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QUANTUM COMPUTATION

PREREQUISITE MATERIAL

Richard Jozsa rj310@cam.ac.uk

A basic knowledge of linear algebra, Dirac bra-ket notation and the postulates of
quantum mechanics will be assumed as prerequisites for this course. The required
material (and a bit more!) is contained in the sections below. Some of this material will be
further explained in lectures but you should have at least a prior acquaintance with it e.g. by
reading through these notes, even if you don’t initially understand everything.

These notes are meant to be suitable for assimilating the material if unfamiliar. For further
explanations see:
M. Nielsen and I. Chuang ”Quantum computation and information”. CUP.
John Preskill’s notes for Caltech course on quantum computation available at
http://www.theory.caltech.edu/ preskill/ph219/index.html]lecture

At the end we include some exercises, which in addition to illustrating the formalism, are of
interest in themselves (and recommended even if you are already familiar with the prerequisite
material).

1 Linear algebra, Dirac notation

Bra and ket vectors
Let V be a (finite dimensional) complex vector space of dimension m with an inner product.
Vectors in V will be written as |v〉 and called ket vectors or just kets. In this course we’ll often
work with a 2-dimensional space V2 with a chosen orthonormal basis denoted {|0〉 , |1〉}. (All
constructions and formulae can be easily generalised to arbitrary finite dimensional spaces).
Ket vectors |v〉 = a |0〉+ b |1〉are always written in components as column vectors

|v〉 =

(
a
b

)
.

The conjugate transpose |v〉† (denoted by a dagger) is called a bra vector and is written using
a mirror image bracket

〈v| = |v〉† = a∗ 〈0|+ b∗ 〈1| = (a∗ b∗).

Thus in components bra vectors are always written as row vectors. If |w〉 = c |0〉 + d |1〉 is
another ket then the inner product of |v〉 and |w〉 is written by juxtaposing brackets

〈v|w〉 = |v〉† |w〉 = (a∗ b∗)

(
c
d

)
= a∗c+ b∗d.

(Indeed the whole Dirac notation formalism is motivated by the bracket notation (v, w) for inner
products commonly used in mathematics.) Orthonormality of the basis {|0〉 , |1〉} is equivalent
to the condition 〈i|j〉 = δij (the Kronecker delta). In more abstract terms, bra vectors are a
notation for elements of the dual space V ∗ viz. 〈v| is the linear functional whose value on any
ket |w〉 is the inner product 〈v|w〉.

Tensor products of vectors
If V andW are vector spaces of dimensionsm and n with bases {|e1〉 , . . . , |em〉} and {|f1〉 , . . . , |fn〉}
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respectively, then the tensor product space V ⊗W has dimension mn and can be regarded as
consisting of all formal linear combinations of the symbols |ei〉 ⊗ |fj〉 for i = 1, . . . ,m and
j = 1, . . . , n. There is a natural bilinear embedding V ×W → V ⊗W defined as follows. If
|α〉 =

∑
i ai |ei〉 and |β〉 =

∑
j bj |fj〉 are general vectors in V and W respectively then

(|α〉 , |β〉) 7→ |α〉 ⊗ |β〉 =
∑
ij

aibj |ei〉 ⊗ |fj〉

obtained by formally “multiplying out” the brackets in (
∑

i ai |ei〉)(
∑

j bj |fj〉). Any such vector
|α〉 ⊗ |β〉 is called a product vector. The mapping is not surjective – vectors in V ⊗W that are
not product vectors are called entangled vectors. We often write the product vector |α〉 ⊗ |β〉
simply as |α〉 |β〉 (omitting the ⊗).

The inner products on V and W give a natural inner product on V ⊗W defined “slot-wise”
(the slots being the component spaces). Thus for product vectors we have the inner product
of |α1〉 |β1〉 with |α2〉 |β2〉 being 〈α1|α2〉〈β1|β2〉. This extends to general (entangled) vectors
by linearity since general vectors are always linear combinations of product vectors (e.g. the
product basis vectors |ei〉 |fj〉).

