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» Integration of circuit optimizations in hybrid
quantum-classical toolchains
» The interaction between classical control & quantum data
» Quantum (data flow) vs (quantum data) flow!
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[¢') & |¢') have exponential size, so can't do much analysis...
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S’ and T are classical so can use classical methods!
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The quantum circuit model

n-qubit quantum state = superposition of classical n-bit states
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n-qubit quantum gate = unitary (linear, invertible) operator on c%
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Quantum program = sequence of gates
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Rewrite-based:
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Semantics-based:
>, ePN|A(x,y))

R(PVR(P2) - R(P) —— ]
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Merge + cancel diagonal gates where possible
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Merge + cancel diagonal gates where possible

Rewrite-based:

Eil
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Merge + cancel diagonal gates where possible

Rewrite-based:

)
Semantics-based mod out by these commutations:

=mer Y poe=r=u B fola)
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Welcome to the real-world™

A quantum program isn't just a circuit

sequence of gates

measurement results
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Welcome to the real-world™

A quantum program isn't just a circuit

sequence of gates

measurement results

Problem for semantics-based approaches:

two distinctly different semantics!
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while ab # 00

11/28



while ab # 00
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while ab # 00
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while ab # 00

14 /28



How can we formalize these optimizations?
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Let R C IF5 x F3 a relation on length n bit strings such that
(X'|U[x) #0 = (x,x') € R. Then if for all (x,x") € R, x = x;,

Ty U = UTy,.
X1 —— X1
X2 ——— 56 =54

U 2 =
X3 —— X3
X4 ——— A
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Extending to programs

Program model (non-deterministic quantum WHILE)

Y :=skip | g:=10) | Uqg | meas q | call p(q)
T =R | Ti; To | if x then Ty else T, | while x do T

Classical semantics is the union of non-zero transitions
(x'||x) # 0 over all executions 7 € X*:

ClE € ] = {(x,x) | (x'|E|x) # 0}
C[[Tl; TQ]] =C [[T2]] OCHTlﬂ
C [[Tl + T2]] =C [[Tl]] uc [[TQ]]

CIT] = UR,C [[Tk]]
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How can we approximate the classical semantics?
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Standard gates implement affine classical transformations +
branching (in superposition)

T : |x) = w¥|x)
X |x) = |1+ x)
CNOT : |x, y)|—>|x x+y)

Z —1)¥y)

y S
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Affine subspaces

Standard gates implement affine classical transformations +
branching (in superposition)
T : |x) = w¥|x)
X |x) = |1+ x)
CNOT : |x,y) — ]x x+y)

Z 1)¥y)

y S

Abstract gates as affine subspaces of the pre and post state!
AlT] = (X' =x) ={
A[X] = (X' =1+ x) =1

A[CNOT] = <x’—xy =x+y) ={
A[H] = {(x

x,x) | x € Fa}

x,14+x) | x € Fp}

Xy, x,x+y)| x,y € Fa}
XY | x,x" € Fa}

AAAA
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Quantum affine relation analysis

Spoiler: it's just classical affine relation analysis

Proposition (Karr 1976, paraphrased heavily)

Given a flowchart program with affine assignments, a sound affine
relation on program variables can be calculated in polynomial-time.

» Composition = relational composition
» Replace union with affine hull

» No infinite ascending chains, so Kleene closure terminates
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Quantum affine relation analysis

Spoiler: it's just classical affine relation analysis

Proposition (Karr 1976, paraphrased heavily)

Given a flowchart program with affine assignments, a sound affine

relation on program variables can be calculated in polynomial-time.

» Composition = relational composition
» Replace union with affine hull

» No infinite ascending chains, so Kleene closure terminates

*

ST —— S

Loop invariant (x’ +y’ = x + y) allows canceling the T gates!
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What if we need more precision?

» The non-linear loop invariant x’y’ = xy allows eliminating
both T gates

» The strongest affine loop invariant (x' +y’ = x + y) is unable
to prove the relation x'y’ = xy

= need non-linear relations for this optimization!
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From affine subspaces to varieties

Replace affine subspaces with affine varieties and affine relations
with polynomial ideals

I =1(V)={f e Fp[X,X]| f(x,x') =0V(x,x') € V}.

