II Quantum computation

4 Quantum circuits

The theory of computation has traditionally been studied almost entively in
the abstract, as a topic in pure mathematics. This is to miss the point of it.
Computers arve physical objects, and computations are physical processes. What
computers can or cannot compute is determined by the laws of physics alone,
and not by pure mathematics.

— David Deutsch

Like mathematics, computer science will be somewhat different from the other
sciences, in that it deals with artificial laws that can be proved, instead of
natural laws that are never known with certainty.

— Donald Knuth

The opposite of a profound truth may well be another profound truth.
— Niels Bohr

This chapter begins Part II of the book, in which we explore quantum computation in
detail. The chapter develops the fundamental principles of quantum computation, and
establishes the basic building blocks for quantum circuits, a universal language for de-
scribing sophisticated quantum computations. The two fundamental quantum algorithms
known to date are constructed from these circuits in the following two chapters. Chap-
ter 5 presents the quantum Fourier transform and its applications to phase estimation,
order-finding and factoring. Chapter 6 describes the quantum search algorithm, and its
applications to database search, counting and speedup of solutions to NP-complete prob-
lems. Chapter 7 concludes Part II with a discussion of how quantum computation may
one day be experimentally realized. T'wo other topics of great interest for quantum com-
putation, quantum noise and quantum error-correction, are deferred until Part III of the
book, in view of their wide interest also outside quantum computation.

There are two main ideas introduced in this chapter. First, we explain in detail the
fundamental model of quantum computation, the quantum circuit model. Second, we
demonstrate that there exists a small set of gates which are universal, that is, any quantum
computation whatsoever can be expressed in terms of those gates. Along the way we also
have occasion to describe many other basic results of quantum computation. Section 4.1
begins the chapter with an overview of quantum algorithms, focusing on what algorithms
are known, and the unifying techniques underlying their construction. Section 4.2 is a
detailed study of single qubit operations. Despite their simplicity, single qubit operations
offer a rich playground for the construction of examples and techniques, and it is essential
to understand them in detail. Section 4.3 shows how to perform multi-qubit controlled
unitary operations, and Section 4.4 discusses the description of measurement in the
quantum circuits model. These elements are then brought together in Section 4.5 for the
statement and proof of the universality theorem. We summarize all the basic elements

172 Quantum circuits

of quantum computation in Section 4.6, and discuss possible variants of the model, and
the important question of the relationship in computational power between classical and
quantum computers. Section 4.7 concludes the chapter with an important and instructive
application of quantum computation to the siznulation of real quantum systems.

This chapter is perhaps the most reader-intensive of all the chapters in the book, with
a high density of exercises for you to complete, and it is worth explaining the reason for
this intensity. Obtaining facility with the basic elements of the quantum circuit model
of computation is quite easy, but requires assimilating a large number of simple results
and techniques that must become second nature if one is to progress to the more difficult
problem of designing quantum algorithms. For this reason we take an example-oriented
approach in this chapter, and ask you to fill in many of the details, in order to acquire
such a facility. A less intensive, but somewhat superficial overview of the basic elements
of quantum computation may be obtained by skipping to Section 4.6.

4.1 Quantum algorithms

What is a quantum computer good for? We’re all familiar with the frustration of needing
more computer resources to solve a computational problem. Practically speaking, many
interesting problems are impossible to solve on a classical computer, not because they
are in principle insoluble, but because of the astronomical resources required to solve
realistic cases of the problem.

The spectacular promise of quantum computers is to enable new algorithms which
render feasible problems requiring exorbitant resources for their solution on a classical
computer. At the time of writing, two broad classes of quantum algorithms are known
which fulfill this promise. The first class of algorithms is based upon Shor’s quantum
Fourier transform, and includes remarkable algorithms for solving the factoring and dis-
crete logarithm problems, providing a striking exponential speedup over the best known
classical algorithms. The second class of algorithms is based upon Grover’s algorithm
for performing quantum searching. These provide a less striking but still remarkable
quadratic speedup over the best possible classical algorithms. The quantum searching
algorithm derives its importance from the widespread use of search-based techniques in
classical algorithms, which in many instances allows a straightforward adaptation of the
classical algorithm to give a faster quantum algorithm.

Figure 4.1 sketches the state of knowledge about quantum algorithms at the time of
writing, including some sample applications of those algorithms. Naturally, at the core of
the diagram are the quantum Fourier transform and the quantum searching algorithm.
Of particular interest in the figure is the quantum counting algorithm. This algorithm is
a clever combination of the quantum searching and Fourier transform algorithms, which
can be used to estimate the number of solutions to a search problem more quickly than
is possible on a classical computer.

The quantum searching algorithm has many potential applications, of which but a few
are illustrated. It can be used to extract statistics, such as the minimal element, from
an unordered data set, more quickly than is possible on a classical computer. It can be
used to speed up algorithms for some problems in NP — specifically, those problems for

which a straightforward search for a solution is the best algorithm known. Finally, it can
be used to speed up the search for keys to cryptosystems such as the widely used Data
Encryption Standard (DES). These and other applications are explained in Chapter 6.

Quantum algorithms 173

Quantum Fourier Hidden subgroup
search transform problem
Quantum)<
counting lﬁiscrete logJ \Order—ﬁnding|
Factoring
Statistics Speedup for some| | Search for Break cryptosystems

mean, median, min NP problems crypto keys (RSA)

Figure 4.1. The main quantum algorithms and their relationships, including some notable applications.

The quantum Fourier transform also has many interesting applications. It can be used
to solve the discrete logarithm and factoring problems. These results, in turn, enable a
quantum computer to break many of the most popular cryptosystems now in use, includ-
ing the RSA cryptosystem. The Fourier transform also turns out to be closely related
to an important problem in mathematics, finding a hidden subgroup (a generalization of
finding the period of a periodic function). The quantum Fourier transform and several of
its applications, including fast quantum algorithms for factoring and discrete logarithm,
are explained in Chapter 5.

Why are there so few quantum algorithms known which are better than their classical
counterparts? The answer is that coming up with good quantum algorithms seems to be
a difficult problem. There are at least two reasons for this. First, algorithm design, be
it classical or quantum, is not an easy business! The history of algorithms shows us that
considerable ingenuity is often required to come up with near optimal algorithms, even for
apparently very simple problems, like the multiplication of two numbers. Finding good
quantum algorithms is made doubly difficult because of the additional constraint that we
want our quantum algorithms to be better than the best known classical algorithms. A
second reason for the difficulty of finding good quantum algorithms is that our intuitions
are much better adapted to the classical world than they are to the quantum world. If
we think about problems using our native intuition, then the algorithms which we come
up with are going to be classical algorithms. It takes special insights and special tricks to
come up with good quantum algorithms.

Further study of quantum algorithms will be postponed until the next chapter. In this
chapter we provide an efficient and powerful language for describing quantum algorithms,
the language of quantum circuits — assemblies of discrete sets of components which
describe computational procedures. This construction will enable us to quantify the cost
of an algorithm in terms of things like the total number of gates required, or the circuit
depth. The circuit language also comes with a toolbox of tricks that simplifies algorithm
design and provides ready conceptual understanding.

174 Quantum civcuits

4.2 Single qubit operations

The development of our quantum computational toolkit begins with operations on the
simplest quantum system of all — a single qubit. Single qubit gates were introduced in
Section 1.3.1. Let us quickly summarize what we learned there; you may find it useful
to refer to the notes on notation on page xxiii as we go along.

A single qubit is a vector |1/} = a|0) + b|1) parameterized by two complex numbers
satisfying |a|? + |b|* = 1. Operations on a qubit must preserve this norm, and thus are
described by 2x2 unitary matrices. Of these, some of the most important are the Pauli
matrices; it is useful to list them again here:

_[fo 11 o _T0 =] __[1 0
X:{IO},Y:[Z. 0},22{0 _1}. (4.1)

Three other quantum gates will play a large part in what follows, the Hadamard gate
(denoted H), phase gate (denoted S), and /8 gate (denoted T):

11 1] L (101 1 0
el Lo Lo 1) oo ot | 02

A couple of useful algebraic facts to keep in mind are that H = (X +Z)/v/2 and S = T%.
You might wonder why the T gate is called the /8 gate when it is /4 that appears in
the definition. The reason is that the gate has historically often been referred to as the
7 /8 gate, simply because up to an unimportant global phase T' is equal to a gate which
has exp(%im/8) appearing on its diagonals.

T = exp(in/8) [e"p(_ai”/ 8) exp (Z(.)ﬂ 18 J . (4.3)

Nevertheless, the nomenclature is in some respects rather unfortunate, and we often refer
to this gate as the 7' gate.

Recall also that a single qubit in the state a|0) + b|1) can be visualized as a point (6,)
on the unit sphere, where a = cos(6/2), b = €% sin(f/2), and a can be taken to be real
because the overall phase of the state is unobservable. This is called the Bloch sphere
representation, and the vector (cos ¢ sinf,sin psinf, cosf) is called the Bloch vector.
We shall return to this picture often as an aid to intuition.

Exercise 4.1: In Exercise 2.11, which you should do now if you haven’t already done
it, you computed the eigenvectors of the Pauli matrices. Find the points on the
Bloch sphere which correspond to the normalized eigenvectors of the different
Pauli matrices.

The Pauli matrices give rise to three useful classes of unitary matrices when they are
exponentiated, the rotation operators about the Z, §J, and 2 axes, defined by the equations:

, 0 0 cos? —isin?
— _'LGX/Z -_ —J — 7 cin — e 2 2
R.(0)=e cos 2] i sin 2X { Zisin? cos® } (4.4
. 0 0 cos? —sin?
= v = Ve L U 2 2
R0 =e cos 2[isin 2Y { sind cos? } (4.5)
. 0 0 i6/2
R.(0) = e 0212 = ¢os -Z_I — 7 sin EZ = { © 0 ei(G)/Z] (4.6)

Single qubit operations 175

Exercise 4.2: Let = be a real number and A a matrix such that A% = J. Show that
exp(iAzx) = cos(z)l + isin(z)A. (4.7)
Use this result to verify Equations (4.4) through (4.6).
Exercise 4.3: Show that, up to a global phase, the 7/8 gate satisfies T' = R,(7w/4).

Exercise 4.4: Express the Hadamard gate H as a product of R, and R, rotations and
e* for some (.

If & = (ng,ny,n,) is a real unit vector in three dimensions then we generalize the
previous definitions by defining a rotation by € about the A axis by the equation

0 0
R (0) = exp(—if 7 - G/2) = cos <§) I —isin (5) (ne X +n,Y +n,7), (4.8)
where & denotes the three component vector (X, Y, 7Z) of Pauli matrices.

Exercise 4.5: Prove that (7 - &) = I, and use this to verify Equation (4.8).

Exercise 4.6: (Bloch sphere interpretation of rotations) One reason why the
R;(60) operators are referred to as rotation operators is the following fact, which
you are to prove. Suppose a single qubit has a state represented by the Bloch
vector \. Then the effect of the rotation R;(0) on the state is to rotate it by an
angle 6 about the 7 axis of the Bloch sphere. This fact explains the rather
mysterious looking factor of two in the definition of the rotation matrices.

Exercise 4.7: Show that XY X = —Y and use this to prove that
XR, ()X = Ry(—0).

Exercise 4.8: An arbitrary single qubit unitary operator can be written in the form
U = exp(ia)R;(0) 4.9

for some real numbers « and 6, and a real three-dimensional unit vector 7.

1. Prove this fact.
2. Find values for o, 0, and 7 giving the Hadamard gate H.
3. Find values for «, 0, and 7 giving the phase gate

_| 10
S—[O z] (4.10)
An arbitrary unitary operator on a single qubit can be written in many ways as a
combination of rotations, together with global phase shifts on the qubit. The following
theorem provides a means of expressing an arbitrary single qubit rotation that will be
particularly useful in later applications to controlled operations.

Theorem 4.1: (Z-Y decomposition for a single qubit) Suppose U is a unitary
operation on a single qubit. Then there exist real numbers «, 3,y and ¢ such that

U = € R,(B)Ry(7)R.(5). (4.11)

176 Quantum civcuits

Proof
Since U is unitary, the rows and columns of U are orthonormal, from which it follows
that there exist real numbers «, (3, v,and ¢ such that

ei(@=B/2-8/2) cos 1 —ei(a—B/2+6/2) gin 1

U= cia+B/2-6/2) gin 1 pila+B/2+6/2) cog 7 (4.12)

Equation (4.11) now follows immediately from the definition of the rotation matrices and

matrix multiplication. 0

Exercise 4.9: Explain why any single qubit unitary operator may be written in the
form (4.12).

