In our previous discussion of the quantum circuit model, we made no mention of the gate set. However, in the classical circuit model, if our gate set consists of every classical function, then all complexity classes would collapse into constant time!

\[
\ell \quad \text{SAT-gate} \quad \text{is } \ell \text{ SAT?}
\]

In the quantum circuit model, the situation is even more extreme—allowing any unitary matrix as a gate gives all “Turing degrees” in polynomial time!

To avoid problems like these, we typically restrict circuit models to a finite universal gate set. But is there such a gate set for quantum computing?

Read on to find out...
Pauli gates:
- **identity**
 \[I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
- **bit-flip**
 \[X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]
- **phase-flip**
 \[Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]
- **bit & phase-flip**
 \[Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \]

Clifford gates (includes Pauli gates):
- **hadamard or branch gate**
 \[H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \]
- **phase gate**
 \[S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \]
- **controlled-NOT or quantum XOR**
 \[\text{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

Gottesman-Knill theorem:
Circuits consisting of only Clifford gates can be efficiently simulated classically.
(And in particular are not universal.)

Non-Clifford gates:
- **Toffoli**
 \[T = \sqrt{S} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} \]
- **Toffoli**
 \[\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \]

Rotation gates:
- **rotation**
 \[R_z(\theta) = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix} \]
- **rotation**
 \[R_x(\theta) = \begin{bmatrix} \cos \theta/2 & i\sin \theta/2 \\ -i\sin \theta/2 & \cos \theta/2 \end{bmatrix} \]
- **rotation**
 \[R_y(\theta) = \begin{bmatrix} \cos \theta/2 & -i\sin \theta/2 \\ i\sin \theta/2 & \cos \theta/2 \end{bmatrix} \]
(Single qubit gates & the Bloch sphere)

Recall that the state of a qubit is a vector on the Bloch sphere.

Since a single-qubit unitary maps points on the Bloch sphere to points on the Bloch sphere in a reversible manner, every single-qubit unitary is a rotation of the Bloch sphere.

Ex.
The X gate is a rotation around the x-axis of 180°. It maps $|0\rangle \rightarrow |1\rangle$ and $|1\rangle \rightarrow |0\rangle$.

(Rotation gates)
The rotation gates $R_x(\theta)$, $R_z(\theta)$, $R_y(\theta)$ are rotations of angle θ around the x, z, and y axes respectively. They arise as matrix exponentials of Pauli gates:

\[
R_x(\theta) = e^{-i \theta \sigma_x}
\]

\[
R_z(\theta) = e^{-i \theta \sigma_z}
\]

\[
R_y(\theta) = e^{-i \theta \sigma_y}
\]

What does this mean?
(Important aside: operator functions)

Let \(f : \mathbb{C} \rightarrow \mathbb{C} \) and \(A : \mathcal{H} \rightarrow \mathcal{H} \) be defined as

\[
A = \sum_i a_i |e_i\rangle \langle e_i|
\]

for some orthonormal basis \(\{|e_i\rangle\} \) of \(\mathcal{H} \). We say \(A \) is diagonal in the basis \(\{|e_i\rangle\} \), and

\[
f(A) = \sum_i f(a_i) |e_i\rangle \langle e_i|
\]

Example:

\[
Z = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}
\]
is diagonal in the computational basis, and specifically

\[
Z = |0\rangle \langle 0| - |1\rangle \langle 1|
\]

Then

\[
\sqrt{Z} = \sqrt{i} |0\rangle \langle 0| + \sqrt{-1} |1\rangle \langle 1|
\]

\[
= |0\rangle \langle 0| + i |1\rangle \langle 1|
\]

\[
= \begin{bmatrix} 1 & i \\ 0 & -i \end{bmatrix}
\]

\(= S \)

Likewise,

\[
R_z(\theta) = e^{-i\theta Z} = e^{-i\theta} |0\rangle \langle 0| + e^{i\theta} |1\rangle \langle 1|
\]

\[
= \begin{bmatrix} e^{-i\theta} & 0 \\ 0 & e^{i\theta} \end{bmatrix}
\]

What if \(A \) is not diagonal in the computational basis?
(The spectral theorem, for real this time)

An operator \(A: \mathcal{H} \to \mathcal{H} \) is normal if and only if

\[
AA^+ = A^+A
\]

All unitary or Hermitian operators are normal (why?)