Note that we generally write the bra vector of |α〉 |β〉 ∈ V ⊗W as 〈β| 〈α| with order of spaces
reversed. If we need to make the associated spaces explicit they can be denoted by subscripts
e.g. |α〉V |β〉W and W〈β| V〈α|.

We will be mostly concerned with tensor products of the two-dimensional space V2 with itself
(multiple times). For the k-fold tensor power we write ⊗kV2 = V2⊗ . . .⊗V2 which is a space of
dimension 2k with basis |i1〉⊗ . . .⊗|ik〉 (i1, . . . ik = 0, 1) labelled by the 2k k-bit strings i1 . . . ik.
We often write |i1〉 ⊗ . . .⊗ |ik〉 simply as |i1 . . . ik〉.

Example. For k = 2 if |v〉 = a |0〉+ b |1〉 and |w〉 = c |0〉+ d |1〉 , we have |v〉 |w〉 ∈ V2⊗ V2 and
in terms of components we have

|v〉 ⊗ |w〉 =

(
a
b

)
⊗
(
c
d

)
=

 a

(
c
d

)
b

(
c
d

)
 =


ac
ad
bc
bd

 .

Furthermore an arbitrary vector a |00〉+b |01〉+c |10〉+d |11〉 ∈ V2⊗V2 is entangled iff ad−bc 6= 0
(exercise). �

Dirac notation for linear maps
With |v〉 and |w〉 in V2 as above, standard matrix multiplication gives

M = |v〉 〈w| =
(
a
b

)
(c∗ d∗) =

(
ac∗ ad∗

bc∗ bd∗

)
which is a linear map on V (acting by matrix multiplication on column vectors). In fact for
any |x〉 ∈ V2 we have M |x〉 = |v〉 〈w|x〉, a vector in the direction of |v〉. In particular if |v〉
is normalised (i.e. 〈v|v〉 = |a|2 + |b|2 = 1) then Πv = |v〉〈v| is the operator of projection onto
|v〉, satisfying ΠvΠv = Πv. The latter can be seen very neatly in Dirac notation: ΠvΠv =
(|v〉〈v|)(|v〉〈v|) = |v〉 〈v|v〉 〈v| = |v〉〈v| = Πv as 〈v|v〉 = 1.

Note that

|0〉〈0| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)
|0〉 〈1| =

(
0 1
0 0

)
etc.

so if A : V2 → V2 is any linear map with matrix

A =

(
a b
c d

)
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then we can write
A = a |0〉〈0|+ b |0〉〈1|+ c |1〉〈0|+ d |1〉〈1| .

Note that if |x〉 = A |v〉 then 〈x| = (A |v〉)† = |v〉†A† = 〈v|A†.

Tensor products of maps
If

B =

(
p q
r s

)
is a second linear map on V2 then the tensor product of maps A ⊗ B : V2 ⊗ V2 → V2 ⊗ V2 is
defined by its action on the basis |i〉 |j〉 → A |i〉B |j〉 for i and j being 0,1, or more generally on
product vectors by (A⊗B)(|v〉 |w〉) = A |v〉⊗B |w〉. It has a simple 4×4 matrix of components,
with block form

A⊗B =

(
aB bB
cB dB

)
=


ap aq bp bq
ar as br bs
cp cq dp dq
cr cs dr ds

 .

In particular we have A⊗I and I⊗A being the action of A on the first (resp. second) component
space of V2 ⊗ V2.

Example: for |ψ〉 = |00〉+ |11〉 and A as above, we have A⊗ I |ψ〉 = (A |0〉) |0〉+ (A |1〉) |1〉 =
(a |0〉+ c |1〉) |0〉+ (b |0〉+ d |1〉) |1〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉. �

Partial inner products for vectors in V ⊗W
It is useful to introduce the following “partial” operations on component spaces in tensor prod-
ucts. Any |v〉 ∈ V defines a linear map V ⊗W →W called “partial inner product with |v〉”. It
is defined on the basis of V ⊗W by the formula |ei〉 |fj〉 → 〈v|ei〉 |fj〉. Similarly any |w〉 ∈ W
defines a map V ⊗W → V .

