Linear and Non-linear Relational Analyses for Quantum Program Optimization

Matthew Amy & Joseph Lunderville

School of Computing Science, Simon Fraser University

POPL Denver, January 22nd, 2025

What is this talk about?

- ► Integration of circuit optimizations in hybrid quantum-classical toolchains
- ▶ The interaction between classical control & quantum data
 - ▶ Quantum (data flow) vs (quantum data) flow!

Quantum code + classical control

(Quantum data) flow

 $|\psi'\rangle$ & $|\varphi'\rangle$ have exponential size, so can't do much analysis...

What's in the box?????????

Quantum (data flow)!

= classical data in (& out) of superposition

S' and T' are classical so can use classical methods!

The quantum circuit model

n-qubit quantum state = superposition of classical n-bit states

$$|\psi\rangle = \sum_{\mathbf{x} \in \mathbb{F}_2^n} \alpha_{\mathbf{x}} |\mathbf{x}\rangle \in \mathbb{C}^{2^n}$$

n-qubit quantum gate = unitary (linear, invertible) operator on \mathbb{C}^{2^n}

CNOT =
$$\begin{array}{c} \bullet \\ \hline \bullet \\ \hline \end{array} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad T = - \boxed{T} - = \begin{bmatrix} 1 & 0 \\ 0 & \omega := e^{i\frac{\pi}{4}} \end{bmatrix}$$

Quantum program = sequence of gates

Quantum circuit optimizations

Rewrite-based:

Semantics-based:

The quantum phase folding optimization

 $Merge + cancel\ diagonal\ gates\ where\ possible$

The quantum phase folding optimization

Merge + cancel diagonal gates where possible

Rewrite-based:

The quantum phase folding optimization

Merge + cancel diagonal gates where possible

Rewrite-based:

Semantics-based mod out by these commutations:

Welcome to the real-worldTM

A quantum program isn't just a circuit

Welcome to the real-worldTM

A quantum program isn't just a circuit

Problem for semantics-based approaches: two distinctly different semantics!

How can we formalize these optimizations?

A relational approach to phase folding

Proposition

Let $R \subseteq \mathbb{F}_2^n \times \mathbb{F}_2^n$ a relation on length n bit strings such that $\langle \mathbf{x}' | U | \mathbf{x} \rangle \neq 0 \implies (\mathbf{x}, \mathbf{x}') \in R$. Then if for all $(\mathbf{x}, \mathbf{x}') \in R, x_j' = x_i$,

$$T_{q_i}U=UT_{q_j}.$$

Extending to programs

Program model (non-deterministic quantum WHILE)

$$\Sigma ::= \mathbf{skip} \mid q := |0\rangle \mid U\mathbf{q} \mid \mathbf{meas} \ q \mid \mathbf{call} \ p(\mathbf{q})$$

$$T ::= R \mid T_1; \ T_2 \mid \mathbf{if} \ \star \ \mathbf{then} \ T_1 \ \mathbf{else} \ T_2 \mid \mathbf{while} \ \star \ \mathbf{do} \ T$$

Classical semantics is the union of non-zero transitions $\langle \mathbf{x}' | \pi | \mathbf{x} \rangle \neq 0$ over all executions $\pi \in \Sigma^*$:

$$C \llbracket E \in \Sigma \rrbracket = \{ (\mathbf{x}, \mathbf{x}') \mid \langle \mathbf{x}' | E | \mathbf{x} \rangle \neq 0 \}$$

$$C \llbracket T_1; T_2 \rrbracket = C \llbracket T_2 \rrbracket \circ C \llbracket T_1 \rrbracket$$

$$C \llbracket T_1 + T_2 \rrbracket = C \llbracket T_1 \rrbracket \cup C \llbracket T_2 \rrbracket$$

$$C \llbracket T^* \rrbracket = \bigcup_{k=0}^{\infty} C \llbracket T^k \rrbracket$$

How can we approximate the classical semantics?

