Automatic Generation of Classical Invariants of Quantum Programs

Matthew Amy & Joseph Lunderville

School of Computing Science, Simon Fraser University

QIP Raleigh, February 24th, 2025

M. Amy, J. Lunderville, *Linear and Non-linear Relational Analyses for Quantum Program Optimization*. POPL 2025, arXiv:2410.23493.

What is this talk about?

The classical (relational) invariant problem:

Given a QRAM program P, compute a logical/algebraic property characterizing the classical transitions induced by P — i.e. $\mathbf{x}, \mathbf{x}' \in \mathbb{Z}_2^n$ such that

$$\langle \mathbf{x}'|P|\mathbf{x}\rangle \neq 0$$

Program invariants

A simple quantum program:

- 1. Prepare the state $|s\rangle=rac{1}{2^n}\sum_{\mathbf{x}\in\mathbb{Z}_2^n}|\mathbf{x}
 angle$
- 2. For i = 0.. $\left\lfloor \frac{\pi}{4} \sqrt{\frac{N}{M}} \right\rfloor$ do
 - 2.1 Apply oracle $U_f: |\mathbf{x}\rangle \mapsto (-1)^{f(\mathbf{x})} |\mathbf{x}\rangle$
 - 2.2 Apply diffusion operator $2|s\rangle\langle s|-I$
- 3. Measure

Program invariants

A simple quantum program:

- 1. Prepare the state $|s\rangle=rac{1}{2^n}\sum_{\mathbf{x}\in\mathbb{Z}_2^n}|\mathbf{x}
 angle$
- 2. For i = 0.. $\left\lfloor \frac{\pi}{4} \sqrt{\frac{N}{M}} \right\rfloor$ do
 - 2.1 Apply oracle $U_f: |\mathbf{x}\rangle \mapsto (-1)^{f(\mathbf{x})} |\mathbf{x}\rangle$
 - 2.2 Apply diffusion operator $2|s\rangle\langle s|-I$
- Measure

Loop invariant:
$$|\psi\rangle \in \mathrm{span}\left\{\frac{1}{\sqrt{M}}\sum_{f(\mathbf{x})=1}|\mathbf{x}\rangle, \frac{1}{\sqrt{2^n-M}}\sum_{f(\mathbf{x})=0}|\mathbf{x}\rangle\right\}$$

Program invariants

A simple quantum program:

- 1. Prepare the state $|s\rangle=rac{1}{2^n}\sum_{\mathbf{x}\in\mathbb{Z}_2^n}|\mathbf{x}
 angle$
- 2. For i = 0.. $\left\lfloor \frac{\pi}{4} \sqrt{\frac{N}{M}} \right\rfloor$ do
 - 2.1 Apply oracle $U_f: |\mathbf{x}\rangle \mapsto (-1)^{f(\mathbf{x})} |\mathbf{x}\rangle$
 - 2.2 Apply diffusion operator $2|s\rangle\langle s|-I$
- Measure

Loop invariant:
$$|\psi\rangle \in \mathrm{span}\left\{\frac{1}{\sqrt{M}}\sum_{f(\mathbf{x})=1}|\mathbf{x}\rangle, \frac{1}{\sqrt{2^n-M}}\sum_{f(\mathbf{x})=0}|\mathbf{x}\rangle\right\}$$

State invariants = property of a set of states
Relational invariants = property of input/output pairs

But why classical invariants?

Computationally tractable + useful for verification & optimization!

- ightharpoonup An ancilla is returned to the $|0\rangle$ state
- ► A gate has no effect on the state
- ► A control is statically eliminable
- ► A circuit implements modular exponentiation
- ► A diagonal gate *D* can quasi-commute through *P*

$$DP = PD'$$

Example: The phase folding optimization

1. Map Clifford+T circuit to string of $\pi/4$ Pauli exponentials

$$R(P_1)R(P_2)\cdots R(P_k)C$$

2. Use Pauli commutations to find pairs $P_i=\pm P_j$ that are adjacent and merge them

Example: The phase folding optimization

1. Map Clifford+T circuit to string of $\pi/4$ Pauli exponentials

$$R(P_1)R(P_2)\cdots R(P_k)C$$

2. Use Pauli commutations to find pairs $P_i=\pm P_j$ that are adjacent and merge them

Many other ways, but all rely on circuit representations

Not a circuit, so what can we do?