Example. For |v〉 ∈ V and |ξ〉 ∈ V ⊗ V we can form the partial inner product on the first
or second space. To make the position explicit we sometimes introduce subscripts to label the
slots, writing V ⊗ V as V(1)⊗ V(2), and writing 1〈v|ξ〉12 ∈ V(2) and 2〈v|ξ〉12 ∈ V(1) for the partial
inner products. Thus for example, if |ξ〉 = a |00〉+b |01〉+c |10〉+d |11〉 then the orthonormality
relations 〈i|j〉 = δij give 1〈0|ξ〉12 = a |0〉 + b |1〉 and 2〈0|ξ〉12 = a |0〉 + c |1〉 i.e. we just pick out
the terms of |ξ〉 that contain 0 in the first, respectively second, slot.

Partial traces of linear maps on V ⊗W (optional)
If M : V ⊗W → V ⊗W is any linear operation on a tensor product space, then the partial
traces over V or W are respectively the linear maps on W and V denoted Tr VM : W → W
and TrWM : V → V , defined by

Tr VM =

m∑
i=1

1〈ei|M |ei〉1 TrWM =

n∑
j=1

2〈fj |M |fj〉2

i.e. we take partial inner products with an orthonormal basis and sum over the basis elements,
to “trace out” that space. This construction is independent (exercise) of choice of orthonormal
basis in V or W . Thus we can express the full trace as a sequence of partial traces TrM =
TrW (Tr VM).

Fact. (exercise) If M = A ⊗ B on V2 ⊗ V2 then Tr 1M = (TrA)B and Tr 2M = A (TrB).
For any M on V2 ⊗ V2 with block form (and written with respect to the standard basis
{|00〉 , |01〉 , |10〉 , |11〉})

M =

(
P Q
R S

)
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(with P,Q,R, S being 2× 2 sized submatrices) we have

Tr 1M = P + S Tr 2M =

(
TrP TrQ
TrR TrS

)
and similarly for general M on any V ⊗W with corresponding block form (m ×m blocks of
n× n sized sub-matrices, where m and n are the dimensions of V and W respectively.)

2 Principles of quantum mechanics (QM1) – (QM4)

Our description of quantum mechanics below may at first sight look a little different from stan-
dard textbook presentations but in fact it’s equivalent. Here we focus on finite-dimensional
quantum mechanics (multi-qubit systems, unitary matrices representing finite time evolutions
etc.) whereas physics textbooks usually begin with the infinite dimensional case (wavefunc-
tions, Schrödinger’s wave equation giving infinitesimal time evolution via a Hamiltonian etc.)
and we also emphasise ab initio the quantum measurement formalism which will be of crucial
significance for us.

(QM1) (physical states): the states of any (isolated) physical system are represented by unit
vectors in a complex vector space with an inner product (but see also the remark about global
and relative phases at the end of this section). Two states are physically distinguishable iff the
corresponding vectors are orthogonal. �

We emphasise here that in classical physics, any two different states of a system are in principle
distinguishable, but in quantum theory this is no longer the case. This important novel feature
will be quantified in (QM4) (quantum measurements) below.

The simplest non-trivial quantum system has states lying in a 2 dimensional vector space, thus
allowing only two mutually distinguishable states. Choosing a pair of orthonormal vectors and
labelling them |0〉 and |1〉, the general state can be written

|ψ〉 = a |0〉+ b |1〉 |a|2 + |b|2 = 1.

We say that |ψ〉 is a superposition of states |0〉 and |1〉 with amplitudes a and b.

Qubits: any quantum system, with a 2 dimensional state space and with a chosen orthonormal
basis {|0〉 , |1〉} is called a qubit. The basis states |0〉 , |1〉 are called computational basis states
or standard basis states. There are many real physical systems that can embody the structure
of a qubit, for example the spin of an electron, the polarisation of a photon, superpositions of
two selected energy levels in an atom etc.

