
Linear and Non-linear Relational Analyses for
Quantum Program Optimization

Matthew Amy & Joseph Lunderville

School of Computing Science, Simon Fraser University

POPL
Denver, January 22nd, 2025

1 / 28

What is this talk about?

▶ Integration of circuit optimizations in hybrid
quantum-classical toolchains

▶ The interaction between classical control & quantum data
▶ Quantum (data flow) vs (quantum data) flow!

2 / 28

Quantum code + classical control

3 / 28

(Quantum data) flow

|ψ⟩ ∈ C2n

|φ⟩ ∈ C2n

|ψ′⟩

|φ′⟩

|ψ′⟩ & |φ′⟩ have exponential size, so can’t do much analysis...

4 / 28

What’s in the box?????????

|ψ⟩

|φ⟩

|ψ′⟩

|φ′⟩

5 / 28

Quantum (data flow)!
= classical data in (& out) of superposition

S ⊆ Fn
2

T ⊆ Fn
2

S ′
T ′

S ′ and T ′ are classical so can use classical methods!

6 / 28

The quantum circuit model

n-qubit quantum state = superposition of classical n-bit states

|ψ⟩ =
∑
x∈Fn

2

αx|x⟩ ∈ C2n

n-qubit quantum gate = unitary (linear, invertible) operator on C2n

CNOT =
•

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 T = T =

[
1 0

0 ω := e i
π
4

]

Quantum program = sequence of gates

T T † T T †

T • • • •

H • T † • T H

Time
7 / 28

Quantum circuit optimizations

Rewrite-based:

T T † =

T T = S

Semantics-based:

R(P1)R(P2) · · ·R(Pk)

∑
y e

iP(x,y)|A(x, y)⟩

8 / 28

The quantum phase folding optimization

Merge + cancel diagonal gates where possible

Rewrite-based:

T

T †
=

T T †

=

Semantics-based mod out by these commutations:

r
T

T †

z
=

r
T T †

z
=

q y

9 / 28

The quantum phase folding optimization

Merge + cancel diagonal gates where possible

Rewrite-based:

T

T †
=

T T †

=

Semantics-based mod out by these commutations:

r
T

T †

z
=

r
T T †

z
=

q y

9 / 28

The quantum phase folding optimization

Merge + cancel diagonal gates where possible

Rewrite-based:

T

T †
=

T T †

=

Semantics-based mod out by these commutations:

r
T

T †

z
=

r
T T †

z
=

q y

9 / 28

Welcome to the real-worldTM

A quantum program isn’t just a circuit

sequence of gates

measurement results

Problem for semantics-based approaches:
two distinctly different semantics!

10 / 28

Welcome to the real-worldTM

A quantum program isn’t just a circuit

sequence of gates

measurement results

Problem for semantics-based approaches:
two distinctly different semantics!

10 / 28

A real-worldTM program

T T †
0

0

b

aH

H

S

H

H

Z

while ab ̸= 00

11 / 28

A real-worldTM program

T T †
0

0

b

aH

H

S

H

H

Z

while ab ̸= 00

12 / 28

A real-worldTM program

T T †
0

0

b

aH

H

S

H

H

Z

while ab ̸= 00

13 / 28

A real-worldTM program

0

0

b

aH

H

S

H

H

Z

while ab ̸= 00

14 / 28

How can we formalize these optimizations?

15 / 28

A relational approach to phase folding

Proposition

Let R ⊆ Fn
2 × Fn

2 a relation on length n bit strings such that
⟨x′|U|x⟩ ≠ 0 =⇒ (x, x′) ∈ R. Then if for all (x, x′) ∈ R, x ′j = xi ,

TqiU = UTqj .

x1
x2
x3
x4

x ′1
x ′2 = x1
x ′3
x ′4

U =⇒ U

T

T

16 / 28

Extending to programs

Program model (non-deterministic quantum WHILE)

Σ :: = skip | q := |0⟩ | Uq | meas q | call p(q)

T :: = R | T1; T2 | if ⋆ then T1 else T2 | while ⋆ do T

Classical semantics is the union of non-zero transitions
⟨x′|π|x⟩ ≠ 0 over all executions π ∈ Σ∗:

C JE ∈ ΣK = {(x, x′) | ⟨x′|E |x⟩ ≠ 0}
C JT1; T2K = C JT2K ◦ C JT1K
C JT1 + T2K = C JT1K ∪ C JT2K

C JT ∗K = ∪∞
k=0C

r
T k

z

17 / 28

How can we approximate the classical semantics?

