
CMPT 476/776: Introduction to Quantum Algorithms

Assignment 0 — Mathematical preliminaries

Not graded.

This is not a homework assignment; neither completion nor submission is required. It is only
meant to help you review prerequisite concepts and fill in any gaps which we will not otherwise
present in the course.

Question 1: Complex numbers

Quantum mechanics, and by extension computation, makes heavy use of complex numbers and
arithmetic (though there is no theoretical reason it needs to1). For review, we briefly recall some
basic facts of complex numbers:

• The complex numbers C are those of the form z = a+ bi, where i =
√
−1 is the complex

unit and a, b ∈ R are real numbers.

• Re(z) = a is the real part of z ∈ C.

• Im(z) = b is the imaginary part of z ∈ C.

• z∗ = a− bi if the complex conjugate of z (also written z).

• z = reiθ is the polar form of z, where r, θ ∈ R. r = |z| =
√
a2 + b2 is called the magnitude

of z and θ is the phase corresponding to the angle between the x-axis and z when written in
the complex plane.

• In polar form, z∗ = (reiθ)∗ = re−iθ

• (Euler’s formula) eiθ = cos(θ) + i sin(θ).

Exercises:

1. Compute the following in standard form :

• (2 + 3i) + (1− 4i)

• (1 + 2i)(3− i)

• |4− 3i|
1T. Hoffreumon, M. Woods, Quantum theory does not need complex numbers.
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• 2+i
1−3i

2. Compute the following in polar form :

• 4− 3i

• (2eiπ/4)(5eiπ/8)

• (3eiπ/4)2

• 1
7ei3π/5

3. Verify that z + z∗ = 2Re(z)

4. Verify that z − z∗ = 2iIm(z)

5. Verify that zz∗ = |z|2

Question 2: Linear algebra

Everything is linear somewhere
— Someone, probably

As with most mathematics, the most convenient way to work with quantum mechanics is via
linear algebra. We briefly review the basics of linear algebra which we will need in this course.

Recall that a vector space V over a field F is a set of vectors v ∈ V such that (1) for any
v,u ∈ V , v ± u is defined (vector addition), and (2) for any v ∈ V and a ∈ F , av is defined
(scalar multiplication). Every vector space also has a unique zero vector 0 ∈ V with the
obvious properties.

Given a set of vectors B = {u1, . . . ,un} ⊂ V , the linear span of B, denoted span B ⊆ V , is
the set of formal F -linear combinations of elements of B — that is, vectors of the form

a1u1 + a2u2 + · · ·+ anun ∈ V

where a1, . . . , an ∈ F . We say the set B is linearly independent if a1u1 + a2u2 + · · ·+ anun = 0
implies a1, . . . , an are all 0 — that is, no vector in B can be written as a linear combination of other
vectors of B. If span B = V , then B is a basis of V , and the dimension of V is n = dimV . Since
we work in finite dimensions, our vector spaces will always have a basis, and we will
typically view vectors as linear combinations of basis vectors so understanding bases
is very important.

A linear transformation T : V → W from a vector space V to W is function from V to
W which is linear, in that T (au + bv) = aT (u) + bT (v) for all a, b ∈ F and u,v ∈ V . A linear
transformation T is typically represented by a matrix A, in which case T (u) = Au — that is,
T sends a vector u to the vector Au defined by matrix-vector multiplication. We say that u is
an eigenvector of A if Au = λu for some scalar λ ∈ F called an eigenvalue. We will review
diagonalization in class as it’s something you may not have previously seen in 232/240.

Recall that the standard inner product on real vector spaces is defined as ⟨u,v⟩ = uTv =∑
i uivi — that is, transpose u to get a row vector and multiply. In complex vector spaces, we

similarly define the inner product as ⟨u,v⟩ = u†v =
∑

i u
∗
i vi where u

† is the conjugate-transpose
as seen in class, obtained by taking the transpose and conjugating each entry. Given an inner
product on V , we then define the standard Euclidean norm on V as ||v|| =

√
⟨v,v⟩ =

√∑
i |ui|2.
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Exercises:

1. Let v =

1 + i
2− i
−i

.
(a) Compute the norm of v.

(b) Normalize v to obtain a unit vector.

2. Compute Av where A =

 2 i 1
−i 3 −i
1 i 4

 and v =

 1
−i
2

.
3. Write the matrix A =

 2 i 1
−i 3 −i
1 i 4

 in reduced Echelon form via Gaussian elimination.

4. Consider the matrix B =

0 −i 0
i 0 1
0 1 0

.
(a) Find the eigenvalues of B.

(b) Find the eigenvectors corresponding to each eigenvalue and normalize them.

5. Let v1 =

10
0

, v2 =

 1
1 + i
1 + i

, and v3 =

15
5

.
(a) Write each vector as a linear combination over the standard basis of C3:

e1 =

10
0

 , e2 =

01
0

 , e3 =

00
1


(b) Does {v1,v2,v3} form a basis for C3?

(c) What is the dimension of the subspace spanned by {v2,v3}? What about just {v3}?

Question 3: Probability theory

As quantum mechanics is inherently probabilistic, probability theory naturally factors into quantum
computation. Refresh yourself on some basics of probability theory with the exercises below:

1. A box contains 3 red balls and 2 blue balls. Two balls are drawn at random without replace-
ment.

(a) What is the probability that the first ball drawn is red?

(b) Given that the first ball drawn is red, what is the probability that the second ball drawn
is also red?
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(c) What is the probability that both balls drawn are red?

2. A discrete random variable X represents the number rolled on a fair six-sided die. Compute
the expected value of X.

3. A factory produces items from three machines: Machine A, Machine B, and Machine C.

• 50% of the items are from Machine A, 30% from Machine B, and 20% from Machine C.

• The probabilities of a defective item are 2%, 5%, and 10% for Machines A, B, and C,
respectively.

(a) What is the probability that a randomly selected item is defective?

(b) If an item is found to be defective, what is the probability it was produced by Machine
B?

4. A test for a disease has the following characteristics:

• 99% of people with the disease test positive.

• 95% of people without the disease test negative.

• 1% of the population has the disease.

If a person tests positive, what is the probability they actually have the disease? Use Baye’s
theorem,

P (A|B) =
P (B|A)P (A)

P (B)

Question 4: Discrete math

A few concepts from discrete math which will be helpful to review, notably modular arithmetic
and some elementary number theory necessary for Shor’s algorithm. These should be trivial and
serve only as reminders of the concepts.

1. Compute the following:

• 27 mod 5,

• 123 mod 17,

• −11 mod 7.

2. Solve 3x ≡ 1 (mod 5) for x.

3. Factorize 84 into its prime components.

4. Compute the greatest common divisor (GCD) of 24 and 36

5. Compute the least common multiple (LCM) of 24 and 36
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