(QM2) (composite systems): if system S1 had state space V and system S2 has state space
W then the joint system obtained by taking S1 and S2 together, has states given by arbitrary
unit vectors in the tensor product space V ⊗W . �

Basic example: (n qubits) thus a system comprising n qubits has a state space of dimension
2n An n-qubit state |ψ〉 is a called a product state if it is the product of n single-qubit states
|ψ〉 = |v1〉 |v2〉 . . . |vn〉 and |ψ〉 is called entangled if it is not a product state.

We note the significant fact that as the number of qubits grows linearly, the full state descrip-
tion (given as the full list of amplitudes) grows exponentially in its complexity. However the
description of any product state grows only linearly with n (each successive |vi〉 is described by
two further amplitudes) so this exponential complexity of state description is intimately related
to the phenomenon of entanglement that arises for tensor products of spaces. With this in
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mind, it is especially interesting to contrast (QM2) with its classical counterpart – for classical
physics, the state space of a composite system is the cartesian product of the state spaces of
the constituent parts. Thus if classical system S requires K parameters for its state description
then a composite of n such systems will require only nK parameters i.e. a linear growth of
description, in contrast to the exponential growth for quantum systems. �

(QM3) (physical evolution of quantum systems): any physical (finite time) evolution of
an (isolated) quantum system is represented by a unitary operation on the corresponding vector
space of states. �

Recall that a linear operation U on any vector space is unitary if its matrix has U−1 = U †

(where dagger is conjugate transpose) or equivalently, if the rows (or columns) of the matrix U
form an orthonormal basis of vectors.

(QM4) (quantum measurements, the Born rule). In classical physics the state of any
given physical system can always in principle be fully determined by suitable “measurements”
on a single instance of the system, while leaving the original state intact. In quantum theory
the corresponding situation is bizarrely different – quantum measurements generally have only
probabilistic outcomes, they are “invasive”, generally unavoidably destroying the input state
and they reveal only a rather small amount of information about the (now irrevocably lost)
input state identity. Furthermore the (probabilistic) change of state in a quantum mesaure-
ment is (unlike normal time evolution) not a unitary process. Here we outline the associated
mathematical formalism, which is at least, easy to apply.

The basic Born rule: suppose we are given a (single physical instance of a) quantum state
for a system with state space V of dimension n. Let B = {|e1〉 , . . . , |en〉} be any orthonormal
basis of V and write |ψ〉 =

∑
ai |ei〉. Then we can make a quantum measurement of |ψ〉 relative

to the basis B. (In textbooks this is often called a (complete) von Neumann measurement).
The possible outcomes are j = 1, . . . , n corresponding to the basis states |ej〉. The probability
of obtaining outcome j is

pr(j) = |〈ej |ψ〉|2 = |aj |2.

If outcome j is seen then after the measurement the state is no longer |ψ〉 but has been “col-
lapsed” to |ψafter〉 = |ej〉 i.e. the basis state corresponding to the seen outcome. Stated
alternatively: the probability is the squared length of the projection of |ψ〉 onto the basis state,
and the post-measurement state is that projected vector, renormalised to have length 1.
Remark. In textbooks we often read of measurement of a quantum observable which is just a
slight variation of the above. A quantum observable is defined to be a Hermitian operator A
on V . Recall that a Hermitian matrix always has real eigenvalues λi (for simplicity taken to be
non-degenerate) and there is an orthonormal basis of associated eigenvectors, denoted |λi〉 i.e.
the observable encodes a basis, and the measurement of the observable is just a measurement
in our sense above relative to this basis (with probabilities and post-measurement states as
above), but with outcomes labelled by the eigenvalues λj rather than the labels j themselves.
�
The extended Born rule. In this course we will often consider measurement of only some
part of a composite system, and the associated formalism for probabilities, outcomes and post-
measurement states is called the extended Born rule. Suppose |ψ〉 is a quantum state of a
composite system S1S2 with state space V ⊗W . Let B = {|e1〉 , . . . , |en〉} be an orthonormal
basis of V . Note that |ψ〉 can be expanded uniquely as |ψ〉 =