Affine subspaces

Standard gates implement affine classical transformations + branching (in superposition)

$$T: |\mathbf{x}\rangle \mapsto \omega^{\mathbf{x}} |\mathbf{x}\rangle$$

$$X: |\mathbf{x}\rangle \mapsto |\mathbf{1} + \mathbf{x}\rangle$$

$$\mathsf{CNOT}: |\mathbf{x}, \mathbf{y}\rangle \mapsto |\mathbf{x}, \mathbf{x} + \mathbf{y}\rangle$$

$$H: |\mathbf{x}\rangle \mapsto \frac{1}{\sqrt{2}} \sum_{\mathbf{y} \in \mathbb{F}_2} (-1)^{\mathbf{x}\mathbf{y}} |\mathbf{y}\rangle$$

Affine subspaces

Standard gates implement affine classical transformations + branching (in superposition)

$$T: |\mathbf{x}\rangle \mapsto \omega^{\mathbf{x}} |\mathbf{x}\rangle$$

$$X: |\mathbf{x}\rangle \mapsto |\mathbf{1} + \mathbf{x}\rangle$$

$$\mathsf{CNOT}: |\mathbf{x}, \mathbf{y}\rangle \mapsto |\mathbf{x}, \mathbf{x} + \mathbf{y}\rangle$$

$$H: |\mathbf{x}\rangle \mapsto \frac{1}{\sqrt{2}} \sum_{\mathbf{y} \in \mathbb{F}_2} (-1)^{\mathbf{x}\mathbf{y}} |\mathbf{y}\rangle$$

Abstract gates as affine subspaces of the pre and post state!

$$\mathcal{A} \llbracket T \rrbracket = \langle x' = x \rangle \qquad \qquad = \{(x,x) \mid x \in \mathbb{F}_2\}$$

$$\mathcal{A} \llbracket X \rrbracket = \langle x' = 1 + x \rangle \qquad \qquad = \{(x,1+x) \mid x \in \mathbb{F}_2\}$$

$$\mathcal{A} \llbracket CNOT \rrbracket = \langle x' = x, y' = x + y \rangle \qquad = \{(x,y,x,x+y) \mid x,y \in \mathbb{F}_2\}$$

$$\mathcal{A} \llbracket H \rrbracket = \top \qquad \qquad = \{(x,x') \mid x,x' \in \mathbb{F}_2\}$$

Quantum affine relation analysis

Spoiler: it's just classical affine relation analysis

Proposition (Karr 1976, paraphrased heavily)

Given a flowchart program with affine assignments, a sound affine relation on program variables can be calculated in polynomial-time.

- ► Composition = relational composition
- ► Replace union with affine hull
- ▶ No infinite ascending chains, so Kleene closure terminates

Quantum affine relation analysis

Spoiler: it's just classical affine relation analysis

Proposition (Karr 1976, paraphrased heavily)

Given a flowchart program with affine assignments, a sound affine relation on program variables can be calculated in polynomial-time.

- ► Composition = relational composition
- ► Replace union with affine hull
- ▶ No infinite ascending chains, so Kleene closure terminates

Loop invariant $\langle x' + y' = x + y \rangle$ allows canceling the T gates!

What if we need more precision?

- ► The non-linear loop invariant x'y' = xy allows eliminating both T gates
- ► The strongest affine loop invariant $\langle x' + y' = x + y \rangle$ is unable to prove the relation x'y' = xy
 - ⇒ need non-linear relations for this optimization!

From affine subspaces to varieties

Replace affine subspaces with affine varieties and affine relations with polynomial ideals

$$I = \mathbb{I}(V) = \{ f \in \mathbb{F}_2[\mathbf{X}, \mathbf{X}'] \mid f(\mathbf{x}, \mathbf{x}') = 0 \ \forall (\mathbf{x}, \mathbf{x}') \in V \}.$$

Gröbner basis methods suffice to compute compositions & (infinite) unions

From affine subspaces to varieties

Replace affine subspaces with affine varieties and affine relations with polynomial ideals

$$I = \mathbb{I}(V) = \{ f \in \mathbb{F}_2[\mathbf{X}, \mathbf{X}'] \mid f(\mathbf{x}, \mathbf{x}') = 0 \ \forall (\mathbf{x}, \mathbf{x}') \in V \}.$$

Gröbner basis methods suffice to compute compositions & (infinite) unions

Do we get all polynomial relations now? Yes(-ish)!