The Spectral theorem states that every (finite-dimensional) normal operator \(A \) can be written as

\[
A = \mathcal{P} \Lambda \mathcal{P}^+
\]

where:

1. \(\Lambda \) is diagonal as a matrix and encodes the eigenvalues of \(A \)

2. \(\mathcal{P} \) is unitary and has as columns unit eigenvectors of \(A \)

we say that \(A \) is diagonalizable and

\[
A = \xi_i \lambda_i \mathcal{P} \mathcal{P}^+
\]

the diagonalization of \(A \).

\[\text{Ex.} \]

Recall that \(X \) has eigenvectors \(1 \to, -1 \to \):

\[
X 1 \to = X \left(\frac{1}{\sqrt{2}} |0 \rangle + \frac{1}{\sqrt{2}} |1 \rangle \right) = \frac{1}{\sqrt{2}} |1 \rangle + \frac{1}{\sqrt{2}} |0 \rangle = 1 \to
\]

\[
X -1 \to = X \left(\frac{1}{\sqrt{2}} |0 \rangle - \frac{1}{\sqrt{2}} |1 \rangle \right) = \frac{1}{\sqrt{2}} |1 \rangle - \frac{1}{\sqrt{2}} |0 \rangle = -1 \to
\]

Since \(H = \begin{bmatrix} 1 \to & -1 \to \end{bmatrix} \), \(H \) diagonalizes \(X \)

\[
X = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \to \\ -1 \to \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \to \\ -1 \to \end{bmatrix} = HZH
\]
(Back to exponentials)

Observe that if $A = P \Lambda P^+$ is normal, then

$$f(A) = \sum_{i} f(\lambda_i) P \ket{i} \bra{i} P^+$$

$$= P \left(\sum_{i} f(\lambda_i) \ket{i} \bra{i} \right) P^+$$

$$= P f(\Lambda) P^+$$

Ex.

Since $X = HZH$, $R_X(\theta) = H e^{-i\frac{\theta^2}{2}} H = H R_\theta(\theta) H$. A tedious calculation would show that

$$R_X(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

(A note on exponentials)

We won't make use of matrix exponentials often, but they are extremely important to Hamiltonian simulation, so it's useful to know and get comfortable with.

(Euler angle decomposition)

Let U be a single-qubit unitary. Then there exist angles $\alpha, \beta, \theta, \phi \in \mathbb{R}$ such that

$$U = e^{i\alpha} R_2(\beta) R_X(\theta) R_2(\phi)$$

The above works with any other non-parallel axes as well, like Z & Y. This is a quantum re-statement of the very old fact that any rotation in 3-d space can be implemented as a sequence of 3 rotations in 2 planes.
Multi-qubit gates

Since single-qubit gates can't entangle qubits, we know we'll need at least one multi-qubit gate for universal quantum computing.

One possibility is the SWAP gate, which we haven't seen before:

\[
\text{SWAP} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

The SWAP gate swaps two qubits, and hence is not entangling.

\[
\text{SWAP}(|\psi\rangle \otimes |\phi\rangle) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
|\psi\rangle \\
0 \\
0 \\
|\phi\rangle
\end{bmatrix}
\]

\[
= \begin{bmatrix}
|\psi\rangle \\
|\phi\rangle \\
0 \\
0
\end{bmatrix}
\]

\[
= |\psi\rangle \otimes |\phi\rangle
\]

On the other hand, controlled gates usually are entangling. We've seen one such gate already: the CNOT gate.

Controlled gates

Let \(U \) be an \(n \)-qubit unitary. The controlled-\(U \) gate \(\text{c-U} \) is an \(n+1 \)-qubit unitary such that

\[
\text{c-U} |0\rangle |\psi\rangle = |0\rangle |\psi\rangle \\
\text{c-U} |1\rangle |\psi\rangle = |1\rangle (U|\psi\rangle)
\]
We draw a controlled-U gate as

\[\text{control} \]
\[\{ \text{targets} \} U \]

Ex.
The CNOT gate is the controlled-NOT, i.e.

\[\begin{array}{c}
\text{\begin{array}{c}
\hline
\text{control}
\end{array}}
\text{\begin{array}{c}
\hline
\text{\{targets\}}
\end{array}}
\end{array} = \begin{array}{c}
\begin{array}{c}
\hline
\text{X}
\end{array}
\end{array} \]

It sends \(|0\rangle x \rightarrow |0\rangle x \) and \(|1\rangle x \rightarrow |1\rangle (1 \otimes x) \), or more concisely

\[\text{CNOT}: |x\rangle |y\rangle \rightarrow |x\rangle (1 \otimes y) \]

Ex.
The Toffoli gate is also a controlled gate,

\[\text{Toffoli} = c \cdot \text{CNOT} \]

