Automatic Generation of Classical Invariants of
Quantum Programs

Matthew Amy & Joseph Lunderville

School of Computing Science, Simon Fraser University

QIP
Raleigh, February 24th, 2025

M. Amy, J. Lunderville, Linear and Non-linear Relational Analyses for

Quantum Program Optimization. POPL 2025, arXiv:2410.23493.
1/23



The classical (relational) invariant problem:

Given a QRAM program P, compute a logical/algebraic
property characterizing the classical transitions induced by
P —i.e x,x' €73 such that

(x'|Plx) # 0

2/23



A simple quantum program:

1. Prepare the state |s) = 5 erzg |x)

2. Fori=0. F,/%J do

2.1 Apply oracle Ur : |x) — (—1) ®)|x)
2.2 Apply diffusion operator 2|s)(s| — /

3. Measure

3/23



A simple quantum program:

1. Prepare the state |s) = 5 Exezg |x)

2. Fori=0. F,/%J do

2.1 Apply oracle Ur : |x) — (—1) ®)|x)
2.2 Apply diffusion operator 2|s)(s| — /

3. Measure

Loop invariant: [¢)) € span {\/LM 2or(x)=1 %) \/ﬁ > F(x)=0 |x)}

3/23



Program invariants

A simple quantum program:

1. Prepare the state |s) = 21—,, erzg |x)

2. Fori=0.. {Z\/,\’EJ do

2.1 Apply oracle Ur : |x) — (—l)f(x)\x>
2.2 Apply diffusion operator 2|s)(s| — /

3. Measure

Loop invariant: [¢)) € span {ﬁ Zf(x):l x), \/ﬁ Zf(x):O ]x)}

State invariants = property of a set of states
Relational invariants = property of input/output pairs

3/23



But why classical invariants?

Computationally tractable + useful for verification & optimization!

An ancilla is returned to the |0) state

A gate has no effect on the state

>

>

» A control is statically eliminable

» A circuit implements modular exponentiation
>

A diagonal gate D can quasi-commute through P

DP = PD'

4/23



Example: The phase folding optimization

1. Map Clifford+T circuit to string of 7/4 Pauli exponentials
R(P1)R(P2)--- R(Px)C

2. Use Pauli commutations to find pairs P; = £P; that are
adjacent and merge them

5/23



Example: The phase folding optimization

1. Map Clifford+T circuit to string of 7/4 Pauli exponentials
R(P1)R(P2)--- R(Px)C

2. Use Pauli commutations to find pairs P; = £P; that are
adjacent and merge them

Many other ways, but all rely on circuit representations

>y €A, y))

-

/

5/23



while ab # 00

Not a circuit, so what can we do?

6/23



while ab # 00

Loop satisfies the classical invariant x’ = x

6/23



while ab # 00

Loop satisfies the classical invariant x’ = x

6/23



while ab # 00

Loop satisfies the classical invariant x’ = x

6/23



7/23



while %

Loop satisfies the classical invariant x @y = x' @ y’

7/23



while %

Loop satisfies the classical invariant x @y = x' @ y’

7/23



How can we formalize & compute these invariants?

8/23



A relational approach

Classical semantics C [U] C Z3 x Z3 of a circuit U is the set of
non-zero classical transitions:

(x,x) € C[U] <= (X|UJx) # 0

Naturally extends to non-deterministic QRAM programs

Y =skip | g:=10) | Ug | meas g
PERegExp(Z) n=EecXx ‘ Pi; P | Py + P> | pP*

Classical transitions = union over all possible runs m € L(P):

(x,x') € C[P] < 3Im € L(P).(X|n|x) #0

9/23



Computing the classical transitions

Problem: can't compute C [P]
Solution: Any sound approximation R D C [P] suffices

Simple approximation: interpret regular expressions on relations

RI[E € 2] = {(x,x) | (X|E|x) # 0}
R[[Tl; Tg]] = R[[Tg]] OR[[Tl]]
R[Ti+ T2 =R[T1]JUR[T,]