Loop satisfies the classical invariant x' = x

Loop satisfies the classical invariant x' = x

Loop satisfies the classical invariant x' = x

A slightly more challenging example

A slightly more challenging example

Loop satisfies the classical invariant $x \oplus y = x' \oplus y'$

A slightly more challenging example

Loop satisfies the classical invariant $x \oplus y = x' \oplus y'$

How can we formalize & compute these invariants?

A relational approach

Classical semantics $C[U] \subseteq \mathbb{Z}_2^n \times \mathbb{Z}_2^n$ of a circuit U is the set of non-zero classical transitions:

$$(\mathbf{x}, \mathbf{x}') \in \mathcal{C} \llbracket U \rrbracket \iff \langle \mathbf{x}' | U | \mathbf{x} \rangle \neq 0$$

Naturally extends to non-deterministic QRAM programs

Classical transitions = union over all possible runs $\pi \in \mathcal{L}(P)$:

$$(\mathbf{x}, \mathbf{x}') \in \mathcal{C} \llbracket P \rrbracket \iff \exists \pi \in \mathcal{L}(P).\langle \mathbf{x}' | \pi | \mathbf{x} \rangle \neq 0$$

Computing the classical transitions

Problem: can't compute $C \llbracket P \rrbracket$

Solution: Any sound approximation $R\supseteq\mathcal{C}\,\llbracket P\rrbracket$ suffices

Simple approximation: interpret regular expressions on relations

$$\mathcal{R} \llbracket E \in \Sigma \rrbracket = \{ (\mathbf{x}, \mathbf{x}') \mid \langle \mathbf{x}' | E | \mathbf{x} \rangle \neq 0 \}$$

$$\mathcal{R} \llbracket T_1; \ T_2 \rrbracket = \mathcal{R} \llbracket T_2 \rrbracket \circ \mathcal{R} \llbracket T_1 \rrbracket$$

$$\mathcal{R} \llbracket T_1 + T_2 \rrbracket = \mathcal{R} \llbracket T_1 \rrbracket \cup \mathcal{R} \llbracket T_2 \rrbracket$$

$$\mathcal{R} \llbracket T^* \rrbracket = \cup_{k=0}^{\infty} \mathcal{R} \llbracket T^k \rrbracket$$

Computing the classical transitions

Problem: can't compute $C \llbracket P \rrbracket$ Solution: Any sound approximation $R \supseteq C \llbracket P \rrbracket$ suffices

Simple approximation: interpret regular expressions on relations

$$\mathcal{R} \llbracket E \in \Sigma \rrbracket = \{ (\mathbf{x}, \mathbf{x}') \mid \langle \mathbf{x}' | E | \mathbf{x} \rangle \neq 0 \}$$

$$\mathcal{R} \llbracket T_1; T_2 \rrbracket = \mathcal{R} \llbracket T_2 \rrbracket \circ \mathcal{R} \llbracket T_1 \rrbracket$$

$$\mathcal{R} \llbracket T_1 + T_2 \rrbracket = \mathcal{R} \llbracket T_1 \rrbracket \cup \mathcal{R} \llbracket T_2 \rrbracket$$

$$\mathcal{R} \llbracket T^* \rrbracket = \cup_{k=0}^{\infty} \mathcal{R} \llbracket T^k \rrbracket$$

Computable, but exponential-time (and not really logical)

Affine subspaces

Clifford+T gates implement affine (classical) transitions

$$T: |x\rangle \mapsto \omega^{x}|x\rangle$$

$$X: |x\rangle \mapsto |1+x\rangle$$

$$CNOT: |x,y\rangle \mapsto |x,x+y\rangle$$

$$H: |x\rangle \mapsto \frac{1}{\sqrt{2}} \sum_{y \in \mathbb{Z}_{2}} (-1)^{xy}|y\rangle$$

Viewed as subsets of $\mathbb{Z}_2^n \times \mathbb{Z}_2^n \simeq \mathbb{Z}_2^{2n}$, the classical semantics are exactly affine subspaces

$$\mathcal{C} \llbracket T \rrbracket = \{(x,x) \mid x \in \mathbb{Z}_2\} \qquad \qquad = \langle x' = x \rangle$$

$$\mathcal{C} \llbracket X \rrbracket = \{(x,1+x) \mid x \in \mathbb{Z}_2\} \qquad \qquad = \langle x' = 1+x \rangle$$

$$\mathcal{C} \llbracket \mathsf{CNOT} \rrbracket = \{(x,y,x,x+y) \mid x,y \in \mathbb{Z}_2\} \qquad \qquad = \langle x' = x,y' = x+y \rangle$$

$$\mathcal{C} \llbracket \mathsf{H} \rrbracket = \{(x,x') \mid x,x' \in \mathbb{Z}_2\} \qquad \qquad = \langle \emptyset \rangle$$

