
Automatic Generation of Classical Invariants of
Quantum Programs

Matthew Amy & Joseph Lunderville

School of Computing Science, Simon Fraser University

QIP
Raleigh, February 24th, 2025

M. Amy, J. Lunderville, Linear and Non-linear Relational Analyses for
Quantum Program Optimization. POPL 2025, arXiv:2410.23493.

1 / 23

What is this talk about?

The classical (relational) invariant problem:

Given a QRAM program P, compute a logical/algebraic
property characterizing the classical transitions induced by
P — i.e. x, x′ ∈ Zn

2 such that

⟨x′|P|x⟩ ≠ 0

2 / 23

Program invariants

A simple quantum program:

1. Prepare the state |s⟩ = 1
2n

∑
x∈Zn

2
|x⟩

2. For i = 0..

⌊
π
4

√
N
M

⌋
do

2.1 Apply oracle Uf : |x⟩ 7→ (−1)f (x)|x⟩
2.2 Apply diffusion operator 2|s⟩⟨s| − I

3. Measure

Loop invariant: |ψ⟩ ∈ span
{

1√
M

∑
f (x)=1 |x⟩,

1√
2n−M

∑
f (x)=0 |x⟩

}

State invariants = property of a set of states
Relational invariants = property of input/output pairs

3 / 23

Program invariants

A simple quantum program:

1. Prepare the state |s⟩ = 1
2n

∑
x∈Zn

2
|x⟩

2. For i = 0..

⌊
π
4

√
N
M

⌋
do

2.1 Apply oracle Uf : |x⟩ 7→ (−1)f (x)|x⟩
2.2 Apply diffusion operator 2|s⟩⟨s| − I

3. Measure

Loop invariant: |ψ⟩ ∈ span
{

1√
M

∑
f (x)=1 |x⟩,

1√
2n−M

∑
f (x)=0 |x⟩

}

State invariants = property of a set of states
Relational invariants = property of input/output pairs

3 / 23

Program invariants

A simple quantum program:

1. Prepare the state |s⟩ = 1
2n

∑
x∈Zn

2
|x⟩

2. For i = 0..

⌊
π
4

√
N
M

⌋
do

2.1 Apply oracle Uf : |x⟩ 7→ (−1)f (x)|x⟩
2.2 Apply diffusion operator 2|s⟩⟨s| − I

3. Measure

Loop invariant: |ψ⟩ ∈ span
{

1√
M

∑
f (x)=1 |x⟩,

1√
2n−M

∑
f (x)=0 |x⟩

}

State invariants = property of a set of states
Relational invariants = property of input/output pairs

3 / 23

But why classical invariants?

Computationally tractable + useful for verification & optimization!

▶ An ancilla is returned to the |0⟩ state
▶ A gate has no effect on the state

▶ A control is statically eliminable

▶ A circuit implements modular exponentiation

▶ A diagonal gate D can quasi-commute through P

DP = PD ′

4 / 23

Example: The phase folding optimization

1. Map Clifford+T circuit to string of π/4 Pauli exponentials

R(P1)R(P2) · · ·R(Pk)C

2. Use Pauli commutations to find pairs Pi = ±Pj that are
adjacent and merge them

Many other ways, but all rely on circuit representations

R(P1)R(P2) · · ·R(Pk)C

∑
y e

iP(x,y)|A(x, y)⟩

5 / 23

Example: The phase folding optimization

1. Map Clifford+T circuit to string of π/4 Pauli exponentials

R(P1)R(P2) · · ·R(Pk)C

2. Use Pauli commutations to find pairs Pi = ±Pj that are
adjacent and merge them

Many other ways, but all rely on circuit representations

R(P1)R(P2) · · ·R(Pk)C

∑
y e

iP(x,y)|A(x, y)⟩

5 / 23

A real-worldTM program

T T †
0

0

b

aH

H

S

H

H

Z

while ab ̸= 00

Not a circuit, so what can we do?

6 / 23

A real-worldTM program

T T †
0

0

b

aH

H

S

H

H

Z

while ab ̸= 00

Loop satisfies the classical invariant x ′ = x

6 / 23

A real-worldTM program

T T †
0

0

b

aH

H

S

H

H

Z

while ab ̸= 00

Loop satisfies the classical invariant x ′ = x

6 / 23

A real-worldTM program

0

0

b

aH

H

S

H

H

Z

while ab ̸= 00

Loop satisfies the classical invariant x ′ = x

6 / 23

A slightly more challenging example

T T †

while ⋆

Loop satisfies the classical invariant x ⊕ y = x ′ ⊕ y ′

7 / 23

A slightly more challenging example

T T †

while ⋆

Loop satisfies the classical invariant x ⊕ y = x ′ ⊕ y ′

7 / 23

A slightly more challenging example

while ⋆

Loop satisfies the classical invariant x ⊕ y = x ′ ⊕ y ′

7 / 23

How can we formalize & compute these invariants?