R[T*] = UZ,R [[Tk]]

10/23



Computing the classical transitions

Problem: can't compute C [P]
Solution: Any sound approximation R D C [P] suffices

Simple approximation: interpret regular expressions on relations

RI[E € 2] = {(x,x) | (X|E|x) # 0}
R[[Tl; Tg]] = R[[Tg]] OR[[Tl]]
R[Ti+ T2 =R[T1]JUR[T,]

R[T*] = UZ,R [[Tk]]

—> Computable, but exponential-time
(and not really logical)

10/23



Affine subspaces

Clifford+ T gates implement affine (classical) transitions
T : |x) = w¥|x)
X |x) = |1+ x)
CNOT : |x,y) — |X x+y)

Z 1)?y)

YEZQ

Viewed as subsets of Z4 x Z5 ~ 73", the classical semantics are
exactly affine subspaces
CIT] ={(x;x) | x € Za} = {
CIX]I={(x,14+x) | x € Zy} = (
C[CNOT] ={(x,y,x,x +y) | x,y € Zy} =(xX'=
C[H] = {(x,x) | x,x" € Zp} =

11/23



The affine subspace domain

Lattice of affine subspaces S(Z3") of Z3" forms a Kleene algebra
(coherently interpret regular expressions)

(S(Z%n)a 0,1,-, ()*)

where
> 0= {0}
» 1={(x,x)|xeZj}
» S-S s relational composition (projection & intersection)
» S 1S is least-upper-bound (i.e. subspace union)
> S* = Ll(i)ios,' where §; C 5,'+1

12/23



The affine subspace domain

Lattice of affine subspaces S(Z3") of Z3" forms a Kleene algebra
(coherently interpret regular expressions)

(8(23"),0,1,-, 1, (-)")
where
> 0= {0}
» 1={(x,x)|xeZj}
» S-S s relational composition (projection & intersection)
>
>

S S is least-upper-bound (i.e. subspace union)
5 = Ll(i)ios,' where S; C 5,'+1

Proposition

S* stabilizes in Q2(2n) iterations

12/23



Given a QRAM program P, an affine subspace soundly
approximating C [P] can be computed in polynomial time

Loop invariant S = (x’ @y’ = x @ y) allows canceling the T gates
by canonicalizing the conditions x ® y and x’ @ y’ modulo S

13/23



What if we need more precision?

» The non-linear loop invariant x’y’ = xy allows eliminating
both T gates

» The strongest affine loop invariant (x' @y’ = x @ y) is unable
to prove the relation x'y’ = xy

= need non-linear relations for this optimization!

14/23



Replace affine subspaces with affine varieties and affine relations
with polynomial ideals

I =1(V) ={f € Zo[X,X]| f(x,x') =0 V(x,x') € V}.

Grobner basis methods suffice to implement KA operators

15/23



From affine subspaces to varieties

Replace affine subspaces with affine varieties and affine relations
with polynomial ideals

I =1(V) = {f € Za[X,X] | f(x,%) = 0VY(x,x) € V}.

Grobner basis methods suffice to implement KA operators

Notes:
» Precise for the compositional model R [P]
» Gives all polynomial relations implied by the variety R [P]

Proposition (Hilbert's strong Nullstellensatz for Z,)

I(V(1) =1+ (X? = X; | X; € X)

15/23



Sequential composition is not precise in any classical domain!
R[H|oR[H] =7Z3073 =173

RIHH] =R [I] = (x = x') # Z}

16 /23



The catch

Sequential composition is not precise in any classical domain!
R[H] o R[H] = 23 0 73 = 73

RI[HH] = R[] = (x=x') # 73

Solution: use the sum-over-paths to generate precise transition
relations for the sequential (circuit) fragment!