Exercise 4.10: (X-Y decomposition of rotations) Give a decomposition
analogous to Theorem 4.1 but using R, instead of R,.

Exercise 4.11: Suppose i and 7 are non-parallel real unit vectors in three
dimensions. Show that an arbitrary single qubit unitary U may be written as

U = e Ra(B1) Rin(n)Ra(B2) R (1) - - - (4.13)
for appropriate choices of o and (g, k.

The utility of Theorem 4.1 lies in the following mysterious looking corollary, which
is the key to the construction of controlled multi-qubit unitary operations, as explained
in the next section.

Corollary 4.2: Suppose U is a unitary gate on a single qubit. Then there exist unitary
operators A, B, C on a single qubit such that ABC = [and U = e*AXBXC,

where « is some overall phase factor.

Proof
In the notation of Theorem 4.1, set A = R,(5)R,(v/2), B = Ry(—v/2)R,(—(6 +3)/2)
and C' = R.((6 — 3)/2). Note that

we=rom () (P (L)% (52) -1 o

Since X? = I, and using Exercise 4.7, we see that

XBX=XRy@%)XXRZC3%£>X=}@(Q}L(5+ﬁ>. (4.15)

2 2
Thus
_ Y Y o+ §—pf
AXBXC%-RxﬁﬂQ(E)f@(E)RZ(—7—)Rz<—7—> (4.16)
= R.(B)Ry(7)R.(9) - (4.17)
Thus U = e®*AX BXC and ABC = I, as required. O

Exercise 4.12: Give A, B, C, and « for the Hadamard gate.

Controlled operations 177

Exercise 4.13: (Circuit identities) It is useful to be able to simplify circuits by
inspection, using well-known identities. Prove the following three identities:

HXH=2Z, HYH=-Y, HZH=X. (4.18)

Exercise 4.14: Use the previous exercise to show that HTH = R,(7/4), up to a
global phase.

Exercise 4.15: (Composition of single qubit operations) The Bloch
representation gives a nice way to visualize the effect of composing two rotations.
(1) Prove that if a rotation through an angle (3; about the axis 7, is followed by a
rotation through an angle (3, about an axis 7, then the overall rotation is
through an angle (3;; about an axis 711, given by
Clz = cicy — 81821y - T (419)
8127"\2,12 = s100My T 187y — 818 Ty X Ty , (420)
where ¢; = cos(8;/2), s; = sin(8;/2), c1; = cos(B12/2), and sy, = sin(5y,/2).
(2) Show that if £; = (3, and 7; = 2 these equations simplify to

cn=ct—s*3-my, (4.21)

Siafiiy = Sc(2 + fy) — st Ay X 2, (4.22)
where ¢ = ¢; and s = s;.
Symbols for the common single qubit gates are shown in Figure 4.2. Recall the basic

properties of quantum circuits: time proceeds from left to right; wires represent qubits,
and a ‘/> may be used to indicate a bundle of qubits.

1 1 1
Hadamard __| H— —F&=
T bl
Pauli- X X {(1) (1)}
Pauliy [y [) _O"}
Pauli-Z ——7& [(1) _01 }
1 0
Phase 45_ { 0 i]

/8 o o]

Figure 4.2. Names, symbols, and unitary matrices for the common single qubit gates.

4.3 Controlled operations

‘If A is true, then do B’. This type of controlled operation is one of the most useful in
computing, both classical and quantum. In this section we explain how complex controlled
operations may be implemented using quantum circuits built from elementary operations.

178 Quantum circuits

The prototypical controlled operation is the controlled-NOT, which we met in Sec-
tion 1.2.1. Recall that this gate, which we’ll often refer to as CNOT, is a quantum gate
with two input qubits, known as the control qubit and target qubit, respectively. It is
drawn as shown in Figure 4.3. In terms of the computational basis, the action of the
CNOT is given by [c)[t) — |c)|t @ c); that is, if the control qubit is set to |1) then the
target qubit is flipped, otherwise the target qubit is left alone. Thus, in the computational
basis |control, target) the matrix representation of CNOT is

1

0
0
0

0

|
0
0

0

0
0
1

0

(1’ (4.23)
0

Figure 4.3. Circuit representation for the controlled-NoT gate. The top line represents the control qubit, the

bottom line the target qubit.

More generally, suppose U is an arbitrary single qubit unitary operation. A controlled-
U operation is a two qubit operation, again with a control and a target qubit. If the control
qubit is set then U is applied to the target qubit, otherwise the target qubit is left alone;
that is, |c)|t) — |c)U¢|t). The controlled-U operation is represented by the circuit shown

in Figure 4.4.

U

Figure 4.4. Controlled-U operation. The top line is the control qubit, and the bottom line is the target qubit. If the
control qubit is set then U is applied to the target, otherwise it is left alone.

Exercise 4.16: (Matrix representation of multi-qubit gates) What is the 4x4

unitary matrix for the circuit

xro —

1

Ely

in the computational basis? What is the unitary matrix for the circuit

T2

r1 —

iy

Controlled operations 179

in the computational basis?

Exercise 4.17: (Building cNOT from controlled-Z gates) Construct a CNOT gate
from one controlled-Z gate, that is, the gate whose action in the computational
basis is specified by the unitary matrix

1 00 O
010 O
0 01 0"
0 0 0 -1

and two Hadamard gates, specifying the control and target qubits.

T _ A

7 ®

Exercise 4.18: Show that

Exercise 4.19: (CNOT action on density matrices) The CNOT gate is a simple
permutation whose action on a density matrix p is to rearrange the elements in
the matrix. Write out this action explicitly in the computational basis.

Exercise 4.20: (CNOT basis transformations) Unlike ideal classical gates, ideal

quantum gates do not have (as electrical engineers say) ‘high-impedance’ inputs.
In fact, the role of ‘control’ and ‘target’ are arbitrary — they depend on what basis
you think of a device as operating in. We have described how the cCNOT behaves
with respect to the computational basis, and in this description the state of the
control qubit is not changed. However, if we work in a different basis then the
control qubit does change: we will show that its phase is flipped depending on
the state of the ‘target’ qubit! Show that

Introducing basis states |£) = (|0) & |1))/+/2, use this circuit identity to show
that the effect of a CNOT with the first qubit as control and the second qubit as
target is as follows:

[+)+) = [+)]+) (4.24)
=)+ = =)+ (4.25)
[+)[=) = 1=)1=) (4.26)
=) =) = 1H)=)- (4.27)

Thus, with respect to this new basis, the state of the target qubit is not changed,
while the state of the control qubit is flipped if the target starts as |—), otherwise

180 Quantum circuits

it is left alone. That is, in this basis, the target and control have essentially

interchanged roles!

Our immediate goal is to understand how to implement the controlled-U operation
for arbitrary single qubit U, using only single qubit operations and the cNOT gate. Our
strategy is a two-part procedure based upon the decomposition U = e** AX BXC given
in Corollary 4.2 on page 176.

Our first step will be to apply the phase shift exp(ia) on the target qubit, controlled
by the control qubit. That is, if the control qubit is |0), then the target qubit is left alone,
while if the control qubit is |1), a phase shift exp(ic) is applied to the target. A circuit
implementing this operation using just a single qubit unitary gate is depicted on the right
hand side of Figure 4.5. To verify that this circuit works correctly, note that the effect
of the circuit on the right hand side is

|00) — |00), |01) — |01), |10) — €**|10), |11) — e**|11), (4.28)

which is exactly what is required for the controlled operation on the left hand side.

0 e

Figure 4.5. Controlled phase shift gate and an equivalent circuit for two qubits.

We may now complete the construction of the controlled-U operation, as shown in
Figure 4.6. To understand why this circuit works, recall from Corollary 4.2 that U
may be written in the form U = e *AXBXC, where A, B and C are single qubit
operations such that ABC' = I. Suppose that the control qubit is set. Then the operation
e AX BXC = U is applied to the second qubit. If, on the other hand, the control qubit
is not set, then the operation ABC = I is applied to the second qubit; that is, no change
is made. That is, this circuit implements the controlled-U operation.

Now that we know how to condition on a single qubit being set, what about condition-
ing on multiple qubits? We’ve already met one example of multiple qubit conditioning,
the Toffoli gate, which flips the third qubit, the target qubit, conditioned on the first
two qubits, the control qubits, being set to one. More generally, suppose we have n + k
qubits, and U is a k qubit unitary operator. Then we define the controlled operation

C™(U) by the equation
C"O)|x1zy - .. zn)|¥) = |2122 - . 2y YU P22 |0h) (4.29)

where 1z, ... 2, in the exponent of U means the product of the bits x1,2,,. .., T,.
That is, the operator U is applied to the last k qubits if the first n qubits are all equal
to one, and otherwise, nothing is done. Such conditional operations are so useful that we

Controlled operations 181

1 0
L 4 @— .

0 ¢

—U Cle-Be—A

Figure 4.6. Circuit implementing the controlled-U operation for single qubit U. o, A, B and C satisfy
U =exp(ic) AXBXC, ABC = 1.

introduce a special circuit notation for them, illustrated in Figure 4.7. For the following
we assume that £ = 1, for simplicity. Larger k£ can be dealt with using essentially the
same methods, however for k¥ > 2 there is the added complication that we don’t (yet)
know how to perform arbitrary operations on k qubits.

)
n=4 -«
k=34— U —

Figure 4.7. Sample circuit representation for the C™(U) operation, where U is a unitary operator on k qubits, for
n =4and k = 3.

Suppose U is a single qubit unitary operator, and V' is a unitary operator chosen so
that V? = U. Then the operation C*(U) may be implemented using the circuit shown
in Figure 4.8.

Exercise 4.21: Verify that Figure 4.8 implements the C?(U) operation.

Exercise 4.22: Prove that a C*(U) gate (for any single qubit unitary U) can be
constructed using at most eight one-qubit gates, and six controlled-NOTs.

Exercise 4.23: Construct a C'(U) gate for U = R,(0) and U = R,(6), using only
CNOT and single qubit gates. Can you reduce the number of single qubit gates
needed in the construction from three to two?

The familiar Toffoli gate is an especially important special case of the C*(U) operation,

182 Quantum circuits

L 4 L 4
4 = T N, I NP
U V—Vi—V|

Figure 4.8. Circuit for the C2(U) gate. V is any unitary operator satisfying V2 = U. The special case
V = (1 — 4)(I +1X)/2 corresponds to the Toffoli gate.

the case C*(X). Defining V = (1 — i)(I +iX)/2 and noting that V2 = X, we see that
Figure 4.8 gives an implementation of the Toffoli gate in terms of one and two qubit
operations. From a classical viewpoint this is a remarkable result; recall from Problem 3.5
that one and two bit classical reversible gates are not sufficient to implement the Toffoli
gate, or, more generally, universal computation. By contrast, in the quantum case we see
that one and two qubit reversible gates are sufficient to implement the Toffoli gate, and
will eventually prove that they suffice for universal computation.

Ultimately we will show that any unitary operation can be composed to an arbitrarily
good approximation from just the Hadamard, phase, controlled-NOT and 7/8 gates.
Because of the great usefulness of the Toffoli gate it is interesting to see how it can be
built from just this gate set. Figure 4.9 illustrates a simple circuit for the Toffoli gate
made up of just Hadamard, phase, controlled-NOT and 7/8 gates.

—- - 1 T}

T e8]

>

\

Tt
£
& (@ Ee T

Figure 4.9. Implementation of the Toffoli gate using Hadamard, phase, controlled-NoT and 7 /8 gates.

Exercise 4.24: Verify that Figure 4.9 implements the Toffoli gate.

Exercise 4.25: (Fredkin gate construction) Recall that the Fredkin
(controlled-swap) gate performs the transform

100000 0 0
01000000
00100000
00010000
00001000 (4.30)
000000T10
00000T100
00000000 1

Controlled operations 183

(1) Give a quantum circuit which uses three Toffoli gates to construct the
Fredkin gate (Hint: think of the swap gate construction — you can control
each gate, one at a time).

(2) Show that the first and last Toffoli gates can be replaced by cNOT gates.

(3) Now replace the middle Toffoli gate with the circuit in Figure 4.8 to obtain
a Fredkin gate construction using only six two-qubit gates.

(4) Can you come up with an even simpler construction, with only five
two-qubit gates?