18 / 28

Affine subspaces

Standard gates implement affine classical transformations +
branching (in superposition)

T : |x⟩ 7→ ωx |x⟩
X : |x⟩ 7→ |1 + x⟩

CNOT : |x , y⟩ 7→ |x , x + y⟩

H : |x⟩ 7→ 1√
2

∑
y∈F2

(−1)xy |y⟩

Abstract gates as affine subspaces of the pre and post state!

A JT K = ⟨x ′ = x⟩ = {(x , x) | x ∈ F2}
A JX K = ⟨x ′ = 1 + x⟩ = {(x , 1 + x) | x ∈ F2}

A JCNOT K = ⟨x ′ = x , y ′ = x + y⟩ = {(x , y , x , x + y) | x , y ∈ F2}
A JHK = ⊤ = {(x , x ′) | x , x ′ ∈ F2}

19 / 28

Affine subspaces

Standard gates implement affine classical transformations +
branching (in superposition)

T : |x⟩ 7→ ωx |x⟩
X : |x⟩ 7→ |1 + x⟩

CNOT : |x , y⟩ 7→ |x , x + y⟩

H : |x⟩ 7→ 1√
2

∑
y∈F2

(−1)xy |y⟩

Abstract gates as affine subspaces of the pre and post state!

A JT K = ⟨x ′ = x⟩ = {(x , x) | x ∈ F2}
A JX K = ⟨x ′ = 1 + x⟩ = {(x , 1 + x) | x ∈ F2}

A JCNOT K = ⟨x ′ = x , y ′ = x + y⟩ = {(x , y , x , x + y) | x , y ∈ F2}
A JHK = ⊤ = {(x , x ′) | x , x ′ ∈ F2}

19 / 28

Quantum affine relation analysis
Spoiler: it’s just classical affine relation analysis

Proposition (Karr 1976, paraphrased heavily)

Given a flowchart program with affine assignments, a sound affine
relation on program variables can be calculated in polynomial-time.

▶ Composition = relational composition

▶ Replace union with affine hull

▶ No infinite ascending chains, so Kleene closure terminates

T T †

⋆

Loop invariant ⟨x ′ + y ′ = x + y⟩ allows canceling the T gates!

20 / 28

Quantum affine relation analysis
Spoiler: it’s just classical affine relation analysis

Proposition (Karr 1976, paraphrased heavily)

Given a flowchart program with affine assignments, a sound affine
relation on program variables can be calculated in polynomial-time.

▶ Composition = relational composition

▶ Replace union with affine hull

▶ No infinite ascending chains, so Kleene closure terminates

T T †

⋆

Loop invariant ⟨x ′ + y ′ = x + y⟩ allows canceling the T gates!

20 / 28

What if we need more precision?

0 0T 0 0T †

⋆

▶ The non-linear loop invariant x ′y ′ = xy allows eliminating
both T gates

▶ The strongest affine loop invariant ⟨x ′ + y ′ = x + y⟩ is unable
to prove the relation x ′y ′ = xy

=⇒ need non-linear relations for this optimization!

21 / 28

From affine subspaces to varieties

Replace affine subspaces with affine varieties and affine relations
with polynomial ideals

I = I(V) = {f ∈ F2[X,X
′] | f (x, x′) = 0 ∀(x, x′) ∈ V }.

Gröbner basis methods suffice to compute compositions &
(infinite) unions

Do we get all polynomial relations now? Yes(-ish)!

Proposition (Hilbert’s strong Nullstellensatz for F2)

I(V(I)) = I + ⟨X 2
i − Xi | Xi ∈ X⟩

22 / 28

From affine subspaces to varieties

Replace affine subspaces with affine varieties and affine relations
with polynomial ideals

I = I(V) = {f ∈ F2[X,X
′] | f (x, x′) = 0 ∀(x, x′) ∈ V }.

Gröbner basis methods suffice to compute compositions &
(infinite) unions

Do we get all polynomial relations now? Yes(-ish)!

Proposition (Hilbert’s strong Nullstellensatz for F2)

I(V(I)) = I + ⟨X 2
i − Xi | Xi ∈ X⟩

22 / 28

The catch

Sequential composition is not precise!

A JHK ◦ A JHK = ⊤ ◦ ⊤ = ⊤

A JHHK = A JI K = ⟨x , x ′⟩

Problem is interference, which is used in quantum programs to
implement non-linear classical transitions

Idea: treat circuits precisely and then extract precise
transition relations for circuit blocks

23 / 28

The catch

Sequential composition is not precise!