∑
i |ei〉 |ξi〉 with |ξi〉 being vectors

in W (not generally normalised nor orthogonal). Indeed orthonormality of the basis gives the
|ξk〉’s as the partial inner products |ξk〉 = 〈ek|ψ〉. Alternatively if {|f1〉 , . . . , |fm〉} is a basis of W
then writing |ψ〉 =

∑
ij aij |ei〉 |fj〉 in the product basis of V ⊗W , we see that |ξk〉 =

∑
j akj |fj〉

i.e. we just pick out all terms of |ψ〉 that involve |ek〉 in the V -slot.
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Now we can make a measurement of |ψ〉 ∈ V ⊗W relative to the basis B of V . The extended
Born rule asserts the following:
(a) the probability of outcome k = 1, . . . , n is pr(k) = 〈ξk|ξk〉 i.e. the squared length of the
partial inner product 〈ek|ψ〉;
(b) if the outcome k is seen then the post-measurement state is the product state

|ψafter〉 = |ek〉 |ξk〉 /
√

pr(k)

i.e. the V -slot is “collapsed” to the seen outcome |ek〉 and the W -slot retains only the associated
vector |ξk〉 but renormalised by

√
pr(k) to have unit length.

Note that the basic Born rule is just a special case of (a) and (b) with W having dimension 1
and |ξk〉 = 〈ek|ψ〉 is just the complex number ak (viewed as a 1-dimensional vector).

Fixed choice of basis: note that a measurement relative to any general basis C can be
performed by a measurement relative to any a priori fixed basis B together with some unitary
operations; indeed any two orthonormal bases B = {|e1〉 , . . . , |en〉} and C = {|e′1〉 , . . . , |e′n〉} are
related by a unitary transformation U as |e′i〉 = U |ei〉. Thus to perform a measurement on |ψ〉
relative to C we first apply U−1 to |ψ〉, then perform a measurement relative to B, then finally
apply U to the resulting post-measurement state.
Standard measurement on multi-qubit systems. Recall that any k-qubit system comes
equipped with a standard or computational basis B of orthonormal states labelled by k-bit
strings. In this course our measurements will often be restricted to being only relative to this
standard basis for some subset of k qubits of an n-qubit system.
Example. Consider the 3-qubit state

|φ〉 =
i

2
|000〉+

12 + 5i

26
|001〉 − 1

2
|101〉+

3

10
|110〉 − 2i

5
|111〉 .

Computing the partial inner product with |1〉 on the first qubit we get

|α〉 = 1〈1|φ〉 = −1

2
|01〉+

3

10
|10〉 − 2i

5
|11〉

and its squared length is 〈α|α〉 = 1/2. Hence if we make a standard measurement on the
first qubit, the probability of seeing outcome 1 is half, and in that case the state after the
measurement will be |1〉“|α〉 normalised” =

√
2 |1〉 |α〉. �

Remark (global and relative phases) If |v〉 is any unit vector then the states |v〉 and eiα |v〉
will have the same measurement probabilities (for any basis), independent of α (since proba-
bilities always depend on squared moduli of amplitudes.) Here α is called a global phase. Thus
|v〉 and eiα |v〉 represent identical physical situations and in (QM1) we should (more correctly)
have said that states of a physical system correspond to unit vectors up to an (irrelevant) global
phase. Note also that the projection operator Πv = |v〉〈v| is independent of the choice of global
phase for |v〉 and hence it can also be used to uniquely represent distinct physical systems.
On the other hand θ in |0〉 + eiθ |1〉 is called a relative (or local) phase and it is a crucially
important parameter for the qubit state. Indeed for example, we can think of any unitary
operation as evolving |0〉 and |1〉 separately and combining the results with relative phase θ
which will affect the way that the two terms interfere. A notable example is the Hadamard
operation H (cf below) acting on the states |+〉 = 1√

2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). These

differ only by a relative phase π but we have H |+〉 = |0〉 and H |−〉 = |1〉. �

3 Some basic unitary operations for qubits

Unitary operations on qubits are also called quantum gates. Matrices given below are always
relative to the standard basis |0〉 , |1〉.
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One-qubit gates

Hadamard gate H =
1√
2

(
1 1
1 −1

)
.