Exercise 4.26: Show that the circuit:

N

— Ry(r/4) || Ry (m/4) e By(—m/4) e Ry(—m/4) |

differs from a Toffoli gate only by relative phases. That is, the circuit takes

lc1, ¢, 1) to efCrerde ¢y t @ ¢ - ¢p), where e©:22) is some relative phase
factor. Such gates can sometimes be useful in experimental implementations,
where it may be much easier to implement a gate that is the same as the Toffoli
up to relative phases than it is to do the Toffoli directly.

Exercise 4.27: Using just cNOTs and Toffoli gates, construct a quantum circuit to
perform the transformation

10 0 00 0 0 OW

0000 O0O0O0°11

01 000 0 OTPO

001 00 0 0O

0001 0O0O0TUO (+31)
00001 00O0PO

000 O0O0OT1TUO0UO

0 0 0 00 0 1 04

This kind of partial cyclic permutation operation will be useful later, in
Chapter 7.

How may we implement C"(U) gates using our existing repertoire of gates, where U
is an arbitrary single qubit unitary operation? A particularly simple circuit for achieving
this task is illustrated in Figure 4.10. The circuit divides up into three stages, and makes
use of a small number (n — 1) of working qubits, which all start and end in the state
|0). Suppose the control qubits are in the computational basis state |ci, ¢y, - - ., ¢,). The
first stage of the circuit is to reversibly AND all the control bits ¢y, ..., c, together to
produce the product ¢; - ¢, ...c,. To do this, the first gate in the circuit ANDs ¢; and
¢, together, using a Toffoli gate, changing the state of the first work qubit to |c; - ¢3).
The next Toffoli gate ANDs c3 with the product c¢; - ¢;, changing the state of the second
work qubit to |c; - ¢; - ¢3). We continue applying Toffoli gates in this fashion, until the
final work qubit is in the state |c; - ¢; . .. ¢,). Next, a U operation on the target qubit is

184 Quantum circuits

performed, conditional on the final work qubit being set to one. That is, U is applied if
and only if all of ¢; through ¢, are set. Finally, the last part of the circuit just reverses
the steps of the first stage, returning all the work qubits to their initial state, |0). The
combined result, therefore, is to apply the unitary operator U to the target qubit, if and
only if all the control bits ¢; through c,, are set, as desired.

control qubits ﬁ lcs

N
H

work qubits

Sre T
target qubit U

Figure 4.10. Network implementing the C™(U) operation, for the case n = 5.

Exercise 4.28: For U = V? with V unitary, construct a C*(U) gate analogous to that
in Figure 4.10, but using no work qubits. You may use controlled-V and
controlled-V'T gates.

Exercise 4.29: Find a circuit containing O(n?) Toffoli, CNOT and single qubit gates
which implements a C™(X) gate (for n > 3), using no work qubits.

Exercise 4.30: Suppose U is a single qubit unitary operation. Find a circuit
containing O(n?) Toffoli, cCNOT and single qubit gates which implements a
C™(U) gate (for n > 3), using no work qubits.

In the controlled gates we have been considering, conditional dynamics on the target
qubit occurs if the control bits are set to one. Of course, there is nothing special about
one, and it is often useful to consider dynamics which occur conditional on the control
bit being set to zero. For instance, suppose we wish to implement a two qubit gate in
which the second (‘target’) qubit is flipped, conditional on the first (‘control’) qubit being
set to zero. In Figure 4.11 we introduce a circuit notation for this gate, together with an
equivalent circuit in terms of the gates we have already introduced. Generically we shall
use the open circle notation to indicate conditioning on the qubit being set to zero, while
a closed circle indicates conditioning on the qubit being set to one.

A more elaborate example of this convention, involving three control qubits, is illus-
trated in Figure 4.12. The operation U is applied to the target qubit if the first and third
qubits are set to zero, and the second qubit is set to one. It is easy to verify by inspection
that the circuit on the right hand side of the figure implements the desired operation.
More generally, it is easy to move between circuits which condition on qubits being set

Measurement 185

— {3

L

H—0
I
|

Figure 4.11. Controlled operation with a NOT gate being performed on the second qubit, conditional on the first
qubit being set to zero.

to one and circuits which condition on qubits being set to zero, by insertion of X gates
in appropriate locations, as illustrated in Figure 4.12.

Another convention which is sometimes useful is to allow controlled-NOT gates to have
multiple targets, as shown in Figure 4.13. This natural notation means that when the
control qubit is 1, then all the qubits marked with a @ are flipped, and otherwise nothing
happens. It is convenient to use, for example, in constructing classical functions such as
permutations, or in encoders and decoders for quantum error-correction circuits, as we
shall see in Chapter 10.

Exercise 4.31: (More circuit identities) Let subscripts denote which qubit an
operator acts on, and let C' be a CNOT with qubit 1 the control qubit and qubit 2
the target qubit. Prove the following identities:

CX,C =X X3 (4.32)
CY,.C =YX, (4.33)
Ccz,C =27 (4.34)
CX,C =X, (4.35)
CcY,C = 2\Y, (4.36)
Cz,C =72, (4.37)
R.1(0)C =CR,,1(0) (4.38)
R, 2(0)C = CR; »(0). (4.39)

4.4 Measurement

A final element used in quantum circuits, almost implicitly sometimes, is measurement.
In our circuits, we shall denote a projective measurement in the computational basis
(Section 2.2.5) using a ‘meter’ symbol, illustrated in Figure 4.14. In the theory of quan-
tum circuits it is conventional to not use any special symbols to denote more general
measurements, because, as explained in Chapter 2, they can always be represented by
unitary transforms with ancilla qubits followed by projective measurements.

There are two important principles that it is worth bearing in mind about quantum cir-
cuits. Both principles are rather obvious; however, they are of such great utility that they
are worth emphasizing early. The first principle is that classically conditioned operations
can be replaced by quantum conditioned operations:

186 Quantum circuits

—o0— —{xlex}—

-

—) —{x X|—
U U

Figure 4.12. Controlled-U operation and its equivalent in terms of circuit elements we already know how to
implement. The fourth qubit has U applied if the first and third qubits are set to zero, and the second qubit is set

to one.

Qz _

Figure 4.13. Controlled-NOT gate with multiple targets.

Principle of deferred measurement: Measurements can always be moved from
an intermediate stage of a quantum circuit to the end of the circuit; if the
measurement results are used at any stage of the circuit then the classically
controlled operations can be replaced by conditional quantum operations.

Often, quantum measurements are performed as an intermediate step in a quantum
circuit, and the measurement results are used to conditionally control subsequent quan-
tum gates. This is the case, for example, in the teleportation circuit of Figure 1.13 on
page 27. However, such measurements can always be moved to the end of the circuit.
Figure 4.15 illustrates how this may be done by replacing all the classical conditional
operations by corresponding quantum conditional operations. (Of course, some of the
interpretation of this circuit as performing ‘teleportation’ is lost, because no classical in-
formation is transmitted from Alice to Bob, but it is clear that the overall action of the
two quantum circuits is the same, which is the key point.)

The second principle is even more obvious — and surprisingly useful!

) — N

Figure 4.14. Symbol for projective measurement on a single qubit. In this circuit nothing further is done with the
measurement result, but in more general quantum circuits it is possible to change later parts of the quantum
circuit, conditional on measurement outcomes in earlier parts of the circuit. Such a usage of classical information is

depicted using wires drawn with double lines (not shown here).

Measurement 187

) H —
& r N
XHz— %)

Figure 4.15. Quantum teleportation circuit in which measurements are done at the end, instead of in the middle of
the circuit. As in Figure 1.13, the top two qubits belong to Alice, and the bottom one to Bob.

| Boo)

Principle of implicit measurement: Without loss of generality, any
unterminated quantum wires (qubits which are not measured) at the end of a
quantum circuit may be assumed to be measured.

To understand why this is true, imagine you have a quantum circuit containing just
two qubits, and only the first qubit is measured at the end of the circuit. Then the
measurement statistics observed at this time are completely determined by the reduced
density matrix of the first qubit. However, if a measurement had also been performed on
the second qubit, then it would be highly surprising if that measurement could change
the statistics of measurement on the first qubit. You’ll prove this in Exercise 4.32 by
showing that the reduced density matrix of the first qubit is not affected by performing
a measurement on the second.

As you consider the role of measurements in quantum circuits, it is important to
keep in mind that in its role as an interface between the quantum and classical worlds,
measurement is generally considered to be an irreversible operation, destroying quantum
information and replacing it with classical information. In certain carefully designed cases,
however, this need not be true, as is vividly illustrated by teleportation and quantum
error-correction (Chapter 10). What teleportation and quantum error-correction have in
common is that in neither instance does the measurement result reveal any information
about the identity of the quantum state being measured. Indeed, we will see in Chapter 10
that this is a more general feature of measurement — in order for a measurement to be
reversible, it must reveal no information about the quantum state being measured!

Exercise 4.32: Suppose p is the density matrix describing a two qubit system.
Suppose we perform a projective measurement in the computational basis of the
second qubit. Let Py = |0)(0| and P, = |1)(1] be the projectors onto the |0) and
|1) states of the second qubit, respectively. Let o/ be the density matrix which
would be assigned to the system after the measurement by an observer who did
not learn the measurement result. Show that

p' = PypPy + PipP; . (4.40)

Also show that the reduced density matrix for the first qubit is not affected by
the measurement, that is, try(p) = try(p').

Exercise 4.33: (Measurement in the Bell basis) The measurement model we have
specified for the quantum circuit model is that measurements are performed only

188

Quantum civcuits

in the computational basis. However, often we want to perform a measurement
in some other basis, defined by a complete set of orthonormal states. To perform
this measurement, simply unitarily transform from the basis we wish to perform
the measurement in to the computational basis, then measure. For example,

show that the circuit
T A

b __/%\

performs a measurement in the basis of the Bell states. More precisely, show that
this circuit results in a measurement being performed with corresponding
POVM elements the four projectors onto the Bell states. What are the
corresponding measurement operators?

Exercise 4.34: (Measuring an operator) Suppose we have a single qubit operator

U with eigenvalues %1, so that U is both Hermitian and unitary, so it can be
regarded both as an observable and a quantum gate. Suppose we wish to measure
the observable U. That is, we desire to obtain a measurement result indicating
one of the two eigenvalues, and leaving a post-measurement state which is the
corresponding eigenvector. How can this be implemented by a quantum circuit?
Show that the following circuit implements a measurement of U

|0>HTH4&

|1/)in> U I¢out>

Exercise 4.35: (Measurement commutes with controls) A consequence of the

principle of deferred measurement is that measurements commute with quantum
gates when the qubit being measured is a control qubit, that is:

AR N R €'
U U] —U -

(Recall that the double lines represent classical bits in this diagram.) Prove the
first equality. The rightmost circuit is simply a convenient notation to depict the
use of a measurement result to classically control a quantum gate.

4.5 Universal quantum gates

A small set of gates (e.g. AND, OR, NOT) can be used to compute an arbitrary classical
function, as we saw in Section 3.1.2. We say that such a set of gates is universal for clas-
sical computation. In fact, since the Toffoli gate is universal for classical computation,
quantum circuits subsume classical circuits. A similar universality result is true for quan-
tum computation, where a set of gates is said to be universal for quantum computation
if any unitary operation may be approximated to arbitrary accuracy by a quantum circuit

Universal quantum gates 189

involving only those gates. We now describe three universality constructions for quantum
computation. These constructions build upon each other, and culminate in a proof that
any unitary operation can be approximated to arbitrary accuracy using Hadamard, phase,
CNOT, and 7/8 gates. You may wonder why the phase gate appears in this list, since it
can be constructed from two /8 gates; it is included because of its natural role in the
fault-tolerant constructions described in Chapter 10.

The first construction shows that an arbitrary unitary operator may be expressed ex-
actly as a product of unitary operators that each acts non-trivially only on a subspace
spanned by two computational basis states. The second construction combines the first
construction with the results of the previous section to show that an arbitrary unitary
operator may be expressed exactly using single qubit and CNOT gates. The third con-
struction combines the second construction with a proof that single qubit operation may
be approximated to arbitrary accuracy using the Hadamard, phase, and 7 /8 gates. This in
turn implies that any unitary operation can be approximated to arbitrary accuracy using
Hadamard, phase, CNOT, and 7/8 gates.

Our constructions say little about efficiency — how many (polynomially or exponen-
tially many) gates must be composed in order to create a given unitary transform. In
Section 4.5.4 we show that there exist unitary transforms which require exponentially
many gates to approximate. Of course, the goal of quantum computation is to find inter-
esting families of unitary transformations that can be performed efficiently.

