
Quantum computation and compilation

Matthew Amy

Simon Fraser University

CS Undergraduate Research Symposium
April 11, 2022

1 / 20

Computation

Computation is a physical process

We use abstractions to describe and
model computation

I 0 for low voltage, 1 for high
voltage

I Turing machines

The (extended) Church–Turing thesis:

A probabilistic Turing machine can efficiently simulate any
physical model of computation.

2 / 20

Quantum computation

Classical models of computation are
based on classical physics.

Richard Feynman, 1982:
A classical computer cannot
efficiently simulate a quantum
mechanical system.

Subsequent algorithms using quantum effects for speed-ups:

I (Shor, 1994) Integer factorization

I (Lloyd, 1996) Simulation of quantum systems

I (Grover, 1996) Unstructured search

I Discrete logarithms, linear systems, knot invariants, . . .

3 / 20

Beam-splitters

photon source

beam-splitter

detectors

50%

50%

A beam-splitter acts as a classical coin flip: a photon traveling
through it will either

I continue straight through, or

I be reflected

with equal probability.

4 / 20

The beam-splitter experiment

Mirror

Mirror

Where will a single photon be detected?

I Classical intuition says equal probability at either location

5 / 20

The beam-splitter experiment

Mirror

Mirror

0%

100%

Experimentally it will always appear at the lower detector

I Intuition is that the photon took both paths simultaneously

I Interference causes paths to the upper detector to cancel

5 / 20

How do we model this abstractly?

6 / 20

The linear algebraic model

|1〉

|0〉

We map the classical states to a basis of C2

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]
The state of a qubit is a unit vector |ψ〉 ∈ C2, corresponding to a
superposition of the classical 0 and 1 states

|ψ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1

7 / 20

Quantum gates

Transformations on a quantum state are unitary operators
U : C2 → C2 called gates

H =
1√
2

[
1 1
1 −1

]
Gates transform states via matrix multiplication

H|1〉 =
1√
2

[
1 1
1 −1

] [
0
1

]
=

1√
2
|0〉+

−1√
2
|1〉

8 / 20

Quantum circuits

Large unitaries are built by composing gates in circuits

T T † T T †

T • • • •

H • T † • T H

Time

Common gates:

S = S =

[
1 0
0 i

]
H = H =

1√
2

[
1 1
1 −1

]

CNOT =
•

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 T = T =

[
1 0

0 ω := e i
π
4

]

9 / 20

Measurement

When we measure a qubit in a superposition

|ψ〉 = α|0〉+ β|1〉

the state collapses to
I |0〉 with probability |α|2
I |1〉 with probability |β|2

The measurement probabilities form a probability distribution,
forcing |ψ〉 to be a unit vector:

|α|2 + |β|2 = 1

10 / 20

Quantum programs

I States: x ∈ {0, 1}n = Zn
2

I Functions: f : Zn
2 → Zm

2

I States: |ψ〉 ∈ C2n

I Functions: U : C2n → C2n

Typical quantum program:

1. Apply some circuit to the |00 . . . 0〉 state

2. Measure some or all of the qubits

3. Process the results on a classical computer

11 / 20

How do we program & compile circuits?

12 / 20

Quantum compilation

Circuit over high-level gates & functions

Circuit over mid-level logical gates

...

Circuit over error corrected logical gates

Circuit over physical gates

Compile by replacing gates with lower-level circuits, e.g.,

•
S

=
T • •
T T †

13 / 20

Gate sets

A set of gates is universal if it can approximate any unitary up to
arbitrary accuracy.

Theorem (The Solovay-Kitaev theorem)

Given a set G of gates which is dense in SU(2), any U ∈ SU(2)
can be approximated to within ε error using a poly-logarithmic
number of gates taken from G.

{H,CNOT ,T} is the standard error corrected universal set

14 / 20

Algebraic compilation

Algebraic compilation = compile using algebraic characterizations.

The number-theoretic method:
Let D = {a/2k |a, k ∈ Z} be the ring of Dyadic fractions and let

D[ω] = {aω3 + bω2 + cω + d | a, b, c , d ∈ D}

where ω = eπi/4.

(Kliuchnikov et al. 2013, Giles & Selinger 2013):

A 2n× 2n unitary matrix U can be written as a product of
{H,CNOT ,T} gates if and only if U has entries in D[ω].

(Amy, Glaudell, & Ross 2020):

Similar characterizations for D,D[
√

2],D[i
√

2], and D[i]

15 / 20

Number-theoretic embeddings

Let R be a ring and R[α] be an algebraic extension of R.

(Amy, Glaudell, Ross, et al. 2022):

If there exists a pseudo-companion matrix Γ ∈ Mk×k(R)
for α, then any n × n unitary U ∈ Mk×k(R[α]) can be
embedded over R with a suitable resource state.

U...
... = φ(U)

...
...

|λ〉 |λ〉

16 / 20

The phase polynomial method

Circuits over restricted or non-universal gate sets are often easier
to efficiently characterize & compile.

(Amy, Maslov, & Mosca, 2014)

Any n-qubit circuit over {CNOT,X ,T} can be written as

U|x〉 = ωP(x)|Ax〉

where A ∈Mn×n(Z2) and P is a phase polynomial:

P(x) =
∑
y∈Zn

2

ay(x1y1 ⊕ x1y2 ⊕ · · · ⊕ xnyn)

17 / 20

Phase polynomial synthesis problems

Given a phase polynomial

P(x) =
∑
y∈Zn

2

ay(x1y1 ⊕ x1y2 ⊕ · · · ⊕ xnyn)

can we synthesize with the minimal...

(Amy, Maslov, & Mosca 2014) T -depth

Poly-time via reduction to Matroid partitioning.

(Amy, Azimzadeh, & Mosca 2018) CNOT gates

Unique combinatorial problem, NP-hard in some cases.

(Amy & Mosca 2019) T gates

Poly-time equivalent to decoding RM(n − 4, n)∗.

18 / 20

Just the tip of the iceberg...

I Near term/non-fault-tolerant computers

I Compilation & error correction co-design

I Symbolic synthesis

I ZX-calculus compilation

I Cost lower bounds

I Optimal reversible circuit synthesis

I Relative-phase implementations

I Measurement-assisted circuits

I Pebbling strategies

I Applications of number-theoretic embeddings

I Algorithm-specific compilation problems

I Pauli-based computing

I ???

19 / 20

Thank you!

I’m looking for students!

20 / 20

	Motivation