The affine subspace domain

Lattice of affine subspaces $\mathcal{S}(\mathbb{Z}_2^{2n})$ of \mathbb{Z}_2^{2n} forms a Kleene algebra (coherently interpret regular expressions)

$$(\mathcal{S}(\mathbb{Z}_2^{2n}), 0, 1, \cdot, \sqcup, (\cdot)^{\star})$$

where

- $ightharpoonup 0 = \{0\}$
- $1 = \{ (\mathbf{x}, \mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}_2^n \}$
- $ightharpoonup S \cdot S'$ is relational composition (projection & intersection)
- $ightharpoonup S \sqcup S'$ is least-upper-bound (i.e. subspace union)
- ▶ $S^* = \bigsqcup_{i=0}^{\infty} S_i$ where $S_i \sqsubseteq S_{i+1}$

The affine subspace domain

Lattice of affine subspaces $\mathcal{S}(\mathbb{Z}_2^{2n})$ of \mathbb{Z}_2^{2n} forms a Kleene algebra (coherently interpret regular expressions)

$$(\mathcal{S}(\mathbb{Z}_2^{2n}), 0, 1, \cdot, \sqcup, (\cdot)^*)$$

where

- $ightharpoonup 0 = \{0\}$
- $1 = \{ (\mathbf{x}, \mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}_2^n \}$
- $ightharpoonup S \cdot S'$ is relational composition (projection & intersection)
- $ightharpoonup S \sqcup S'$ is least-upper-bound (i.e. subspace union)
- ▶ $S^* = \bigsqcup_{i=0}^{\infty} S_i$ where $S_i \sqsubseteq S_{i+1}$

Proposition

 S^* stabilizes in $\Omega(2n)$ iterations

Affine relational invariants

Proposition

Given a QRAM program P, an affine subspace soundly approximating $C \llbracket P \rrbracket$ can be computed in polynomial time

Loop invariant $S=\langle x'\oplus y'=x\oplus y\rangle$ allows canceling the T gates by canonicalizing the conditions $x\oplus y$ and $x'\oplus y'$ modulo S

What if we need more precision?

- ► The non-linear loop invariant x'y' = xy allows eliminating both T gates
- ▶ The strongest affine loop invariant $\langle x' \oplus y' = x \oplus y \rangle$ is unable to prove the relation x'y' = xy
 - ⇒ need non-linear relations for this optimization!

From affine subspaces to varieties

Replace affine subspaces with affine varieties and affine relations with polynomial ideals

$$I = \mathbb{I}(V) = \{ f \in \mathbb{Z}_2[\mathbf{X}, \mathbf{X}'] \mid f(\mathbf{x}, \mathbf{x}') = 0 \ \forall (\mathbf{x}, \mathbf{x}') \in V \}.$$

Gröbner basis methods suffice to implement KA operators

From affine subspaces to varieties

Replace affine subspaces with affine varieties and affine relations with polynomial ideals

$$I = \mathbb{I}(V) = \{ f \in \mathbb{Z}_2[\mathbf{X}, \mathbf{X}'] \mid f(\mathbf{x}, \mathbf{x}') = 0 \ \forall (\mathbf{x}, \mathbf{x}') \in V \}.$$

Gröbner basis methods suffice to implement KA operators

Notes:

- lacktriangle Precise for the compositional model $\mathcal{R} \llbracket P
 rbracket$
- lacktriangle Gives all polynomial relations implied by the variety $\mathcal{R}\left[\!\!\left[P
 ight]\!\!\right]$

Proposition (Hilbert's strong Nullstellensatz for \mathbb{Z}_2)

$$\mathbb{I}(\mathbb{V}(I)) = I + \langle X_i^2 - X_i \mid X_i \in \mathbf{X} \rangle$$

The catch

Sequential composition is not precise in any classical domain!

$$\mathcal{R} \llbracket H \rrbracket \circ \mathcal{R} \llbracket H \rrbracket = \mathbb{Z}_2^2 \circ \mathbb{Z}_2^2 = \mathbb{Z}_2^2$$

$$\mathcal{R} \llbracket HH \rrbracket = \mathcal{R} \llbracket I \rrbracket = \langle x = x' \rangle \neq \mathbb{Z}_2^2$$

The catch

Sequential composition is not precise in any classical domain!