Exercise 4.36: Construct a quantum circuit to add two two-bit numbers = and y
modulo 4. That is, the circuit should perform the transformation
|z, y) — |z, z +y mod 4).

4.5.1 Two-level unitary gates are universal
Consider a unitary matrix U which acts on a d-dimensional Hilbert space. In this section
we explain how U may be decomposed into a product of two-level unitary matrices,
that is, unitary matrices which act non-trivially only on two-or-fewer vector components.
The essential idea behind this decomposition may be understood by considering the case
when U is 3x3, so suppose that U has the form

a d g
U=1b e h|. (4.41)
c fJ
We will find two-level unitary matrices Uy, . .., U; such that
U3U2U1U =1. (442)
It follows that
U =Ulujui. (4.43)

Ui, U, and Uj are all two-level unitary matrices, and it is easy to see that their inverses,
U IT , UZT and U. 3T are also two-level unitary matrices. Thus, if we can demonstrate (4.42),
then we will have shown how to break U up into a product of two-level unitary matrices.

190 Quantum circuits

Use the following procedure to construct U;: if b = (then set

1 0 0
Ui=010]. (4.44)
00 1

If b # 0 then set

a* b*
\/lal;+lbl2 \/la|%+[b|?

Vi0al+b2 4/lal2+[b]2
0 0 1

U, = (4.45)

Note that in either case U is a two-level unitary matrix, and when we multiply the
matrices out we get

/7 /

9
ho| (4.46)
J

SH

UlU =

’

O.o 8

- o

The key point to note is that the middle entry in the left hand column is zero. We denote
the other entries in the matrix with a generic prime ; their actual values do not matter.

Now apply a similar procedure to find a two-level matrix U, such that U,U;U has no
entry in the bottom left corner. That is, if ¢ = 0 we set

7%

a 00
0 0 1
while if ¢ # 0 then we set
Va2 Va2
U, = 0 1 0 (4.48)
C 0 —a
Ve’ P+ |2 Via' P+ |2
In either case, when we carry out the matrix multiplication we find that
1 d/l gl’
LUuU=|0 e hn |. (4.49)
0 f

Since U, U; and U, are unitary, it follows that U,U, U is unitary, and thusd = ¢ = 0,
since the first row of U,U;U must have norm 1. Finally, set

1 0 0
Us=|0 & 7 |. (4.50)
O h//*]_//*

It is now easy to verify that U3 U,U U = I, and thus U = U;r UZT U;, which is a decom-
position of U into two-level unitaries.

More generally, suppose U acts on a d-dimensional space. Then, in a similar fashion
to the 33 case, we can find two-level unitary matrices Uy, .. ., Uz_; such that the matrix

Universal quantum gates 191

Ug—1Ug4—> ... U1U has a one in the top left hand corner, and all zeroes elsewhere in the
first row and column. We then repeat this procedure for the d — 1 by d — 1 unitary
submatrix in the lower right hand corner of Uy U, ;... U,U, and so on, with the end
result that an arbitrary dXd unitary matrix may be written

U=V,...V, (4.51)

where the matrices V; are two-level unitary matrices, and k < (d—1)+(d—2)+---+1 =
d(d — 1)/2.

Exercise 4.37: Provide a decomposition of the transform

| 1 1
i =1 —i
-1 1 -1
-1 -1 4

[y

1
1

14 (4.52)
1

into a product of two-level unitaries. This is a special case of the quantum
Fourier transform, which we study in more detail in the next chapter.

A corollary of the above result is that an arbitrary unitary matrix on an n qubit system
may be written as a product of at most 2"~!(2" — 1) two-level unitary matrices. For
specific unitary matrices, it may be possible to find much more efficient decompositions,
but as you will now show there exist matrices which cannot be decomposed as a product
of fewer than d — 1 two-level unitary matrices!

Exercise 4.38: Prove that there exists a dxd unitary matrix U which cannot be
decomposed as a product of fewer than d — 1 two-level unitary matrices.

4.5.2 Single qubit and CNOT gates are universal
We have just shown that an arbitrary unitary matrix on a d-dimensional Hilbert space
may be written as a product of two-level unitary matrices. Now we show that single
qubit and CNOT gates together can be used to implement an arbitrary two-level unitary
operation on the state space of n qubits. Combining these results we see that single qubit
and CNOT gates can be used to implement an arbitrary unitary operation on n qubits,
and therefore are universal for quantum computation.

Suppose U is a two-level unitary matrix on an n qubit quantum computer. Suppose
in particular that U acts non-trivially on the space spanned by the computational basis
states |s) and |t), where s = s;...s, and ¢ = ¢;...¢, are the binary expansions for s
and ¢. Let U be the non-trivial 2x2 unitary submatrix of U; U can be thought of as a
unitary operator on a single qubit.

Our immediate goal is to construct a circuit implementing U, built from single qubit
and cNOT gates. To do this, we need to make use of Gray codes. Suppose we have
distinct binary numbers, s and ¢. A Gray code connecting s and ¢ is a sequence of binary
numbers, starting with s and concluding with ¢, such that adjacent members of the list
differ in exactly one bit. For instance, with s = 101001 and ¢ = 110011 we have the Gray

192 Quantum circuits

code
101001
101011
100011 (4.53)
110011

Let g; through g,, be the elements of a Gray code connecting s and ¢, with g; = s and
Jm = t. Note that we can always find a Gray code such that m < n+ 1 since s and ¢ can
differ in at most n locations.

The basic idea of the quantum circuit implementing U is to perform a sequence of gates
effecting the state changes [g1) — |g2) — ... — |gm—1), then to perform a controlled-U
operation, with the target qubit located at the single bit where g,,,_; and g,, differ, and
then to undo the first stage, transforming |gm—1) — |gm—2) — ... — |g1). Each of these
steps can be easily implemented using operations developed earlier in this chapter, and
the final result is an implementation of U.

A more precise description of the implementation is as follows. The first step is to swap
the states |g;) and |g,). Suppose g; and g, differ at the ith digit. Then we accomplish
the swap by performing a controlled bit flip on the ith qubit, conditional on the values
of the other qubits being identical to those in both g; and g;. Next we use a controlled
operation to swap |g;) and |g3). We continue in this fashion until we swap |g,,_,) with
|gm—1)- The effect of this sequence of m — 2 operations is to achieve the operation

l91) = [gm-1) (4.54)
lg2) — |g1) (4.55)
l93) — 92) (4.56)
|9m-1) = |gm-—2)- (4.57)

All other computational basis states are left unchanged by this sequence of operations.
Next, suppose g,_1 and g,, differ in the jth bit. We apply a controlled-U operation
with the jth qubit as target, conditional on the other qubits having the same values as
appear in both g,, and g,,,_;. Finally, we complete the U operation by undoing the swap
operations: we swap |g,,—1) with |g,,—>), then |g,,—,) with |g,,_3) and so on, until we
swap |g;) with |g1).

A simple example illuminates the procedure further. Suppose we wish to implement
the two-level unitary transformation

(4.58)

cCoco~o oo O
(=R R — I =
ScC o OoOCOoCO

SCocoocooco ~O
S oococoo ~=Oo O
SCcoo~Oo OO
_Loococooo0
| M—

ST oo oo oo

~ a c|.) .
Here, a, b, c and d are any complex numbers such that U = [b d } 1S a unitary matrix.

Universal quantum gates 193

Notice that U acts non-trivially only on the states |000) and |111). We write a Gray code
connecting 000 and 111:

(4.59)

—_o o o

B
0
0
|
|

—_—_ = o Q

From this we read off the required circuit, shown in Figure 4.16. The first two gates
shuffle the states so that |000) gets swapped with [011). Next, the operation U is applied
to the first qubit of the states |011) and |111), conditional on the second and third qubits
being in the state |11). Finally, we unshuffle the states, ensuring that |011) gets swapped
back with the state [000).

A Io[—‘

Figure 4.16. Circuit implementing the two-level unitary operation defined by (4.58).

—PH—O
c7—(g;)

Returning to the general case, we see that implementing the two-level unitary operation
U requires at most 2(n — 1) controlled operations to swap |g;) with |g,, ;) and then back
again. Each of these controlled operations can be realized using O(n) single qubit and
CNOT gates; the controlled-U operation also requires O(n) gates. Thus, implementing
U requires O(n?) single qubit and CNOT gates. We saw in the previous section that an
arbitrary unitary matrix on the 2"-dimensional state space of n qubits may be written as
a product of O(22") = O(4™) two-level unitary operations. Combining these results, we
see that an arbitrary unitary operation on n qubits can be implemented using a circuit
containing O(n*4") single qubit and cNOT gates. Obviously, this construction does not
provide terribly efficient quantum circuits! However, we show in Section 4.5.4 that the
construction is close to optimal in the sense that there are unitary operations that require
an exponential number of gates to implement. Thus, to find fast quantum algorithms we
will clearly need a different approach than is taken in the universality construction.

Exercise 4.39: Find a quantum circuit using single qubit operations and CNOTs to
implement the transformation

1

(4.60)

SO = OO
OO = OO
(== R =R R e i e i

oS oo oo oo

oS oo o oo —~=O
T ocoo o R o0
S oo —=O oo
QL oOCcoco o o0

194 Quantum circuits

where U = [] is an arbitrary 2X2 unitary matrix.

a ¢

b d
4.5.3 A discrete set of universal operations
In the previous section we proved that the CNOT and single qubit unitaries together form
a universal set for quantum computation. Unfortunately, no straightforward method is
known to implement all these gates in a fashion which is resistant to errors. Fortunately,
in this section we’ll find a discrete set of gates which can be used to perform universal
quantum computation, and in Chaper 10 we’ll show how to perform these gates in an
error-resistant fashion, using quantum error-correcting codes.

Approximating unitary operators

Obviously, a discrete set of gates can’t be used to implement an arbitrary unitary operation
exactly, since the set of unitary operations is continuous. Rather, it turns out that a
discrete set can be used to approximate any unitary operation. To understand how this
works, we first need to study what it means to approximate a unitary operation. Suppose
U and V are two unitary operators on the same state space. U is the target unitary operator
that we wish to implement, and V' is the unitary operator that is actually implemented
in practice. We define the error when V' is implemented instead of U by

EU,V)= max 1T =W, (4.61)

where the maximum is over all normalized quantum states |¢) in the state space. In
Box 4.1 on page 195 we show that this measure of error has the interpretation that if
E(U,V) is small, then any measurement performed on the state V'|¢)) will give approx-
imately the same measurement statistics as a measurement of U|v), for any initial state
|1). More precisely, we show that if M is a POVM element in an arbitrary POVM, and
Py (or Py) is the probability of obtaining this outcome if U (or V') were performed with
a starting state |1)), then

|Py — Py| <2EU,V). (4.62)

Thus, if E(U, V) is small, then measurement outcomes occur with similar probabilities,
regardless of whether U or V were performed. Also shown in Box 4.1 is that if we

perform a sequence of gates V), ..., V,, intended to approximate some other sequence
of gates Uy, ..., U,,, then the errors add at most linearly,
EUnUn-1---Ut, ViVinor . V) <) E(U;, V). (4.63)
j=1

The approximation results (4.62) and (4.63) are extremely useful. Suppose we wish
to perform a quantum circuit containing m gates, U; through U,,. Unfortunately, we
are only able to approximate the gate U; by the gate V. In order that the probabilities
of different measurement outcomes obtained from the approximate circuit be within a
tolerance A > 0 of the correct probabilities, it suffices that E(U;, V;) < A/(2m), by the
results (4.62) and (4.63).

Universality of Hadamard + phase + CNOT + 7/8 gates
We’re now in a good position to study the approximation of arbitrary unitary operations
by discrete sets of gates. We’re going to consider two different discrete sets of gates, both

Universal quantum gates

195

Box 4.1: Approximating quantum circuits

Suppose a quantum system starts in the state |1), and we perform either the unitary
operation U, or the unitary operation V. Following this, we perform a measurement.
Let M be a POVM element associated with the measurement, and let Py (or Py)
be the probability of obtaining the corresponding measurement outcome if the
operation U (or V') was performed. Then

|Py — Py| = |($|UTMUp) — (|VIMV]y)]|. (4.64)

Let |A) = (U — V)|4). Simple algebra and the CauchySchwarz inequality show
that

|Py — Py| = [($|UTM|A) + (A|MV|9)]. (4.65)
< [($|UTM|A)| + |[(AIMV|¢)] (4.66)
< [IfAM+ (A (4.67)
< 2EU,V). (4.68)

The inequality |Py — Py | < 2E(U, V) gives quantitative expression to the idea
that when the error E(U, V) 1s small, the difference in probabilities between mea-
surement outcomes is also small.

