
CMPT 478/981: Quantum Circuits and Compilation

Mini-project

Due March 6th
by email to the instructor

You may collaborate with your classmates on this assignment, but you should write
and submit individual solutions

1 Compiling Shor’s algorithm [50% of assignment grade]

In this assignment you will compile an instance of Shor’s period finding algorithm. The goal
is to implement a program which generates, for a particular choice of parameters, a circuit over
Clifford+T (with some simplifying assumptions) performing the quantum period finding subroutine.

1.1 Background

Recall that Shor’s algorithm for integer factorization relies on a quantum subroutine for computing
the multiplicative order of an integer modulo N . Specifically, given an integer N , after eliminating
trivial factors Shor’s algorithm consists in:

1. Picking some integer a coprime to N ,

2. Finding the order of a modulo N — that is, the smallest integer r such that ar ≡ 1 mod N

3. If r = 2k and N is not a factor of ak + 1, then ak + 1 and N share a non-trivial factor

For a simple (in fact, trivial) example, note that 38 ≡ 1 mod 32. Since 32 does not divide 34+1 =
82, we compute gcd(82, 32) = 2, which is in fact a factor of 32!

The quantum part of Shor’s algorithm, the period finding algorithm, involves creating an initial
n-bit (for our purposes) superposition 1√

2n

∑
x∈Zn

2
|x⟩, then applying modular exponentiation Uax :

|x⟩|1⟩ 7→ |x⟩|ax mod N⟩, before taking an inverse Fourier transform on the superposition register
and measuring to obtain an integer multiple of the order. The crux of implementing Shor’s algorithm
is then implementing the modular exponentiation circuit. Noting that

ax = ax0+2x1+···+2n−1xn

= ax0(a2)x1 · · · (a2n−1
)xn−1

≡ (a mod N)x0(a2 mod N)x1 · · · (a2n−1
mod N)xn−1 mod N

1

we find that modular exponentiation reduces to performing a series of controlled constant modular
multiplications Ua2

i
where

Ua2
i
: |b⟩ 7→ |b · a2i mod N⟩

The resulting circuit is shown below (modified from wikipedia):

1.2 Modular multiplication

The modular multiplication involved in Shor’s algorithm is more subtle than it initially seems. At
face value, multiplication of b by a simply involves a number of shifted additions of b,

a · b = a0 · b+ a1 · 2b+ a2 · 22b+ · · ·+ an−12
n−1b.

where the shifted addition x+ 2ib can be implemented simply by adding b to the most significant
n− i bits of x.

Complication arises from the fact that mutliplication in Shor’s algorithm is in-place — i.e.
Ua2

i
: |b⟩ 7→ |b · a2i mod N⟩ which is reversible by the fact that a2

i
is coprime to N and hence

has a multiplicative inverse. In place addition is relatively straightforward — you may use the so-
called Cuccaro adder for instance1 However, as modular multiplication involves a series of shifted
additions, we need to preserve the original value b along the way!

The simple solution is to note that the multiplicative inverse of a2
i
mod N can be efficiently

computed using the extended Euclidean algorithm. Given that, define out-of-place multipliers

Ua2
i
: |b⟩|0⟩ 7→ |b⟩|a2i · b mod N⟩

U(a2
i
)−1 : |b⟩|0⟩ 7→ |b⟩|(a2i)−1 · b mod N⟩

which can be used together with a register swap to implement in-place modular multiplication2:

|b⟩|0⟩ Ua2
i

−−−→ |b⟩|a2i · b mod N⟩ swap−−−→ |a2i · b mod N⟩|b⟩ (U(a2
i
)−1)†−−−−−−−→ |a2i · b mod N⟩|0⟩

where the last step follows because (U(a2
i
)−1)† : |x⟩|(a2i)−1 · x mod N⟩ 7→ |x⟩|0⟩.

1Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, David Petrie Moulton, A new quantum ripple-carry
addition circuit . arXiv:quant-ph/0410184.

2Stephane Beauregard, Circuit for Shor’s algorithm using 2n+3 qubits. quant-ph/0205095

2

https://arxiv.org/abs/quant-ph/0410184
https://arxiv.org/abs/quant-ph/0205095

1.3 Tasks

1. Implement a program (e.g. in Python, Q#, Qiskit, etc.) which compiles a quantum circuit
for the parameters

• N (the modulus being factored)

• a (the integer coprime to N which we are finding the period of), and

• ϵ (the error which the circuit is to be compiled to). Note: see below for simplifying
assumptions

You may produce the circuit in any way you like, but you should be able to (1) run it, and
(2) inspect it to count the number of T gates, for instance. A simple solution is to write
a Python program which generates openQASM3 code, as openQASM can be run on many
existing simulators.

2. Generate a circuit for N = 32 = 25, a = 3, ϵ = 10−7 and report the number of T gates and
qubits used.

3. Run the compiled code in a simulator and attempt to factor 32. A simple simulator capable
of simulating openQASM code is quantum++4.

1.4 Simplifying assumptions

1. You may assume that N = 2n. This allows you to forgo modular reduction and simply
perform truncated arithmetic (e.g. only computing the lowest order n bits of a sum)

2. You do not need to compile single-qubit rotations to Clifford+T , and may instead upper-
bound the T -count by assuming 3 log2(1/ϵ) T gates per single-qubit rotation, as per the
Ross-Selinger algorithm.

3. You do not need to use the extended Euclidean algorithm to compute the multiplicative
inverse of a2

i
mod N . In particular, you may brute force by checking whether b · a2i = 1

mod N for every b ∈ {2, . . . , N − 1}.

2 Reflection [50% of assignment grade]

Reflect on your experience programming and compiling the algorithm. Did your implementation
correctly produce a multiple of r? What difficulties arose? Did you do any debugging and if so
how and did you find any bugs? If not, how could you go about debugging your implementation?
What type of programming/compilation support would make this process easier?

3 What to submit

Submit your code, generated circuit, and reflections. There will be a prize for the functioning
implementation with the lowest T -count.

3Andrew W. Cross, Lev S. Bishop, John A. Smolin, Jay M. Gambetta, Open Quantum Assembly Language.
arXiv:1707.03429.

4qpp

3

https://arxiv.org/abs/1707.03429
https://github.com/softwareQinc/qpp

	Compiling Shor's algorithm [50% of assignment grade]
	Background
	Modular multiplication
	Tasks
	Simplifying assumptions

	Reflection [50% of assignment grade]
	What to submit