In particular, noting that

\[\text{Toffoli} \begin{array}{c}
|x\rangle \langle y| |z\rangle
\end{array} = |x\rangle \langle y| (1 \otimes y) \]

we have

\[\text{Toffoli} \begin{array}{c}
|0\rangle \langle y| |z\rangle
\end{array} = |0\rangle \langle y| |z\rangle
\]
\[\text{Toffoli} \begin{array}{c}
|1\rangle \langle y| |z\rangle
\end{array} = |1\rangle \langle y| (1 \otimes y) |z\rangle
\]
\[= |1\rangle \langle y| \text{CNOT} \begin{array}{c}
|y\rangle |z\rangle
\end{array} \]

Ex.
The controlled-Z or CZ gate is sometimes drawn

\[\begin{array}{c}
\begin{array}{c}
\hline
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\hline
z
\end{array}
\end{array} \]

and has matrix

\[CZ = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix} \]
(Controlled gate implementations)
A common pattern in quantum computation is to take some unitary implemented as a circuit and control it.

We can do this by controlling each gate in \(U \) individually.

What if we can't decompose \(U \) further?

(Theorem, Barenco et. al.)
Every controlled unitary can be implemented as a circuit consisting of CNOT and single-qubit unitaries.

(Corollary)
\(\{ \text{CNOT} \} + \text{single-qubit unitaries} \) is universal for quantum computing.

The proof of the above is not hard, but outside the scope of this course. In fact, CNOT is not unique here and can be replaced with any entangling gate. In other words, Entanglement + local ops is universal.
(Approximate universality)

We now have a universal gate set, but it is not very satisfactory since it contains infinitely many gates. For practical, programmable quantum computers, it will be necessary to restrict the gate set to a finite set as in classical computing. Part of this is due to error correction which we will get to later in the course.

Unlike the classical case, there is no finite gate set which can implement every unitary. The reason is C_1 and hence 2×2 unitaries, is uncountably infinite. Instead, we may ask whether there exists a finite gate set which can approximate every unitary matrix.

(Gate approximation error)

A unitary U approximates another unitary V with error

$$E(U, V) = \max_{\ket{\psi}} \| (U - V) \ket{\psi} \|$$

An important property which you will prove in homework is that approximation error is additive, in that

$$E(U, -V) \leq E(U, -U) + E(-V, -V)$$

A practical consequence is that if every gate in a circuit is approximated to error ϵ_k for a k-gate circuit, then the total approximation error is at most ϵ_k.
A set of gates Γ is approximately universal for quantum computing if any n-qubit unitary U can be approximated to arbitrary precision $\epsilon > 0$ by a circuit V over Γ. That is,

$$E(V, U) \leq \epsilon$$

Since the $\{\text{CNOT}, \text{H}\}$ single-qubit gates set is exactly universal, it suffices to find a gate set which can approximate any single-qubit gate. The simplest way to do this is to write a single-qubit gate as

$$R_x(\alpha)R_y(\beta)R_z(\gamma)$$

for some non-parallel axes x & y, then use $R_x(\alpha)R_y(\beta)$, where α & β are irrational multiples of π. This means if we keep rotating around axis z at an angle of α, we never get back to an earlier spot.

(Irrational rotations)

Recall that $T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$. The gates

$$HTHT, THTHT$$

are irrational rotations around non-parallel axes.

(Corollary)

The set $\{\text{CNOT}, \text{H}, T\}$ is approximately universal called Clifford + T.
Suppose we have an algorithm that runs on a quantum computer over the gate set $\text{CNOT}+\text{single-qubit unitaries}$ in time $\text{poly}(n)$, but to approximate the circuit over $\{\text{CNOT}, H, T\}$ we might use $\exp(n)$ gates! How can we be sure approximation will not incur exponential overhead? The seminal result of Solovay & Kitaev states that given certain assumptions (which have recently been proven unnecessary), approximations of single-qubit unitaries are efficient (polynomial).

(Solovay–Kitaev theorem)

Let Γ be a set of single-qubit gates such that

1. Γ contains two rotations of angles which are irrational multiples of π around non-parallel axes, and
2. Γ is inverse-closed. That is, for every $U \in \Gamma$,

$$U^+ = U^{-1} \in \Gamma$$

Then any 1-qubit unitary may be approximated to error $\epsilon > 0$ using $O(\log^c(1/\epsilon))$ gates from Γ, where $c > 3$ for $\{H, T\}$.

While the approximation factor for $\{H, T\}$ has been improved to $O(\log(1/\epsilon))$ by other methods in recent years, the Solovay–Kitaev theorem was instrumental in showing that quantum computation was practically possible. In particular, without the Solovay–Kitaev theorem, error correction and hence general purpose quantum computers was a pipe-dream.