Suppose we perform a sequence Vi, V,,...,V,, of gates intended to approximate
some other sequence of gates, U}, U,,...,U,,. Then it turns out that the error
caused by the entire sequence of imperfect gates is at most the sum of the errors
in the individual gates,

EUnUn 1---U1, Vi Vino1 ... V) <> EU,, V). (4.69)
j=1

To prove this we start with the case m = 2. Note that for some state |1)) we have

EUU, VW) = [|(U2U = VaW)9) || (4.70)
= U = VUD|) + (V2Ur = VaW)). (4.71)
Using the triangle inequality |||a) + |b)|| < |||a)|| + |||b)||, we obtain
EUU, V)W) < (U, = VUL [9)|| + [[Va(Uy — V)[) | (4.72)
< E(U27‘/2)+E(Ula‘/l)a (473)

which was the desired result. The result for general m follows by induction.

We begin the universality proof by showing that the Hadamard and /8 gates can

of which are universal. The first set, the standard set of universal gates, consists of the
Hadamard, phase, controlled-NOT and /8 gates. We provide fault-tolerant constructions
for these gates in Chapter 10; they also provide an exceptionally simple universality
construction. The second set of gates we consider consists of the Hadamard gate, phase
gate, the controlled-NOT gate, and the Toffoli gate. These gates can also all be done fault-
tolerantly; however, the universality proof and fault-tolerance construction for these ga
is a little less appealing.

tes

be

196 Quantum civcuits

used to approximate any single qubit unitary operation to arbitrary accuracy. Consider
the gates 7"and HT H. T is, up to an unimportant global phase, a rotation by 7 /4 radians
around the 2 axis on the Bloch sphere, while HT H is a rotation by 7/4 radians around
the £ axis on the Bloch sphere (Exercise 4.14). Composing these two operations gives,
up to a global phase,

exp (—z’%Z) exp <—i%X> = [cos %I — isin%Z] [cos g[— ¢sin %X] (4.74)

= cos’ %I —1 [cos %(X +7)+ sin%Y] sin % .

(4.75)

s

This is a rotation of the Bloch sphere about an axis along 7 = (cos §, sin ¢, cos T) with
corresponding unit vector 7, and through an angle 0 defined by cos(f/2) = cos? 5+ That
is, using only the Hadamard and 7/8 gates we can construct R;(f). Moreover, this 6
can be shown to be an irrational multiple of 27r. Proving this latter fact is a little beyond
our scope; see the end of chapter ‘History and further reading’.

Next, we show that repeated iteration of 2;(f) can be used to approximate to arbitrary
accuracy any rotation R, (). To see this, let § > 0 be the desired accuracy, and let NV be
an integer larger than 27/4. Define 0 so that 0 € [0, 27) and 0 = (kf)mod 27. Then
the pigeonhole principle implies that there are distinct 7 and £ in the range 1, ..., N such
that |0, — 0, < 2m/N < 6. Without loss of generality assume that £ > j, so we have
|0k—;| < 6. Since j # k and @ is an irrational multiple of 271 we must have 6,_; # 0. It
follows that the sequence ;i fills up the interval [0, 27) as [is varied, so that adjacent
members of the sequence are no more than ¢§ apart. It follows that for any ¢ > 0 there
exists an 7 such that

E(Ra(e), Ra(0)") < 3 - (4.76)

Exercise 4.40: For arbitrary o and 3 show that
E(Rp(), Ra(a + B)) = [1 — exp(if/2)| (4.77)
and use this to justify (4.76).

We are now in position to verify that any single qubit operation can be approximated to
arbitrary accuracy using the Hadamard and 7/8 gates. Simple algebra implies that for
any o

HRA(a)H = Ru(a), (4.78)

jus

where 772 is a unit vector in the direction (cos §, —sin g, cos §), from which it follows
that

E(Rin(0), Ra(0)") < 5 - (4.79)
But by Exercise 4.11 an arbitrary unitary U on a single qubit may be written as

U = Ru(B)Rm(7)R:(0), (4.80)
up to an unimportant global phase shift. The results (4.76) and (4.79), together with the

Universal quantum gates 197

chaining inequality (4.63) therefore imply that for suitable positive integers n;, n;, ns,
E(U, Ry(0)"HR;(0)" HRx(0)™) < €. (4.81)

That is, given any single qubit unitary operator U and any € > 0 it is possible to
approximate U to within € using a circuit composed of Hadamard gates and 7 /8 gates
alone.

Since the 7/8 and Hadamard gates allow us to approximate any single qubit uni-
tary operator, it follows from the arguments of Section 4.5.2 that we can approximate
any m gate quantum circuit, as follows. Given a quantum circuit containing m gates,
either CNOTs or single qubit unitary gates, we may approximate it using Hadamard,
controlled-NOT and 7 /8 gates (later, we will find that phase gates make it possible to do
the appoximation fault-tolerantly, but for the present universality argument they are not
strictly necessary). If we desire an accuracy of € for the entire circuit, then this may be
achieved by approximating each single qubit unitary using the above procedure to within
€/m and applying the chaining inequality (4.63) to obtain an accuracy of € for the entire
circuit.

How efficient is this procedure for approximating quantum circuits using a discrete
set of gates? This is an important question. Suppose, for example, that approximating
an arbitrary single qubit unitary to within a distance € were to require Q(2!/€) gates
from the discrete set. Then to approximate the m gate quantum circuit considered in
the previous paragraph would require Q(m2™/€) gates, an exponential increase over
the original circuit size! Fortunately, the rate of convergence is much better than this.
Intuitively, it is plausible that the sequence of angles 6 ‘fills in’ the interval [0, 27) in a
more or less uniform fashion, so that to approximate an arbitrary single qubit gate ought
to take roughly ©(1/¢) gates from the discrete set. If we use this estimate for the number
of gates required to approximate an arbitrary single qubit gate, then the number required
to approximate an m gate circuit to accuracy € becomes @(m?/¢). This is a quadratic
increase over the original size of the circuit, m, which for many applications may be
sufficient.

Rather remarkably, however, a much faster rate of convergence can be proved. The
Solovay—Kitaev theorem, proved in Appendix 3, implies that an arbitrary single qubit
gate may be approximated to an accuracy € using O(log“(1/¢€)) gates from our discrete set,
where c is a constant approximately equal to 2. The Solovay—Kitaev theorem therefore
implies that to approximate a circuit containing m CNOTSs and single qubit unitaries to
an accuracy € requires O(m log®(m/e)) gates from the discrete set, a polylogarithmic
increase over the size of the original circuit, which is likely to be acceptable for virtually
all applications.

To sum up, we have shown that the Hadamard, phase, controlled-NOT and 7/8 gates
are universal for quantum computation in the sense that given a circuit containing CNOTS
and arbitrary single qubit unitaries it is possible to simulate this circuit to good accuracy
using only this discrete set of gates. Moreover, the simulation can be performed effi-
ciently, in the sense that the overhead required to perform the simulation is polynomial
in log(m/€), where m is the number of gates in the original circuit, and € is the desired
accuracy of the simulation.

Exercise 4.41: This and the next two exercises develop a construction showing that
the Hadamard, phase, controlled-NOT and Toffoli gates are universal. Show that

198 Quantum circuits

]()) —ﬂ—?———g—H—/#

|0> —£—¢———Q—H—/7R

N

N

|4) O 9 & R.(0)v)

Figure 4.17. Provided both measurement outcomes are 0 this circuit applies . (0) to the target, where
cos @ = 3/5. If some other measurement outcome occurs then the circuit applies Z to the target.

the circuit in Figure 4.17 applies the operation R, (f) to the third (target) qubit if
the measurement outcomes are both 0, where cos @ = 3/5, and otherwise applies
Z to the target qubit. Show that the probability of both measurement outcomes
being 0 is 5/8, and explain how repeated use of this circuit and Z = S gates
may be used to apply a R,(f) gate with probability approaching 1.

Exercise 4.42: (Irrationality of #) Suppose cosf = 3/5. We give a proof by
contradiction that € is an irrational multiple of 27r.
(1) Using the fact that e = (3 + 44)/5, show that if 6 is rational, then there
must exist a positive integer m such that (3 + 4¢)™ = 5™,
(2) Show that (3 +44)™ = 3 + 44 (mod 5) for all m > 0, and conclude that no m
such that (3 +44)™ = 5™ can exist.

Exercise 4.43: Use the results of the previous two exercises to show that the
Hadamard, phase, controlled-NOT and Toffoli gates are universal for quantum
computation.

Exercise 4.44: Show that the three qubit gate G defined by the circuit:

— iR () }»

is universal for quantum computation whenever « is irrational.

Exercise 4.45: Suppose U is a unitary transform implemented by an n qubit quantum
circuit constructed from H, S, cNOT and Toffoli gates. Show that U is of the
form 27%/2 M for some integer k, where M is a 2™ x2"™ matrix with only
complex integer entries. Repeat this exercise with the Toffoli gate replaced by
the /8 gate.

4.5.4 Approximating arbitrary unitary gates is generically hard
We’ve seen that any unitary transformation on n qubits can be built up out of a small set
of elementary gates. Is it always possible to do this efficiently? That is, given a unitary
transformation U on n qubits does there always exist a circuit of size polynomial in n
approximating U? The answer to this question turns out to be a resounding no: in fact,
most unitary transformations can only be implemented very inefficiently. One way to see

Universal quantum gates 199

this is to consider the question: how many gates does it take to generate an arbitrary state
of n qubits? A simple counting argument shows that this requires exponentially many
operations, in general; it immediately follows that there are unitary operations requiring
exponentially many operations. To see this, suppose we have g different types of gates
available, and each gate works on at most f input qubits. These numbers, f and g,
are fixed by the computing hardware we have available, and may be considered to be
constants. Suppose we have a quantum circuit containing m gates, starting from the
computational basis state |0)®™. For any particular gate in the circuit there are therefore

g
at most [;L] = O(n'9) possible choices. It follows that at most O(n/9™) different

states may be computed using m gates.

Figure 4.18. Visualization of covering the set of possible states with patches of constant radius.

Suppose we wish to approximate a particular state, |1)), to within a distance €. The idea
of the proof is to cover the set of all possible states with a collection of ‘patches,” each of
radius € (Figure 4.18), and then to show that the number of patches required rises doubly
exponentially in n; comparing with the exponential number of different states that may
be computed using m gates will imply the result. The first observation we need is that the
space of state vectors of m qubits can be regarded as just the unit (2"*! —1)-sphere. To see
this, suppose the n qubit state has amplitudes ¢; = X; + 1Y}, where X; and Y are the
real and imaginary parts, respectively, of the jth amplitude. The normalization condition
for quantum states can be written » (X JZ + sz) = 1, which is just the condition for a
point to be on the unit sphere in 2"*! real dimensions, that is, the unit (2"*} — 1)-sphere.
Similarly, the surface area of radius € near |1)) is approximately the same as the volume
of a (2"*! — 2)-sphere of radius €. Using the formula Sy (r) = 2zx**D/2pk /T ((k+1)/2) for
the surface area of a k-sphere of radius r, and Vj(r) = 2r**D/2pk+1 /[(E+)T ((k+1)/2)]
for the volume of a k-sphere of radius r, we see that the number of patches needed to

200 Quantum circuits

cover the state space goes like
Szn+1_l(1) _ \/7_-‘-1"(271 _ %)(2n+1 _ 1)
Vyna1_5(€) r(zn)€2n+l_1)

where I’ is the usual generalization of the factorial function. But I'(2™ —1/2) > T"(2"™)/2",
so the number of patches required to cover the space is at least

1
Q<§m7>. (4.83)

Recall that the number of patches which can be reached in m gates is O(nf9™), so in
order to reach all the e-patches we must have

(4.82)

O (nf") > Q <%> (4.84)
which gives us
=Q(ﬁkﬂﬂ9>. (4.85)
log(n)

That is, there are states of n qubits which take (2" log(1/€)/ log(n)) operations to
approximate to within a distance €. This is exponential in n, and thus is ‘difficult’,
in the sense of computational complexity introduced in Chapter 3. Furthermore, this
immediately implies that there are unitary transformations U on n qubits which take
Q(2" log(1/€)/ log(n)) operations to approximate by a quantum circuit implementing an
operation V such that E(U, V) < €. By contrast, using our universality constructions
and the Solovay—Kitaev theorem it follows that an arbitrary unitary operation U on n
qubits may be approximated to within a distance € using O(n?4™ log®(n*4™ /€)) gates.
Thus, to within a polynomial factor the construction for universality we have given is
optimal; unfortunately, it does not address the problem of determining which families of
unitary operations can be computed efficiently in the quantum circuits model.