8 / 23

A relational approach

Classical semantics C JUK ⊆ Zn
2 × Zn

2 of a circuit U is the set of
non-zero classical transitions:

(x, x′) ∈ C JUK ⇐⇒ ⟨x′|U|x⟩ ≠ 0

Naturally extends to non-deterministic QRAM programs

Σ :: = skip | q := |0⟩ | Uq | meas q

P ∈ RegExp(Σ) :: = E ∈ Σ | P1; P2 | P1 + P2 | P⋆

Classical transitions = union over all possible runs π ∈ L(P):

(x, x′) ∈ C JPK ⇐⇒ ∃π ∈ L(P).⟨x′|π|x⟩ ≠ 0

9 / 23

Computing the classical transitions

Problem: can’t compute C JPK
Solution: Any sound approximation R ⊇ C JPK suffices

Simple approximation: interpret regular expressions on relations

R JE ∈ ΣK = {(x, x′) | ⟨x′|E |x⟩ ≠ 0}
R JT1; T2K = R JT2K ◦ R JT1K

R JT1 + T2K = R JT1K ∪R JT2K

R JT ∗K = ∪∞
k=0R

r
T k

z

=⇒ Computable, but exponential-time
(and not really logical)

10 / 23

Computing the classical transitions

Problem: can’t compute C JPK
Solution: Any sound approximation R ⊇ C JPK suffices

Simple approximation: interpret regular expressions on relations

R JE ∈ ΣK = {(x, x′) | ⟨x′|E |x⟩ ≠ 0}
R JT1; T2K = R JT2K ◦ R JT1K

R JT1 + T2K = R JT1K ∪R JT2K

R JT ∗K = ∪∞
k=0R

r
T k

z

=⇒ Computable, but exponential-time
(and not really logical)

10 / 23

Affine subspaces

Clifford+T gates implement affine (classical) transitions

T : |x⟩ 7→ ωx |x⟩
X : |x⟩ 7→ |1 + x⟩

CNOT : |x , y⟩ 7→ |x , x + y⟩

H : |x⟩ 7→ 1√
2

∑
y∈Z2

(−1)xy |y⟩

Viewed as subsets of Zn
2 × Zn

2 ≃ Z2n
2 , the classical semantics are

exactly affine subspaces

C JT K = {(x , x) | x ∈ Z2} = ⟨x ′ = x⟩
C JX K = {(x , 1 + x) | x ∈ Z2} = ⟨x ′ = 1 + x⟩

C JCNOT K = {(x , y , x , x + y) | x , y ∈ Z2} = ⟨x ′ = x , y ′ = x + y⟩
C JHK = {(x , x ′) | x , x ′ ∈ Z2} = ⟨∅⟩

11 / 23

The affine subspace domain

Lattice of affine subspaces S(Z2n
2) of Z2n

2 forms a Kleene algebra
(coherently interpret regular expressions)

(S(Z2n
2), 0, 1, ·,⊔, (·)⋆)

where

▶ 0 = {0}
▶ 1 = {(x, x) | x ∈ Zn

2}
▶ S · S ′ is relational composition (projection & intersection)

▶ S ⊔ S ′ is least-upper-bound (i.e. subspace union)

▶ S⋆ = ⊔∞
i=0Si where Si ⊑ Si+1

Proposition

S⋆ stabilizes in Ω(2n) iterations

12 / 23

The affine subspace domain

Lattice of affine subspaces S(Z2n
2) of Z2n

2 forms a Kleene algebra
(coherently interpret regular expressions)

(S(Z2n
2), 0, 1, ·,⊔, (·)⋆)

where

▶ 0 = {0}
▶ 1 = {(x, x) | x ∈ Zn

2}
▶ S · S ′ is relational composition (projection & intersection)

▶ S ⊔ S ′ is least-upper-bound (i.e. subspace union)

▶ S⋆ = ⊔∞
i=0Si where Si ⊑ Si+1

Proposition

S⋆ stabilizes in Ω(2n) iterations

12 / 23

Affine relational invariants

Proposition

Given a QRAM program P, an affine subspace soundly
approximating C JPK can be computed in polynomial time

T T †

⋆

Loop invariant S = ⟨x ′ ⊕ y ′ = x ⊕ y⟩ allows canceling the T gates
by canonicalizing the conditions x ⊕ y and x ′ ⊕ y ′ modulo S

13 / 23

What if we need more precision?

0 0T 0 0T †

⋆

▶ The non-linear loop invariant x ′y ′ = xy allows eliminating
both T gates

▶ The strongest affine loop invariant ⟨x ′ ⊕ y ′ = x ⊕ y⟩ is unable
to prove the relation x ′y ′ = xy

=⇒ need non-linear relations for this optimization!

14 / 23

From affine subspaces to varieties

Replace affine subspaces with affine varieties and affine relations
with polynomial ideals

I = I(V) = {f ∈ Z2[X,X
′] | f (x, x′) = 0 ∀(x, x′) ∈ V }.

Gröbner basis methods suffice to implement KA operators

Notes:

▶ Precise for the compositional model R JPK
▶ Gives all polynomial relations implied by the variety R JPK

Proposition (Hilbert’s strong Nullstellensatz for Z2)

I(V(I)) = I + ⟨X 2
i − Xi | Xi ∈ X⟩

15 / 23

From affine subspaces to varieties

Replace affine subspaces with affine varieties and affine relations
with polynomial ideals

I = I(V) = {f ∈ Z2[X,X
′] | f (x, x′) = 0 ∀(x, x′) ∈ V }.