Proposition (Hilbert's strong Nullstellensatz for \mathbb{F}_2)

$$\mathbb{I}(\mathbb{V}(I)) = I + \langle X_i^2 - X_i \mid X_i \in \mathbf{X} \rangle$$

The catch

Sequential composition is not precise!

$$\mathcal{A} \llbracket H \rrbracket \circ \mathcal{A} \llbracket H \rrbracket = \top \circ \top = \top$$
$$\mathcal{A} \llbracket HH \rrbracket = \mathcal{A} \llbracket I \rrbracket = \langle x, x' \rangle$$

Problem is interference, which is used in quantum programs to implement non-linear classical transitions

The catch

Sequential composition is not precise!

$$\mathcal{A} \llbracket H \rrbracket \circ \mathcal{A} \llbracket H \rrbracket = \top \circ \top = \top$$
$$\mathcal{A} \llbracket HH \rrbracket = \mathcal{A} \llbracket I \rrbracket = \langle x, x' \rangle$$

Problem is interference, which is used in quantum programs to implement non-linear classical transitions

Idea: treat circuits precisely and then extract precise transition relations for circuit blocks

Symbolic path integrals

Path integral = classical transitions + amplitudes

$$(|C|) = |\mathbf{x}\rangle \mapsto \sum_{\mathbf{y} \in \mathbb{F}_2^k} \Phi(\mathbf{x}, \mathbf{y}) | f_1(\mathbf{x}, \mathbf{y})\rangle \otimes \cdots \otimes |f_n(\mathbf{x}, \mathbf{y})\rangle$$

The ideal $\exists \mathbf{Y}.\langle X_1'=f_1(\mathbf{X},\mathbf{Y}),\ldots,X_n'=f_n(\mathbf{X},\mathbf{Y})\rangle$ hence (over-)approximates the classical transitions of C

Symbolic path integrals

Path integral = classical transitions + amplitudes

$$(C) = |\mathbf{x}\rangle \mapsto \sum_{\mathbf{y} \in \mathbb{F}_2^k} \Phi(\mathbf{x}, \mathbf{y}) | f_1(\mathbf{x}, \mathbf{y})\rangle \otimes \cdots \otimes |f_n(\mathbf{x}, \mathbf{y})\rangle$$

The ideal $\exists \mathbf{Y}.\langle X_1'=f_1(\mathbf{X},\mathbf{Y}),\ldots,X_n'=f_n(\mathbf{X},\mathbf{Y})\rangle$ hence (over-)approximates the classical transitions of C

Knowing the amplitudes allows re-writing to eliminate infeasible transitions!

Implementation

- ► Implemented affine & polynomial analyses on openQASM 3.0 in Feynman¹
- ► Finds non-trivial optimizations based on loop invariants
- ► Easy + deep integration of phase folding in compilers for hybrid workflows

Benchmark	n	Original	PF_{Aff}		PF_{Pol}		Loop invariant
		# T	# T	time (s)	# T	time (s)	
RUS	3	16	10	0.30	8	0.35	$\langle z' + z \rangle$
Grover	129	1736 <i>e</i> 9	1470e9	1.98		TIMEOUT	· = ·
Reset-simple	2	2	1	0.15	1	0.23	-
If-simple	2	2	0	0.18	0	0.16	=
Loop-simple	2	2	0	0.17	0	0.16	$\langle x' + x, y + y' + xy + xy' \rangle$
Loop-h	2	2	0	0.16	0	0.16	$\langle y' + y \rangle$
Loop-nested	2	3	2	0.17	2	0.18	$\langle x' + x \rangle, \langle x' + x \rangle$
Loop-swap	2	2	0	0.30	0	0.20	(x' + y' + x + y, x' + xy + xx' + yx')
Loop-nonlinear	3	30	18	0.44	0	0.26	$\langle x' + x, z' + z, y' + y + xy + xy' \rangle$
Loop-null	2	4	1	0.18	1	0.17	$\langle x' + x, y' + y \rangle$

¹https://github.com/meamy/feynman

Circuit optimization

With the relational approach, phase folding is strictly better than previous approaches due to the use of non-linear reasoning

- ▶ The relation a' = a allows removing 2 T gates
- ▶ Proving a' = a requires deriving the non-linear relations

$$a'' = a + xy$$
 $a' = a'' + xy$

No previous circuit optimizer has achieved this

Conclusion

In this talk...

- ► Reframed a standard circuit optimization as a relational analysis of the classical semantics
- ► Used classical techniques in this framing to extend to quantum program optimization
- ► Gave a method of increasing the precision by temporarily using a more precise "quantum" domain of path integrals

Take-aways

- ► Quantum (data flow) = classical data flowing in superposition
 - ► So you can re-use your classical techniques!

Thank you!