4.5.5 Quantum computational complexity

In Chapter 3 we described a theory of ‘computational complexity’ for classical comput-
ers that classified the resource requirements to solve computational problems on classi-
cal computers. Not surprisingly there is considerable interest in developing a theory of
quantum computational complexity, and relating it to classical computational complexity
theory. Although only first steps have been taken in this direction, it will doubtless be
an enormously fruitful direction for future researchers. We content ourselves with pre-
senting one result about quantum complexity classes, relating the quantum complexity
class BQP to the classical complexity class PSPACE. Our discussion of this result is
rather informal; for more details you are referred to the paper of Bernstein and Vazirani
referenced in the end of chapter ‘History and further reading’.

Recall that PSPACE was defined in Chapter 3 as the class of decision problems which
can be solved on a Turing machine using space polynomial in the problem size and an
arbitrary amount of time. BQP is an essentially quantum complexity class consisting
of those decision problems that can be solved with bounded probability of error using
a polynomial size quantum circuit. Slightly more formally, we say a language L is in
BQP if there is a family of polynomial size quantum circuits which decides the language,

Universal quantum gates 201

accepting strings in the language with probability at least 3 /4, and rejecting strings which
aren’t in the language with probability at least 3/4. In practice, what this means is that
the quantum circuit takes as input binary strings, and tries to determine whether they are
elements of the language or not. At the conclusion of the circuit one qubit is measured,
with 0 indicating that the string has been accepted, and 1 indicating rejection. By testing
the string a few times to determine whether it is in I, we can determine with very high
probability whether a given string is in L.

Of course, a quantum circuit is a fixed entity, and any given quantum circuit can only
decide whether strings up to some finite length are in L. For this reason, we use an
entire family of circuits in the definition of BQP; for every possible input length there is
a different circuit in the family. We place two restrictions on the circuit in addition to the
acceptance / rejection criterion already described. First, the size of the circuits should
only grow polynomially with the size of the input string = for which we are trying to
determine whether z € L. Second, we require that the circuits be uniformly generated,
in a sense similar to that described in Section 3.1.2. This uniformity requirement arises
because, in practice, given a string x of some length n, somebody will have to build
a quantum circuit capable of deciding whether z is in L. To do so, they will need to
have a clear set of instructions — an algorithm — for building the circuit. For this reason,
we require that our quantum circuits be uniformly generated, that is, there is a Turing
machine capable of efficiently outputting a description of the quantum circuit. This
restriction may seem rather technical, and in practice is nearly always satisfied trivially,
but it does save us from pathological examples such as that described in Section 3.1.2.
(You might also wonder if it matters whether the Turing machine used in the uniformity
requirement is a quantum or classical Turing machine; it turns out that it doesn’t matter
— see ‘History and further reading’.)

One of the most significant results in quantum computational complexity is that BQP
C PSPACE. It is clear that BPP C BQP, where BPP is the classical complexity class
of decision problems which can be solved with bounded probability of error using poly-
nomial time on a classical Turing machine. Thus we have the chain of inclusions BPP
C BQP C PSPACE. Proving that BQP # BPP — intuitively the statement that quan-
tum computers are more powerful than classical computers — will therefore imply that
BPP # PSPACE. However, it is not presently known whether BPP # PSPACE,
and proving this would represent a major breakthrough in classical computer science! So
proving that quantum computers are more powerful than classical computers would have
some very interesting implications for classical computational complexity! Unfortunately,
it also means that providing such a proof may be quite difficult.

Why is it that BQP C PSPACE? Here is an intuitive outline of the proof (a rigorous
proof is left to the references in ‘History and further reading’). Suppose we have an n
qubit quantum computer, and do a computation involving a sequence of p(n) gates, where
p(n) is some polynomial in n. Supposing the quantum circuit starts in the state |0) we
will explain how to evaluate in polynomial space on a classical computer the probability
that it ends up in the state |y). Suppose the gates that are executed on the quantum
computer are, in order, Uy, Uy, .. ., Upry. Then the probability of ending up in the state
|y) is the modulus squared of

(y|Up(n) .- U2U1|O> . (486)

This quantity may be estimated in polynomial space on a classical computer. The basic

202 Quantum circuits

idea is to insert the completeness relation) |z)(x| = I between each term in (4.86),
obtaining

WUpry - TUII0) = D" YUy Tpimy=1) (@ piy—1 [Upiy—1 - - - Un|a) (1 |U1]0) .

$1,...,$p(n)_1

(4.87)

Given that the individual unitary gates appearing in this sum are operations such as the
Hadamard gate, CNOT, and so on, it is clear that each term in the sum can be calculated
to high accuracy using only polynomial space on a classical computer, and thus the sum
as a whole can be calculated using polynomial space, since individual terms in the sum
can be erased after being added to the running total. Of course, this algorithm is rather
slow, since there are exponentially many terms in the sum which need to be calculated
and added to the total; however, only polynomially much space is consumed, and thus
BQP C PSPACE, as we set out to show.

A similar procedure can be used to simulate an arbitrary quantum computation on a
classical computer, no matter the length of the quantum computation. Therefore, the class
of problems solvable on a quantum computer with unlimited time and space resources
is no larger than the class of problems solvable on a classical computer. Stated another
way, this means that quantum computers do not violate the Church—Turing thesis; any
algorithmic process can be simulated using a Turing machine. Of course, quantum com-
puters may be much more efficient than their classical counterparts, thereby challenging
the strong Church—Turing thesis that any algorithmic process can be simulated efficiently
using a probabilistic Turing machine.

4.6 Summary of the quantum circuit model of computation

In this book the term ‘quantum computer’ is synonymous with the quantum circuit
model of computation. This chapter has provided a detailed look at quantum circuits,
their basic elements, universal families of gates, and some applications. Before we move
on to more sophisticated applications, let us summarize the key elements of the quantum
circuit model of computation:

(1) Classical resources: A quantum computer consists of two parts, a classical part
and a quantum part. In principle, there is no need for the classical part of the
computer, but in practice certain tasks may be made much easier if parts of the
computation can be done classically. For example, many schemes for quantum
error-correction (Chapter 10) are likely to involve classical computations in order to
maximize efficiency. While classical computations can always be done, in. principle,
on a quantum computer, it may be more convenient to perform the calculations on
a classical computer.

(2) A suitable state space: A quantum circuit operates on some number, 7, of qubits.
The state space is thus a 2"-dimensional complex Hilbert space. Product states of
the form |z1,...,z,), where z; = 0, 1, are known as computational basis states of
the computer. |z) denotes a computational basis state, where z is the number
whose binary representation is xj . . . Zy,.

(3) Ability to prepare states in the computational basis: It is assumed that any
computational basis state |z, ..., z,) can be prepared in at most n steps.

Summary of the quantum circuit model of computation 203

(4) Ability to perform quantum gates: Gates can be applied to any subset of qubits
as desired, and a universal family of gates can be implemented. For example, it
should be possible to apply the CNOT gate to any pair of qubits in the quantum
computer. The Hadamard, phase, cNOT and 7/8 gates form a family of gates from
which any unitary operation can be approximated, and thus is a universal set of
gates. Other universal families exist.

(5) Ability to perform measurements in the computational basis:
Measurements may be performed in the computational basis of one or more of the
qubits in the computer.

The quantum circuit model of quantum computation is equivalent to many other
models of computation which have been proposed, in the sense that other models result
in essentially the same resource requirements for the same problems. As a simple example
which illustrates the basic idea, one might wonder whether moving to a design based
on three-level quantum systems, rather than the two-level qubits, would confer any
computational advantage. Of course, although there may be some slight advantage in
using three-level quantum systems (qutrits) over two-level systems, any difference will
be essentially negligible from the theoretical point of view. At a less trivial level, the
‘quantum Turing machine’ model of computation, a quantum generalization of the
classical Turing machine model, has been shown to be equivalent to the model based
upon quantum circuits. We do not consider that model of computation in this book, but
the reader interested in learning more about quantum Turing machines may consult the
references given in the end of chapter ‘History and further reading’.

Despite the simplicity and attraction of the quantum circuit model, it is useful to keep
in mind possible criticisms, modifications, and extensions. For example, it is by no means
clear that the basic assumptions underlying the state space and starting conditions in the
quantum circuit model are justified. Everything is phrased in terms of finite dimensional
state spaces. Might there be anything to be gained by using systems whose state space is
infinite dimensional? Assuming that the starting state of the computer is a computational
basis state is also not necessary; we know that many systems in Nature ‘prefer’ to sit in
highly entangled states of many systems; might it be possible to exploit this preference
to obtain extra computational power? It might be that having access to certain states
allows particular computations to be done much more easily than if we are constrained
to start in the computational basis. Likewise, the ability to efficiently perform entangling
measurements in multi-qubit bases might be as useful as being able to perform just
entangling unitary operations. Indeed, it may be possible to harness such measurements
to perform tasks intractable within the quantum circuit model.

A detailed examination and attempted justification of the physics underlying the quan-
tum circuit model is outside the scope of the present discussion, and, indeed, outside the
scope of present knowledge! By raising these issues we wish to introduce the question
of the completeness of the quantum circuit model, and re-emphasize the fundamental
point that information is physical. In our attempts to formulate models for information
processing we should always attempt to go back to fundamental physical laws. For the
purposes of this book, we shall stay within the quantum circuit model of computation. It
offers a rich and powerful model of computation that exploits the properties of quantum
mechanics to perform amazing feats of information processing, without classical prece-

204 Quantum circuits

dent. Whether physically reasonable models of computation exist which go beyond the
quantum circuit model is a fascinating question which we leave open for you.

4.7 Simulation of quantum systems

Perhaps [...] we need a mathematical theory of quantum automata. [...] the
quantum state space has far greater capacity than the classical one: for a clas-
sical system with N states, its quantum version allowing superposition accom-
modates cN states. When we join two classical systems, their number of states
N1 and N, ave multiplied, and in the quantum case we get the exponential
growth ¢ [] These crude estimates show that the quantum behavior of
the system might be much morve complex than its classical stmulation.

— Yu Manin (1980)[Man80] a5 translated in [Man99]

The quantum-mechanical computation of one molecule of methane requires 10%
grid points. Assuming that at each point we have to perform only 10 elemen-
tary operations, and that the computation is performed at the extrvemely low
temperature T = 3 x 1073 K, we would still have to use all the energy produced

on Earth during the last century.
—R. P. Poplavskii (1975)[Pop75] a5 quoted by Manin

Can physics be simulated by a universal computer? [...] the physical world
s quantum mechanical, and therefore the proper problem is the simulation of
quantum physics [...] the full description of quantum mechanics for a large
system with R particles [...] has too many variables, it cannot be simulated
with a normal computer with a number of elements proportional to R [... but
it can be simulated with] quantum computer elements. [...] Can a quantum
system be probabilistically simulated by a classical (probabilistic, I'd assume)
universal computer? [...] If you take the computer to be the classical kind I’ve
described so far [..] the answer is certainly, No!

— Richard P. Feynman (1982)[Fey82]

Let us close out this chapter by providing an interesting and useful application of the
quantum circuit model. One of the most important practical applications of computation
is the simulation of physical systems. For example, in the engineering design of a new
building, finite element analysis and modeling is used to ensure safety while minimizing
cost. Cars are made lightweight, structurally sound, attractive, and inexpensive, by using
computer aided design. Modern aeronautical engineering depends heavily on computa-
tional fluid dynamics simulations for aircraft designs. Nuclear weapons are no longer
exploded (for the most part), but rather, tested by exhaustive computational modeling.
Examples abound, because of the tremendous practical applications of predictive simula-
tions. We begin by describing some instances of the simulation problem, then we present
a quantum algorithm for simulation and an illustrative example, concluding with some

perspective on this application.