A JHK ◦ A JHK = ⊤ ◦ ⊤ = ⊤

A JHHK = A JI K = ⟨x , x ′⟩

Problem is interference, which is used in quantum programs to
implement non-linear classical transitions

Idea: treat circuits precisely and then extract precise
transition relations for circuit blocks

23 / 28

Symbolic path integrals

Path integral = classical transitions + amplitudes

LC M = |x⟩ 7→
∑
y∈Fk

2

Φ(x, y)|f1(x, y)⟩ ⊗ · · · ⊗ |fn(x, y)⟩

The ideal ∃Y.⟨X ′
1 = f1(X,Y), . . . ,X ′

n = fn(X,Y)⟩ hence
(over-)approximates the classical transitions of C

Knowing the amplitudes allows re-writing to eliminate infeasible
transitions!

LHM ◦ LHM = |x⟩ 7→ 1√
2

∑
y ,z∈F2

(−1)y(x+z)|z⟩ =⇒ ∃Y ,Z ⟨X ′ + Z ⟩ = ⊤

≡ |x⟩ 7→ |x⟩ =⇒ ⟨X ′ + X ⟩

24 / 28

Symbolic path integrals

Path integral = classical transitions + amplitudes

LC M = |x⟩ 7→
∑
y∈Fk

2

Φ(x, y)|f1(x, y)⟩ ⊗ · · · ⊗ |fn(x, y)⟩

The ideal ∃Y.⟨X ′
1 = f1(X,Y), . . . ,X ′

n = fn(X,Y)⟩ hence
(over-)approximates the classical transitions of C

Knowing the amplitudes allows re-writing to eliminate infeasible
transitions!

LHM ◦ LHM = |x⟩ 7→ 1√
2

∑
y ,z∈F2

(−1)y(x+z)|z⟩ =⇒ ∃Y ,Z ⟨X ′ + Z ⟩ = ⊤

≡ |x⟩ 7→ |x⟩ =⇒ ⟨X ′ + X ⟩

24 / 28

Implementation

▶ Implemented affine & polynomial analyses on openQASM 3.0
in Feynman1

▶ Finds non-trivial optimizations based on loop invariants

▶ Easy + deep integration of phase folding in compilers for
hybrid workflows

Benchmark n Original PFAff PFPol Loop invariant
T # T time (s) # T time (s)

RUS 3 16 10 0.30 8 0.35 ⟨z′ + z⟩
Grover 129 1736e9 1470e9 1.98 TIMEOUT –
Reset-simple 2 2 1 0.15 1 0.23 –
If-simple 2 2 0 0.18 0 0.16 –
Loop-simple 2 2 0 0.17 0 0.16 ⟨x′ + x, y + y′ + xy + xy′⟩
Loop-h 2 2 0 0.16 0 0.16 ⟨y′ + y⟩
Loop-nested 2 3 2 0.17 2 0.18 ⟨x′ + x⟩, ⟨x′ + x⟩
Loop-swap 2 2 0 0.30 0 0.20 ⟨x′ + y′ + x + y, x′ + xy + xx′ + yx′⟩
Loop-nonlinear 3 30 18 0.44 0 0.26 ⟨x′ + x, z′ + z, y′ + y + xy + xy′⟩
Loop-null 2 4 1 0.18 1 0.17 ⟨x′ + x, y′ + y⟩

1https://github.com/meamy/feynman
25 / 28

https://github.com/meamy/feynman

Circuit optimization

With the relational approach, phase folding is strictly better than
previous approaches due to the use of non-linear reasoning

x • • x
y • • y

• • • •
• •

a • • a′′ • • a′
• •

▶ The relation a′ = a allows removing 2 T gates

▶ Proving a′ = a requires deriving the non-linear relations

a′′ = a+ xy a′ = a′′ + xy

▶ No previous circuit optimizer has achieved this

26 / 28

Conclusion

In this talk...

▶ Reframed a standard circuit optimization as a relational
analysis of the classical semantics

▶ Used classical techniques in this framing to extend to
quantum program optimization

▶ Gave a method of increasing the precision by temporarily
using a more precise ”quantum” domain of path integrals

Take-aways
▶ Quantum (data flow) = classical data flowing in superposition

▶ So you can re-use your classical techniques!

27 / 28

Thank you!

28 / 28

	Motivation