Introduce the 1-qubit gates

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
Y = ZX = −XZ =

(
0 1
−1 0

)
.

(X is sometimes also called the NOT-gate).
Then the Pauli operations are

σx = X =

(
0 1
1 0

)
σy = −iY =

(
0 −i
i 0

)
σz = Z =

(
1 0
0 −1

)
.

They have elegantly simple multiplicative properties:

σ2x = σ2y = σ2z = I

σxσy = −σyσx = iσz σyσz = −σzσy = iσx σzσx = −σxσz = iσy

(noting the cyclic shift of x, y, z labels in the latter set). Note that the matrices I, σx, σy, σz are
all Hermitian as well as unitary (which is an unusual coincidence).

Phase gate Pθ =

(
1 0
0 eiθ

)
.

Two-qubit gates

Controlled-X (or controlled-NOT) gate

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

(
(I) (0)
(0) (X)

)
.

For the four basis states we can compactly write CX |i〉 |j〉 = |i〉 |i⊕ j〉 where ⊕ denotes addition
modulo 2. Note that for any 1-qubit state |α〉 we have

CX |0〉 |α〉 = |0〉 |α〉 CX |1〉 |α〉 = |1〉X |α〉

i.e CX applies X to the second qubit if the first is set to “1” and acts as the identity if the first
is set to “0” (and extends by linearity if the first qubit is in a superposition of the two values
etc.) Accordingly the first qubit is called the control qubit and the second is called the target
qubit.

The controlled-Z gate:

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 =

(
(I) (0)
(0) (Z)

)

i.e. as for CX, CZ applies Z to the second qubit controlled by the state of the first qubit. Note
that despite this asymmetrical description, CZ (unlike CX) is actually symmetric in its action
on the two qubits.
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4 Exercises

(1) (Quantum teleportation) Write |ψ〉 = 1√
2
(|00〉 + |11〉) and let |α〉 = a |0〉 + b |1〉 be a

general 1-qubit state. Subscripts will denote qubit positions labelled from left to right, in a
multi-qubit state.
(a) Write |A〉123 = |α〉1 |ψ〉23 in the computational basis of three qubits and hence compute
|B〉123 = (H1 ⊗ I23)(CX12 ⊗ I3) |A〉123.
(b) Suppose we perform a standard quantum measurement on qubits 1 and 2 of |B〉. Show
that the four possible outcomes ij = 00, 01, 10, 11 are always equiprobable and compute the
post-measurement state in each case.
(c) Show that in each case the post-measurement state in slot 3 is a unitary transform of |α〉
(independent of a and b) and identify the corresponding unitary matrix Uij for each possible
outcome ij.
Remark: in quantum teleportation Alice holds qubits 1 and 2 while Bob, distantly separated
in space, holds qubit 3. So Alice, by applying the local operations H1, CX12 and local mea-
surements, can faithfully transfer the state of qubit 1 to Bob (even if she does not know its
identity), at the communication expense of sending him only two classical bits ij (so he can
correct the unitary “error” Uij).

(2) (Basic entanglement) Prove that the state a |00〉+ b |01〉+ c |10〉+ d |11〉 is entangled iff
ad− bc 6= 0. Deduce that the state |ψ〉 = 1

2(|00〉+ |01〉+ |10〉+ (−1)k |11〉) is entangled if k = 1
and unentangled if k = 0. Express the latter case explicitly as a product state. How can |ψ〉
(for k = 0, 1) be manufactured starting from |00〉 and applying only gates from those listed in
section 3 above?

