| - xp)

n

—{7]

Van)

p—{z}-o{T]-

[~]

16/23

Designing an analysis

To prove two gates can be merged, need to know when their arguments
are the same across every control flow path

Key idea: track the relations between program locations

» E.g. the equation CNOT |x)|y) = |x)|x @ y) can be written as a
relation between the input and output values

CNOT|x)|y) = |x")|y’) where X' = x,y' = x®y
» Explicitly, keep a set of relations which must hold
{xX'=xy =xoy}
Free optimizations: it's always safe to assume no relations hold

» Eg Ulxi- - xp) = x| - xp)

n

—{7]

Van)
V)

2T] —{z}-o—

[~]
[~]

16/23

Meet-over-paths

For branching classical control, a relation holds if and only if it
holds on all control-flow paths

» — take intersection of relations across branches
Example

Consider the program
c + meas qy; if (c) then {X q2; Tqs} else {Z qo; TTq3}
The circuits along each control flow path are
{000 X T,|1){1|® Zx TT}

For the first circuit the relations {x' =0,y’ =1® y,z' = z} hold, while
for the second we have {x' = 1,y' =y, 7z’ = z}. The only relation that
holds in both paths is {z' = z}. Hence the overall effect is

|xyz) — |x'y'Z) such that 2 = z

17/23

Putting it all together

Phase analysis for the quantum WHILE language, semi-formally

[RZ(0)]s = Ix) — €”|x)
[X]a = [x) = [1 & x)
[CNOT]. = [x)|y) — [x)[x ® y)

[meas], = |x) — |x')

[Ula= [xaxz...xn) = |X{X5 ... X5)
Ja=

[c(U)

a= X)X xn) = X)X XD
[S1; S2]a = [S2]a 0 [S1]a

[if E then S else Sy |2 = [S1]a N [S2]a
[while E do S |, = N2o[S1]

18/23

Run phase analysis and normalize P up to the computed relations.
Then, for any term ZEGS 0, of P

1. Select some /g € S
2. Set 9@0 — ZZES 0,
3. Set Oy < 0 forall £ € S\ {lo}

If P contains a term), s 0, then the gates at locations { € S
can be replaced with a single Rz()_,cs 0¢) gate

19/23

Need hybrid benchmarks to actually test the interesting parts!

20/23

21/23

Take-aways

» Need new methods of optimizing hybrid quantum programs

» Static program analysis is a powerful tool for tackling this
problem

» Get a lot of things for free
» Takes a lot of the guesswork away
» Existing tools & frameworks for proving correctness

» Think about proving properties rather than rewriting!

22/23

Thank you!

23/23

	Motivation
	Program analysis has entered the chat
	Applying analysis to quantum program optimization
	Conclusion