Grobner basis methods suffice to compute compositions &
(infinite) unions
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From affine subspaces to varieties

Replace affine subspaces with affine varieties and affine relations
with polynomial ideals

I =1(V)={f e Fp[X,X]| f(x,x') =0V(x,x') € V}.

Grobner basis methods suffice to compute compositions &
(infinite) unions

Do we get all polynomial relations now? Yes(-ish)!

Proposition (Hilbert's strong Nullstellensatz for )

I(V(1)) =1+ (X? = X; | X; € X)
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Sequential composition is not precise!
A[H]Joc A[H] =ToT =T

A[HH] = A[I] = (x,x")

Problem is interference, which is used in quantum programs to
implement non-linear classical transitions
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The catch

Sequential composition is not precise!
A[HJoc A[H]=ToT =T

A[HH] = A[l] = (x,x")

Problem is interference, which is used in quantum programs to
implement non-linear classical transitions

Idea: treat circuits precisely and then extract precise
transition relations for circuit blocks
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Path integral = classical transitions + amplitudes

1C) =[x) = D> x,Y)A(xy) @ @ |falx,y))
yeFk

The ideal IY.(X] = A(X,Y),..., X] = (X, Y)) hence
(over-)approximates the classical transitions of C
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Symbolic path integrals

Path integral = classical transitions + amplitudes

1C) = 1x) = > @(x,Y)Ifi(x,y)) © - @ |falx,y))
yeF,

The ideal IY.(X{ = A(X,Y),..., X] = f(X,Y)) hence
(over-)approximates the classical transitions of C

Knowing the amplitudes allows re-writing to eliminate infeasible

transitions!
(H) o (H) = |x) — \2%22( 1Yo+ = Y, Z(X'+Z2)=T
= |x) = |x) = (X' +X)
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Implementation

» Implemented affine & polynomial analyses on openQASM 3.0
in FEYNMAN!
» Finds non-trivial optimizations based on loop invariants
» Easy + deep integration of phase folding in compilers for
hybrid workflows
Benchmark n Original PF A ¢ PFp,) Loop invariant
# T # T time (s) # T time (s)
RUS 3 16 10 0.30 8 0.35 (2 +z)
Grover 129 1736e9  1470e9 1.08 TIMEOUT =
Reset-simple 2 2 1 0.15 1 0.23 -
If-simple 2 2 0 0.18 0 0.16 =
Loop-simple 2 2 0 0.17 0 0.16 (X" +x,y+y +xy+xy')
Loop-h 2 2 0 0.16 0 0.16 ' +y)
Loop-nested 2 3 2 0.17 2 0.18 (X" + x), (X +x)
Loop-swap 2 2 0] 0.30 0 0.20 Xy xty, X xy 4o+ yx)
Loop-nonlinear 3 30 18 0.44 0 0.26 (x/ +x,2 4z, +y+xy+x7)
Loop-null 2 4 1 0.18 1 0.17 '+ x,y" 4+ y)

https://github.com/meamy/feynman
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https://github.com/meamy/feynman

Circuit optimization

With the relational approach, phase folding is strictly better than
previous approaches due to the use of non-linear reasoning

X X
y y
g1 a1
| | | |
| | | |
a D 2D a
& S— -

e o (g

N N

» The relation &’ = a allows removing 2 T gates
» Proving a’ = a requires deriving the non-linear relations

’=a+xy ad=3a"+xy

» No previous circuit optimizer has achieved this

26/28



Conclusion

In this talk...

» Reframed a standard circuit optimization as a relational
analysis of the classical semantics

» Used classical techniques in this framing to extend to
quantum program optimization

» Gave a method of increasing the precision by temporarily
using a more precise "quantum” domain of path integrals

Take-aways

» Quantum (data flow) = classical data flowing in superposition
» So you can re-use your classical techniques!
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Thank you!
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