(3) (No cloning of quantum states) We routinely copy classical data in everyday life e.g.
for a single bit value b = 0 or 1, show that the classical CNOT gate (which operates just like
the quantum CX gate on basis states viz. (b, c) 7→ (b, b ⊕ c) for bits b, c) when acting on the
2-bit pair (b, 0), will copy b into the second slot i.e. we get (b, b).
(i) Consider now the quantum CNOT gate acting on the 2-qubit state |ψ〉 |0〉 where |ψ〉 =
α |0〉+ β |1〉 is a general qubit state. Will we now get a copy of |ψ〉 in the second register? i.e.
do we get |ψ〉 |ψ〉?
(ii) Consider any process which purports to clone an arbitrary input qubit state. Any such
process has the following form. The input is |ψ〉 |0〉 . . . |0〉 where |ψ〉 is any qubit state and
|0〉 . . . |0〉 are any required number of “working space” qubits all in state |0〉. The output is
|ψ〉 |ψ〉 |Aψ〉 i.e. we get two copies of |ψ〉 together with (possibly) some further ψ-dependent
state |Aψ〉. Prove that no such process can exist within the framework of quantum theory i.e.
“quantum states cannot be cloned”. (Hint: think about unitarity).

(4) (Quantum nonlocality) Consider the 2-qubit state |ψ〉 = 1√
2
(|00〉 + |11〉). We imagine

that the two qubits are separated at great spatial distance and held by Alice (A) and Bob (B)
respectively, who can then apply quantum operations (unitary gates and measurements) only
to the qubit they hold. Introduce the 1-qubit gate (“rotation by θ”)

U(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

(a) Suppose A applies U(α) and B applies U(β). Show that the resulting state is

|ψαβ〉 = 1√
2

(cos(α− β) |00〉 − sin(α− β) |01〉+ sin(α− β) |10〉+ cos(α− β) |11〉) .

Deduce that for any choice of α and β, if we measure either one of the qubits of |ψαβ〉 in the
computational basis we will get output 0 or 1 with equal probabilities of half. Show that this
remains true even if the other party has (unbeknown to us) already made the measurement
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and obtained his/her suitably random outcome and post-measurement state i.e. choice of local
angle on one side cannot affect the measurement statistics obtained locally on the other side.
(b) Suppose A and B now both measure their held qubit of |ψαβ〉 (in either order and pooling
their results, or simultaneously as a 2-qubit measurement – the statistics are the same). Show
that pr(outcomes differ) = sin2(α− β). (Note that “outcomes differ” means “outcome is 01 or
10”).
(c) We now consider only three angle settings θ = −π

6 , 0,
π
6 . Let MA(α) denote the following

operation for Alice: apply U(α) to her qubit and measure it in the computational basis. Simi-
larly MB(β) for Bob. Consider now the following experiment denoted E(α, β): A and B have
many |ψ〉 states and perform a long sequence of MA(α) and MB(β) with each choosing one of
the allowed angles (which is kept the same for the whole sequence). We imagine that for each
|ψ〉 the local operations are done essentially simultaneously (or at least at a spacelike interval).
For long sequences, probabilities will be reflected in frequencies of occurrence of 0’s and 1’s.
Show that the following statistics will be seen:

(i) E(0, 0): pr(differ) = 0 A and B’s sequences will be the same sequence.
(ii) E(0,−π

6 ): pr(differ) = 1/4 The sequences will differ in about 1 in 4 places.
(iii) E(π6 , 0): pr(differ) = 1/4 The sequences will differ in about 1 in 4 places.
(iv) E(π6 ,−

π
6 ): pr(differ) = 3/4 The sequences will differ in about 3 in 4 places!

Recall that the sequence seen locally by A or B will, in every case, be uniformly random, in
contrast to the angle-dependent correlations above.
(d)∗ Using (i) to (iv) above, argue (hmmm... mm... gosh!) that the local outcomes at A (resp.
B) must be “instantaneously influenced” by the choice of angle at B (resp. A) i.e. that the
correlations in the quantum measurement outcomes can only occur if there is some “spooky
action at a distance” (Einstein’s phrase) implied by the quantum rules for local operations on
composite systems. Note also that by (a), although the “‘instantaneous influence” must exist,
it cannot be used to instantaneously send a signal from A to B (or vice versa) by suitable choice
of local angle, since the effect is manifest only in correlations and not in any local measurement
statistics.
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