U:lx) = Y o y)|A(xY) @ @ |fa(x,y))
yezZs

16/23



Interference & the sum-over-paths

(U) =x) = Y @(xy)Ia(xY) @ @ |fa(x,¥))

k
yEZ]

» Can compute (U) in poly-time
» The ideal I =3Y.(X{ = A(X,Y),..., X} = fo(X,Y)) soundly
approximates C [U]

» Can increase the precision of the ideal by re-writing! and
analyzing interference

(U) = > (-1yP(U) = 11 (P =0)is sound
Y€EZ

M. Amy, Towards large-scale functional verification of universal quantum circuits.

QPL 2018.
17/23



Is this useful?

18/23



Application: integrated program optimizations

» Implemented? invariant generation on openQASM 3.0
» Finds non-trivial optimizations based on loop invariants

» Deep integration of optimization in compilers for hybrid

workflows

Benchmark n Original PF A ¢ PFp,) Generated loop invariant
#T # T time (s) # T time (s)

RUS 3 16 10 0.30 8 0.35 (2 +z)
Grover 129 1736€9 1470e9 1.98 TIMEOUT =
Reset-simple 2 2 1 0.15 1 0.23 -
If-simple 2 2 0 0.18 0 0.16 =
Loop-simple 2 2 0 0.17 0 0.16 (x/ +x,y+y +xy+xy)
Loop-h 2 2 0 0.16 0 0.16 ' +y)
Loop-nested 2 3 2 0.17 2 0.18 (X" +x), (x +x)
Loop-swap 2 2 0 0.30 0 020 (X +y +x+y,x +xy+xx +yx)
Loop-nonlinear 3 30 18 0.44 0 0.26 X' +x,2 vz, +y+xy+x)
Loop-null 2 4 1 0.18 1 0.17 x4+ x,y" +y)

2https://github.com/meamy/feynman
19/23


https://github.com/meamy/feynman

Application: circuit optimization

» Strictly outperforms existing phase folding approaches

» Recovers previous® hand-optimized k-control Toffoli

X1 X1
X2 X2
X3 =~3l =~ X3
Xa L] LIl x,
| | | |
a o D 4
DD+ —
L L
y D D Y @D X1X20X3Xa

» Requires inferring the equality a/ = a
» As k — 00, reduces T-count by 1/3 to 8(k — 1)

» Previously unachievable by automated means

3D. Maslov, On the advantages of using relative phase Toffolis with an

application to multiple control Toffoli optimization Phys Rev. A 2016.
20/23



A compact & efficient multiply-controlled Toffoli

Recent* 2(k — 2) + 1-Toffoli in constant clean space:

eirl[o]

] . 717

etrllo]

ctrll2] | : | |

eurll1]

arlf3] ] o I

I

etrll2]

] I , J

arlf3)

e [ !
) 1

IS

etrlld]

etrlls)

i {
6] I

aurlfr)

etrlle]

culs] ! : I I

arlfr)

‘3

i) - | I [

etrlls]

aurlfo)

ctrl[10] II/ 1 1

-y

ctrl[12]

ctrl[10]
a1

ot v o { I o
ctr[1) ———4— ]

Y

ctrl[14] 11/ |

PR

ctrl[16]

cur15] (f @
I

-]
P

etrl[17)

ctrl[1s]

!

» Previous optimizers: T-count 11(k —2) +7
» Invariant approach: T-count 8(k —2) +7

Halves the T-count of the best previous construction!

=

*T. Khattar, C. Gidney, Rise of conditionally clean ancillae for optimizing

quantum circuits. arXiv:2407.17966

etrl[12]
etrl[13]
etrl[14]

etrl[16]
etrl[17]
etrl]1s]

21/23



» Verification
» Hybrid program design

» E.g. repeat-until-success circuits
» Error correction

» Fully precise for QRAM programs with Clifford operations
» Space-time codes?

22/23



Thank you!

23/23



	Motivation