4.7.1 Simulation in action
The heart of simulation is the solution of differential equations which capture the physical
laws governing the dynamical behavior of a system. Some examples include Newton’s

Simulation of quantum systems 205

law,
d dx
dz (m dt) ’ (4.88)
Poisson’s equation,
—V-(kVD)=0Q, (4.89)
the electromagnetic vector wave equation,
Lo ’E
V- -VE = - .90
€o Lo atz 9 (49)
and the diffusion equation,
- 1 oy
Vi = —— 91
b=—5 (+91)

just to name a very few. The goal is generally: given an initial state of the system,
what is the state at some other time and/or position? Solutions are usually obtained by
approximating the state with a digital representation, then discretizing the differential
equation in space and time such that an iterative application of a procedure carries the
state from the initial to the final conditions. Importantly, the error in this procedure is
bounded, and known not to grow faster than some small power of the number of iterations.
Furthermore, 7ot all dynamical systems can be simulated efficiently: generally, only those
systems which can be described efficiently can be simulated efficiently.

Simulation of quantum systems by classical computers is possible, but generally only
very inefficiently. The dynamical behavior of many simple quantum systems is governed
by Schrodinger’s equation,

Sd
zhah/)) = Hly) . (4.92)

We will find it convenient to absorb A into H, and use this convention for the rest of
this section. For a typical Hamiltonian of interest to physicists dealing with real particles
in space (rather than abstract systems such as qubits, which we have been dealing with!),

this reduces to
2

89 1 19
5D = |3 + V@) 460), (493

using a convention known as the position representation (z|1)) = (). This is an elliptical
equation very much like Equation (4.91). So just simulating Schrodinger’s equation is
not the especial difficulty faced in simulating quantum systems. What is the difficulty?

The key challenge in simulating quantum systems is the exponential number of
differential equations which must be solved. For one qubit evolving according to the
Schrédinger equation, a system of two differential equations must be solved; for two
qubits, four equations; and for n qubits, 2" equations. Sometimes, insightful approxima-
tions can be made which reduce the effective number of equations involved, thus making
classical simulation of the quantum system feasible. However, there are many physically
interesting quantum systems for which no such approximations are known.

Exercise 4.46: (Exponential complexity growth of quantum systems) Let p be
a density matrix describing the state of n qubits. Show that describing p requires
4™ — 1 independent real numbers.

206 Quantum circuits

The reader with a physics background may appreciate that there are many important
quantum systems for which classical simulation is intractable. These include the Hubbard
model, a model of interacting fermionic particles with the Hamiltonian

H=Y Vingne + Y. tCigCio, (4.94)

k=1 k,j neighbors,o

which is useful in the study of superconductivity and magnetism, the Ising model,
H=Y G i, (4.95)
k=1

and many others. Solutions to such models give many physical properties such as the
dielectric constant, conductivity, and magnetic susceptibility of materials. More sophis-
ticated models such as quantum electrodynamics (QED) and quantum chromodynamics
(QCD) can be used to compute constants such as the mass of the proton.

Quantum computers can efficiently simulate quantum systems for which there is no
known efficient classical simulation. Intuitively, this is possible for much the same reason
any quantum circuit can be constructed from a universal set of quantum gates. Moreover,
just as there exist unitary operations which cannot be efficiently approximated, it is
possible in principle to imagine quantum systems with Hamiltonians which cannot be
efficiently simulated on a quantum computer. Of course, we believe that such systems
aren’t actually realized in Nature, otherwise we’d be able to exploit them to do information
processing beyond the quantum circuit model.

4.7.2 The quantum simulation algorithm
Classical simulation begins with the realization that in solving a simple differential equa-
tion such as dy/dt = f(y), to first order, it is known that y(t + At) ~ y(t) + f(y)At.
Similarly, the quantum case is concerned with the solution of id|vy)) /dt = H|vy), which,
for a time-independent H, is just

() = e~ |1p(0)) . (4.96)

Since H is usually extremely difficult to exponentiate (it may be sparse, but it is also
exponentially large), a good beginning is the first order solution |¢)(t + At)) ~ (I —
iHA®)|1)(t)). This is tractable, because for many Hamiltonians H it is straightforward to
compose quantum gates to efficiently approximate I — i HAt. However, such first order
solutions are generally not very satisfactory.

Efficient approximation of the solution to Equation (4.96), to high order, is possible for
many classes of Hamiltonian. For example, in most physical systems, the Hamiltonian
can be written as a sum over many local interactions. Specifically, for a system of n
particles,

L
H=> H, (4.97)
k=1

where each H), acts on at most a constant ¢ number of systems, and L is a polynomial in
n. For example, the terms Hj, are often just two-body interactions such as X; X; and one-
body Hamiltonians such as X;. Both the Hubbard and Ising models have Hamiltonians
of this form. Such locality is quite physically reasonable, and originates in many systems

Simulation of quantum systems 207

from the fact that most interactions fall off with increasing distance or difference in energy.
There are sometimes additional global symmetry constraints such as particle statistics;
we shall come to those shortly. The important point is that although e~*t is difficult to
compute, e ~*¥? acts on a much smaller subsystem, and is straightforward to approximate
using quantum circuits. But because [H;, Hx] # 0 in general, e 1t £ T], e~*!| How,
then, can e~ *** be useful in constructing e~ *7t?

Exercise 4.47: For H = Y.} Hy, prove that e *Ht = g=iHitg—illat o—iHLt for o] ¢
if [H;, Hy] = 0, for all j, .

Exercise 4.48: Show that the restriction of Hj to involve at most ¢ particles implies
that in the sum (4.97), L is upper bounded by a polynomial in n.

The heart of quantum simulation algorithms is the following asymptotic approximation
theorem:

Theorem 4.3: (Trotter formula) Let A and B be Hermitian operators. Then for any
real ¢,
lim (eiAt/nez'Bt/n)n — ei(A+B)t) (498)
n—oee
Note that (4.98) is true even if A and B do not commute. Even more interestingly,
perhaps, it can be generalized to hold for A and B which are generators of certain kinds
of semigroups, which correspond to general quantum operations; we shall describe such
generators (the ‘Lindblad form’) in Section 8.4.1 of Chapter 8. For now, we only consider
the case of A and B being Hermitian matrices.

Proof
By definition,
. 1 1
ezAt/n =T+ —iAt+0O <_2) , (4‘99)
n n
and thus
. . 1
ezAt/nelBt/n =7+ —'L(A + B)t + 0 (%) . (4100)
n n

Taking products of these gives us

iAt/n iBt/n\n — & n L . k <l>
(eAt/n giBt/ny I+;<k>nk [z(A+B)t} +0(-). (4.101)

n 1 1
i — =1+ - | this i
and since (k) = (1 O <)) /k!, this gives

o . . (A + B)F 1 1 .
1 iAt/n iBt/n\n — 1 (,L((1 + (_)) + _) — Li(A+B)t)
ngrgo(e e) Jim E — O - (0] - e
(4.102)

k=0
O

Modifications of the Trotter formula provide the methods by which higher order

208 Quantum circuits

approximations can be derived for performing quantum simulations. For example, using
similar reasoning to the proof above, it can be shown that

ez’(A+B)At — ez’AAteiBAt + O(Atz) . (4_103)

Similarly,
ei(A+B)At — ez’AAt/zez‘BAteiAAt/z + O(Ats)) (4_104)

An overview of the quantum simulation algorithm is given below, and an explicit exam-
ple of simulating the one-dimensional non-relativistic Schrédinger equation is shown in

Box 4.2.

Algorithm: Quantum simulation

Inputs: (1) A Hamiltonian H =), Hj acting on an N-dimensional system,
where each Hy acts on a small subsystem of size independent of N, (2) an initial
state |1)p), of the system at £ = 0, (3) a positive, non-zero accuracy 9, and (3) a
time ¢; at which the evolved state is desired.

Outputs: A state |1)(t;)) such that |(ih(t;)|e 274 [3hy)|> > 1 — 6.
Runtime: O(poly(1/4)) operations.

Procedure: Choose a representation such that the state |7,5) of n = poly(log V)
qubits approximates the system and the operators e~*7*A* have efficient
quantum circuit approximations. Select an approximation method (see for
example Equations (4.103)—(4.105)) and At such that the expected error is
acceptable (and jAt = ¢ for an integer j), construct the corresponding quantum
circuit Uy, for the iterative step, and do:

1 o) — |¢ho) 5 =0 initialize state
2 - |7Zj+1> =U At|1z)j> iterative update
3. —j=7+1; goto2untl jAt > t; loop

4 — |9(ts)) = [ds) final result

Exercise 4.49: (Baker—Campbell-Hausdorf formula) Prove that
p(A+BIAL — eAAteBAtef%[A,B]Atz + O(At3), (4.105)
and also prove Equations (4.103) and (4.104).
Exercise 4.50: Let H =) f Hy, and define

UAt — |:e—1,H1Ate—zH2At o 6_ZHLAtj| [e—zHLAte—'LHL_lAt o e—'LHlAt] . (4106)

(a) Prove that Uy, = e 2HAL + O(AS).
(b) Use the results in Box 4.1 to prove that for a positive integer m,

EUT, e ™HAY < maAs?, (4.107)

for some constant o.

Simulation of quantum systems 209

Box 4.2: Quantum simulation of Schrodinger’s equation

The methods and limitations of quantum simulation may be illustrated by the fol-
lowing example, drawn from the conventional models studied by physicists, rather
than the abstract qubit model. Consider a single particle living on a line, in a one-
dimensional potential V (), governed by the Hamiltonian

2
H=2_ +v@), (4.108)
2m
where p is the momentum operator and z is the position operator. The eigenvalues
of x are continuous, and the system state |1)) resides in an infinite dimensional
Hilbert space; in the x basis, it can be written as

o0

W= [la)al) do. (4.109)

—0oQ
In practice, only some finite region is of interest, which we may take to be the
range —d < z < d. Furthermore, it is possible to choose a differential step size Ax
sufficiently small compared to the shortest wavelength in the system such that

d/Az

W)= > aklkAx) (4.110)

k=—d/Ax

provides a good physical approximation of |t)). This state can be represented using
n = [log(2d/Ax + 1)| qubits; we simply replace the basis |kAz) (an eigenstate of
the = operator) with |k), a computational basis state of n qubits. Note that only
n qubits are required for this simulation, whereas classically 2" complex numbers
would have to be kept track of, thus leading to an exponential resource saving when
performing the simulation on a quantum computer.

Computation of |{(t)) = e~ **|¢)(0)) must utilize one of the approximations of
Equations (4.103)—(4.105) because in general H; = V(zx) does not commute with
Hy = p?/2m. Thus, we must be able to compute e~*11A and ¢~ *10At Because |1))
is expressed in the eigenbasis of Hj, e "4t is a diagonal transformation of the
form

k) — e~ VkRADAL Ly (4.111)

It is straightforward to compute this, since we can compute V(kAzx)At. (See
also Problem 4.1.) The second term is also simple, because z and p are conju-
gate variables related by a quantum Fourier transform UpprzUplpr = p, and thus
e~ AL = Uppre i@ M/2mUT - to compute e~ AL do

‘ k) — Uppre @ 2™ Ul 1 |k) . (4.112)

‘ The construction of Ugpr is discussed in Chapter 5.

4.7.3 An illustrative example
The procedure we have described for quantum simulations has concentrated on simulat-
ing Hamiltonians which are sums of local interations. However, this is not a fundamental

210 Quantum circuits

requirement! As the following example illustrates, efficient quantum simulations are pos-
sible even for Hamiltonians which act non-trivially on all or nearly all parts of a large
system.

Suppose we have the Hamiltonian

H=2,02,8 - Q Z,, (4.113)

which acts on an n qubit system. Despite this being an interaction involving all of the
system, indeed, it can be simulated efficiently. What we desire is a simple quantum circuit
which implements e At for arbitrary values of At. A circuit doing precisely this, for
n = 3, is shown in Figure 4.19. The main insight is that although the Hamiltonian
involves all the qubits in the system, it does so in a classical manner: the phase shift
applied to the system is e *A* if the parity of the n qubits in the computational basis is
even,; otherwise, the phase shift should be €***. Thus, simple simulation of H is possible
by first classically computing the parity (storing the result in an ancilla qubit), then
applying the appropriate phase shift conditioned on the parity, then uncomputing the
parity (to erase the ancilla). This strategy clearly works not only for n = 3, but also for
arbitrary values of n.

L @—
L 2 L 2
0) —D-B-b— A2 —B-D-D— |0)

Figure 4.19. Quantum circuit for simulating the Hamiltonian H = Z; ® Z) ® Z3 for time At.