Gröbner basis methods suffice to implement KA operators

Notes:

▶ Precise for the compositional model R JPK
▶ Gives all polynomial relations implied by the variety R JPK

Proposition (Hilbert’s strong Nullstellensatz for Z2)

I(V(I)) = I + ⟨X 2
i − Xi | Xi ∈ X⟩

15 / 23

The catch

Sequential composition is not precise in any classical domain!

R JHK ◦ R JHK = Z2
2 ◦ Z2

2 = Z2
2

R JHHK = R JI K = ⟨x = x ′⟩ ≠ Z2
2

Solution: use the sum-over-paths to generate precise transition
relations for the sequential (circuit) fragment!

U : |x⟩ 7→
∑
y∈Zk

2

Φ(x, y)|f1(x, y)⟩ ⊗ · · · ⊗ |fn(x, y)⟩

16 / 23

The catch

Sequential composition is not precise in any classical domain!

R JHK ◦ R JHK = Z2
2 ◦ Z2

2 = Z2
2

R JHHK = R JI K = ⟨x = x ′⟩ ≠ Z2
2

Solution: use the sum-over-paths to generate precise transition
relations for the sequential (circuit) fragment!

U : |x⟩ 7→
∑
y∈Zk

2

Φ(x, y)|f1(x, y)⟩ ⊗ · · · ⊗ |fn(x, y)⟩

16 / 23

Interference & the sum-over-paths

LUM = |x⟩ 7→
∑
y∈Zk

2

Φ(x, y)|f1(x, y)⟩ ⊗ · · · ⊗ |fn(x, y)⟩

▶ Can compute LUM in poly-time

▶ The ideal I = ∃Y.⟨X ′
1 = f1(X,Y), . . . ,X ′

n = fn(X,Y)⟩ soundly
approximates C JUK

▶ Can increase the precision of the ideal by re-writing1 and
analyzing interference

LUM =
∑
y∈Z2

(−1)yPLU ′M =⇒ I ⊓ ⟨P = 0⟩ is sound

1M. Amy, Towards large-scale functional verification of universal quantum circuits.
QPL 2018.

17 / 23

Is this useful?

18 / 23

Application: integrated program optimizations

▶ Implemented2 invariant generation on openQASM 3.0

▶ Finds non-trivial optimizations based on loop invariants

▶ Deep integration of optimization in compilers for hybrid
workflows

Benchmark n Original PFAff PFPol Generated loop invariant
T # T time (s) # T time (s)

RUS 3 16 10 0.30 8 0.35 ⟨z′ + z⟩
Grover 129 1736e9 1470e9 1.98 TIMEOUT –
Reset-simple 2 2 1 0.15 1 0.23 –
If-simple 2 2 0 0.18 0 0.16 –
Loop-simple 2 2 0 0.17 0 0.16 ⟨x′ + x, y + y′ + xy + xy′⟩
Loop-h 2 2 0 0.16 0 0.16 ⟨y′ + y⟩
Loop-nested 2 3 2 0.17 2 0.18 ⟨x′ + x⟩, ⟨x′ + x⟩
Loop-swap 2 2 0 0.30 0 0.20 ⟨x′ + y′ + x + y, x′ + xy + xx′ + yx′⟩
Loop-nonlinear 3 30 18 0.44 0 0.26 ⟨x′ + x, z′ + z, y′ + y + xy + xy′⟩
Loop-null 2 4 1 0.18 1 0.17 ⟨x′ + x, y′ + y⟩

2https://github.com/meamy/feynman
19 / 23

https://github.com/meamy/feynman

Application: circuit optimization

▶ Strictly outperforms existing phase folding approaches

▶ Recovers previous3 hand-optimized k-control Toffoli

x1 • • x1
x2 • • x2
x3 • • • • x3
x4 • • x4
a • • • • a′

• •
y y ⊕ x1x2x3x4

▶ Requires inferring the equality a′ = a

▶ As k → ∞, reduces T -count by 1/3 to 8(k − 1)

▶ Previously unachievable by automated means

3D. Maslov, On the advantages of using relative phase Toffolis with an
application to multiple control Toffoli optimization Phys Rev. A 2016.

20 / 23

A compact & efficient multiply-controlled Toffoli

Recent4 2(k − 2) + 1-Toffoli in constant clean space:

▶ Previous optimizers: T -count 11(k − 2) + 7

▶ Invariant approach: T -count 8(k − 2) + 7

Halves the T -count of the best previous construction!

4T. Khattar, C. Gidney, Rise of conditionally clean ancillae for optimizing
quantum circuits. arXiv:2407.17966

21 / 23

Other applications?

▶ Verification
▶ Hybrid program design

▶ E.g. repeat-until-success circuits

▶ Error correction
▶ Fully precise for QRAM programs with Clifford operations
▶ Space-time codes?

22 / 23

Thank you!

23 / 23

	Motivation