$$\mathcal{R}\left[\!\left[H\right]\!\right]\circ\mathcal{R}\left[\!\left[H\right]\!\right]=\mathbb{Z}_2^2\circ\mathbb{Z}_2^2=\mathbb{Z}_2^2$$

$$\mathcal{R} \llbracket HH \rrbracket = \mathcal{R} \llbracket I \rrbracket = \langle x = x' \rangle \neq \mathbb{Z}_2^2$$

Solution: use the sum-over-paths to generate precise transition relations for the sequential (circuit) fragment!

$$U: |\mathbf{x}\rangle \mapsto \sum_{\mathbf{y} \in \mathbb{Z}_2^k} \Phi(\mathbf{x}, \mathbf{y}) | f_1(\mathbf{x}, \mathbf{y})\rangle \otimes \cdots \otimes | f_n(\mathbf{x}, \mathbf{y})\rangle$$

Interference & the sum-over-paths

$$(|U|) = |\mathbf{x}\rangle \mapsto \sum_{\mathbf{y} \in \mathbb{Z}_2^k} \Phi(\mathbf{x}, \mathbf{y}) | f_1(\mathbf{x}, \mathbf{y})\rangle \otimes \cdots \otimes |f_n(\mathbf{x}, \mathbf{y})\rangle$$

- ightharpoonup Can compute (U) in poly-time
- ► The ideal $I = \exists \mathbf{Y}. \langle X_1' = f_1(\mathbf{X}, \mathbf{Y}), \dots, X_n' = f_n(\mathbf{X}, \mathbf{Y}) \rangle$ soundly approximates $\mathcal{C} \llbracket U \rrbracket$
- ► Can increase the precision of the ideal by re-writing¹ and analyzing interference

$$(U) = \sum_{y \in \mathbb{Z}_2} (-1)^{yP} (U') \implies I \cap \langle P = 0 \rangle \text{ is sound}$$

 $^{^{1}}$ M. Amy, Towards large-scale functional verification of universal quantum circuits. QPL 2018.

Is this useful?

Application: integrated program optimizations

- ► Implemented² invariant generation on openQASM 3.0
- Finds non-trivial optimizations based on loop invariants
- Deep integration of optimization in compilers for hybrid workflows

Benchmark	n	Original	PF_{Aff}		PF_{Pol}		Generated loop invariant
		# T	# T	time (s)	# T	time (s)	
RUS	3	16	10	0.30	8	0.35	$\langle z' + z \rangle$
Grover	129	1736e9	1470e9	1.98		TIMEOUT	· = ·
Reset-simple	2	2	1	0.15	1	0.23	=
If-simple	2	2	0	0.18	0	0.16	_
Loop-simple	2	2	0	0.17	0	0.16	$\langle x' + x, y + y' + xy + xy' \rangle$
Loop-h	2	2	0	0.16	0	0.16	$\langle y' + y \rangle$
Loop-nested	2	3	2	0.17	2	0.18	$\langle x' + x \rangle, \langle x' + x \rangle$
Loop-swap	2	2	0	0.30	0	0.20	(x' + y' + x + y, x' + xy + xx' + yx)
Loop-nonlinear	3	30	18	0.44	0	0.26	$\langle x' + x, z' + z, y' + y + xy + xy' \rangle$
Loop-null	2	4	1	0.18	1	0.17	$\langle x' + x, y' + y \rangle$

²https://github.com/meamy/feynman

Application: circuit optimization

- Strictly outperforms existing phase folding approaches
- ► Recovers previous³ hand-optimized *k*-control Toffoli

- ightharpoonup Requires inferring the equality a'=a
- ▶ As $k \to \infty$, reduces *T*-count by 1/3 to 8(k-1)
- Previously unachievable by automated means

³D. Maslov, *On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization* Phys Rev. A 2016.

A compact & efficient multiply-controlled Toffoli

Recent⁴ 2(k-2) + 1-Toffoli in constant clean space:

- ▶ Previous optimizers: T-count 11(k-2)+7
- ▶ Invariant approach: T-count 8(k-2) + 7

Halves the *T*-count of the best previous construction!

⁴T. Khattar, C. Gidney, *Rise of conditionally clean ancillae for optimizing quantum circuits*. arXiv:2407.17966

Other applications?

- ▶ Verification
- ► Hybrid program design
 - ► E.g. repeat-until-success circuits
- Error correction
 - Fully precise for QRAM programs with Clifford operations
 - Space-time codes?

Thank you!