Furthermore, extending the same procedure allows us to simulate more complicated
extended Hamiltonians. Specifically, we can efficiently simulate any Hamiltonian of the
form

H=)ok, (4.114)
k=1

where Uf(k) is a Pauli matrix (or the identity) acting on the kth qubit, with c(k) €
{0, 1,2, 3} specifying one of {I, X,Y, Z}. The qubits upon which the identity operation
is performed can be disregarded, and X or Y terms can be transformed by single qubit
gates to Z operations. This leaves us with a Hamiltonian of the form of (4.113), which
is simulated as described above.

Exercise 4.51: Construct a quantum circuit to simulate the Hamiltonian
H=X0Y,® Z;, (4.115)
performing the unitary transform e A for any At.

Using this procedure allows us to simulate a wide class of Hamiltonians containing
terms which are not local. In particular, it is possible to simulate a Hamiltonian of the form

Simulation of quantum systems 211

H= Z£=1 Hj, where the only restriction is that the individual Hj have a tensor product
structure, and that L is polynomial in the total number of particles n. More generally, all
that is required is that there be an efficient circuit to simulate each Hj, separately. As an
example, the Hamiltonian H = _;_; Xj + Z®™ can easily be simulated using the above
techniques. Such Hamiltonians typically do not arise in Nature. However, they provide
a new and possibly valuable vista on the world of quantum algorithms.

4.7.4 Perspectives on quantum simulation

The quantum simulation algorithm is very similar to classical methods, but also differs
in a fundamental way. Each iteration of the quantum algorithm must completely replace
the old state with the new one; there is no way to obtain (non-trivial) information from
an intermediate step without significantly changing the algorithm, because the state is a
quantum one. Furthermore, the final measurement must be chosen cleverly to provide the
desired result, because it disturbs the quantum state. Of course, the quantum simulation
can be repeated to obtain statistics, but it is desirable to repeat the algorithm only at
most a polynomial number of times. It may be that even though the simulation can be
performed efficiently, there is no way to efficiently perform a desired measurement.

Also, there are Hamiltonians which simply can’t be simulated efficiently. In Sec-
tion 4.5.4, we saw that there exist unitary transformations which quantum computers
cannot efficiently approximate. As a corollary, not all Hamiltonian evolutions can be ef-
ficiently simulated on a quantum computer, for if this were possible, then all unitary
transformations could be efficiently approximated!

Another difficult problem — one which is very interesting — is the simulation of equi-
libration processes. A system with Hamiltonian H in contact with an environment at
temperature 7" will generally come to thermal equilibrium in a state known as the Gibbs
state, Ptherm = e~ H/ksT /Z, where kg is Boltzmann’s constant, and Z = tr e H/ksT ig
the usual partition function normalization, which ensures that tr(p) = 1. The process
by which this equilibration occurs is not very well understood, although certain require-
ments are known: the environment must be large, it must have non-zero population in
states with energies matching the eigenstates of H, and its coupling with the system
should be weak. Obtaining Pgern for arbitrary H and T is generally an exponentially
difficult problem for a classical computer. Might a quantum computer be able to solve
this efficiently? We do not yet know.

On the other hand, as we discussed above many interesting quantum problems can
indeed be simulated efficiently with a quantum computer, even when they have extra
constraints beyond the simple algorithms presented here. A particular class of these
involve global symmetries originating from particle statistics. In the everyday world, we
are used to being able to identify different particles; tennis balls can be followed around a
tennis court, keeping track of which is which. This ability to keep track of which object is
which is a general feature of classical objects — by continuously measuring the position of a
classical particle it can be tracked at all times, and thus uniquely distinguished from other
particles. However, this breaks down in quantum mechanics, which prevents us from
following the motion of individual particles exactly. If the two particles are inherently
different, say a proton and an electron, then we can distinguish them by measuring the
sign of the charge to tell which particle is which. But in the case of identical particles,
like two electrons, it is found that they are truly indistinguishable.

Indistinguishability of particles places a constraint on the state vector of a system which

212 Quantum circuits

manifests itself in two ways. Experimentally, particles in Nature are found to come in
two distinct flavors, known as bosons and fermions. The state vector of a system of
bosons remains unchanged under permutation of any two constituents, reflecting their
fundamental indistinguishability. Systems of fermions, in contrast, experience a sign
change in their state vector under interchange of any two constituents. Both kinds of
systems can be simulated efficiently on a quantum computer. The detailed description
of how this is done is outside the scope of this book; suffice it to say the procedure is
fairly straightforward. Given an initial state of the wrong symmetry, it can be properly
symmetrized before the simulation begins. And the operators used in the simulation can
be constructed to respect the desired symmetry, even allowing for the effects of higher
order error terms. The reader who is interested in pursuing this and other topics further
will find pointers to the literature in ‘History and further reading,’ at the end of the
chapter.

Problem 4.1: (Computable phase shifts) Let m and n be positive integers.
Suppose f : {0,...,2™ —1} — {0,...,2" — 1} is a classical function from m to
n bits which may be computed reversibly using 7" Toffoli gates, as described in
Section 3.2.5. That is, the function (z,y) — (z,y @ f(x)) may be implemented
using 1" Toffoli gates. Give a quantum circuit using 27" + n (or fewer) one, two,
and three qubit gates to implement the unitary operation defined by

|z) — exp (—22+nf(x)> |x) . (4.116)

Problem 4.2: Find a depth O(log n) construction for the C™(X) gate. (Comment:
The depth of a circuit is the number of distinct timesteps at which gates are
applied; the point of this problem is that it is possible to parallelize the C™(X)
construction by applying many gates in parallel during the same timestep.)

Problem 4.3: (Alternate universality construction) Suppose U is a unitary
matrix on n qubits. Define H = 7 In(U). Show that

(1) H is Hermitian, with eigenvalues in the range 0 to 27.
(2) H can be written

H =Y hyg, (4.117)
g

where h, are real numbers and the sum is over all n-fold tensor products g
of the Pauli matrices {/, X,Y, Z}.

(3) Let A = 1/k, for some positive integer k. Explain how the unitary operation
exp(—ihygA) may be implemented using O(n) one and two qubit operations.

(4) Show that
exp(—iHA) = [] exp(—ihygA) + O(4"A?), (4.118)
g

where the product is taken with respect to any fixed ordering of the n-fold
tensor products of Pauli matrices, g.

Chapter problems 213

(5) Show that

k
U= [H exp(—ihggA)} + O@"A). (4.119)
g

(6) Explain how to approximate U to within a distance € > 0 using O(n16™/¢)
one and two qubit unitary operations.

Problem 4.4: (Minimal Toffoli construction) (Research)

(1) What is the smallest number of two qubit gates that can be used to
implement the Toffoli gate?

(2) What is the smallest number of one qubit gates and CNOT gates that can be
used to implement the Toffoli gate?

(3) What is the smallest number of one qubit gates and controlled-Z gates that
can be used to implement the Toffoli gate?

Problem 4.5: (Research) Construct a family of Hamiltonians, {H,,}, on n qubits,
such that simulating H,, requires a number of operations super-polynomial in 7.
(Comment: This problem seems to be quite difficult.)

Problem 4.6: (Universality with prior entanglement) Controlled-NOT gates and
single qubit gates form a universal set of quantum logic gates. Show that an
alternative universal set of resources is comprised of single qubit unitaries, the
ability to perform measurements of pairs of qubits in the Bell basis, and the
ability to prepare arbitrary four qubit entangled states.

Summary of Chapter 4: Quantum circuits

e Universality: Any unitary operation on n qubits may be implemented exactly by
composing single qubit and controlled-NOT gates.

e Universality with a discrete set: The Hadamard gate, phase gate, controlled-
NOT gate, and 7/8 gate are universal for quantum computation, in the sense that
an arbitrary unitary operation on m qubits can be approximated to an arbitrary
accuracy € > () using a circuit composed of only these gates. Replacing the /8
gate in this list with the Toffoli gate also gives a universal family.

e Not all unitary operations can be efficiently implemented: There are uni-
tary operations on n qubits which require (2" log(1/¢)/ log(n)) gates to approx-
imate to within a distance € using any finite set of gates.

e Simulation: For a Hamiltonian H =), Hy which is a sum of polynomially
many terms Hj, such that efficient quantum circuits for H can be constructed, a
quantum computer can efficiently simulate the evolution e ~**

|9(2)) = e **[1h(0)), given |15(0)).

and approximate

214 Quantum circuits

History and further reading

The gate constructions in this chapter are drawn from a wide variety of sources. The
paper by Barenco, Bennett, Cleve, DiVincenzo, Margolus, Shor, Sleator, Smolin, and
WeinfurterBBC™95] was the source of many of the circuit constructions in this chapter,
and for the universality proof for single qubit and controlled-NOT gates. Another useful
source of insights about quantum circuits is the paper by Beckman, Chari, Devabhak-
tuni, and PreskilllBCDP9%] A gentle and accessible introduction has been provided by
DiVincenzolPiV98], The fact that measurements commute with control qubit terminals
was pointed out by Griffiths and NiulGN%],

The universality proof for two-level unitaries is due to Reck, Zeilinger, Bernstein, and
Bertani[RZBB%4], The universality of the controlled-NOT and single qubit gates was proved
by DiVincenzolPiV9b], The universal gate G in Exercise 4.44 is sometimes known as the
Deutsch gatelPeud9]. Deutsch, Barenco, and Ekert!PBE%] and Lloyd!110951 independently
proved that almost any two qubit quantum logic gate is universal. That errors caused by
sequences of gates is at most the sum of the errors of the individual gates was proven by
Bernstein and Vazirani [BV97]. The specific universal set of gates we have focused on — the
Hadamard, phase, controlled-NOT and 7/8 gates, was proved universal in Boykin, Mor,
Pulver, Roychowdhury, and Vatan[BMP*99] which also contains a proof that defined by
cos(f/2) = cos’(r/8) is an irrational multiple of 7. The bound in Section 4.5.4 is based
on a paper by KnilllKni%] which does a much more detailed investigation of the hardness
of approximating arbitrary unitary operations using quantum circuits. In particular, Knill
obtains tighter and more general bounds than we do, and his analysis applies also to cases
where the universal set is a continuum of gates, not just a finite set, as we have considered.

The quantum circuit model of computation is due to Deutsch[P¢u89] and was further
developed by YaolY20%3] The latter paper showed that the quantum circuit model of
computation is equivalent to the quantum Turing machine model. Quantum Turing
machines were introduced in 1980 by BeniofflPen80] further developed by Deutsch/Peu8]
and YaolY2093] and their modern definition given by Bernstein and VaziranilBV97], The
latter two papers also take first steps towards setting up a theory of quantum computational
complexity, analogous to classical computational complexity theory. In particular, the
inclusion BQP C PSPACE and some slightly stronger results was proved by Bernstein
and Vazirani. Knill and LaflammelKL99] develop some fascinating connections between
quantum and classical computational complexity. Other interesting work on quantum
computational complexity includes the paper by Adleman, Demarrais and Huang/APH97],
and the paper by Watrous[W299]. The latter paper gives intriguing evidence to suggest
that quantum computers are more powerful than classical computers in the setting of
‘interactive proof systems’.

That quantum computers might simulate quantum systems more efficiently than clas-
sical computers was intimated by Manin[Man80] in 1980, and independently developed in
more detail by Feynman!¥ey82] in 1982. Much more detailed investigations were subse-
quently carried out by Abrams and LloydAL97] Boghosian and Taylor!BT%7] Sornborger
and Stewart!SS99] Wiesner[Wie96] and ZalkalZ2198], The Trotter formula is attributed to
Trotter Tro59] and was also proven by ChernoffiChe68] although the simpler form for
unitary operators is much older, and goes back to the time of Sophus Lie. The third
order version of the Baker—Campbell-Hausdorff formula, Equation (4.104), was given by
Sornborger and Stewart[SS99]. Abrams and Lloyd/AL97] give a procedure for simulating

History and further veading 215

many-body Fermi systems on a quantum computer. Terhal and DiVincenzo address the
problem of simulating the equilibration of quantum systems to the Gibbs statelTP%8],
The method used to simulate the Schrodinger equation in Box 4.2 is due to ZalkalZa198]
and Wiesner[Wie%],

Exercise 4.25 is due to Vandersypen, and is related to work by Chau and Wilczek[CW93],
Exercise 4.45 is due to Boykin, Mor, Pulver, Roychowdhury, and VatanBMP*991. Prob-
lem 4.2 is due to Gottesman. Problem 4.6 is due to Gottesman and ChuanglG¢9],

