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ABSTRACT Player engagement is crucial for understanding and optimizing gaming experiences, yet
the research community lacks comprehensive multimodal datasets with reliable engagement annotations.
We present a dataset combining six synchronized data streams—EEG, eye tracking, heart rate, user inputs,
webcam footage, and gameplay frames—collected from 39 participants playing popular games across
varying difficulty levels. Our dataset’s distinctive feature lies in its temporal precision, achieved through
strategic integration of engagement surveys during natural game pauses, minimizing both recall bias
and gameplay disruption. The dataset includes 900 annotated gameplay sessions with four psychological
metrics (engagement, interest, stress, and excitement). Initial analyses revealed surprising findings: human
judges achieved only 0.48 F1-score in engagement assessment from webcam footage, while a flow theory-
based model reached 0.60 F1-score using difficulty and player experience. Our multimodal neural model
combining EEG, eye tracking, and facial features demonstrated the dataset’s potential with a 0.51 F1-score
despite class imbalance. This comprehensive dataset enables various research directions in engagement
measurement and modeling, supporting the development of more robust real-time engagement detection
systems.

IEEE SOCIETY/COUNCIL Instrumentation and Measurement Society (IMS)

DATA TYPE/LOCATION Videos, Keystrokes, Physiological Signals

DATA DOI/PID 10.34740/kaggle/ds/6552328

INDEX TERMS Multimodal data of gameplay, player engagement measurement, psychological and
physiological multisensory game data.

BACKGROUND
Player engagement measurement has emerged as a crucial
component in gaming research, encompassing cognitive,
emotional, and behavioral dimensions that necessitate com-
prehensive data collection approaches [1], [2]. While various
engagement measurement techniques exist, from physiolog-
ical sensors to behavioral analytics, the gaming research
community has lacked publicly available multimodal datasets
that combine these approaches with reliable ground truth
annotations [3].

Our dataset addresses this gap by providing synchronized
multimodal data streams from 39 participants playing two
popular game titles: FIFA’23 and Street Fighter V (SFV).
The dataset combines six key measurement modalities: heart
rate data from a Fitbit smartwatch, 14-channel EEG record-
ings from an EPOC X headset, comprehensive eye-tracking
metrics from a Gazepoint GP3 tracker, user input patterns
from an Xbox controller, webcam footage, and gameplay
frames. This multimodal approach enables researchers to
study the relative effectiveness of different measurement
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techniques and develop more robust engagement estimation
methods.

Existing datasets have primarily focused on single modal-
ities or limited combinations. The FaceEngage dataset [4]
demonstrated the value of facial expressions for engagement
detection but relied solely on game status for ground truth
labels. The EngageMon dataset [5] showed the potential of
sensor fusion in mobile gaming contexts but was limited
in scope. More recently, player engagement estimation has
evolved with datasets such as the Division 2 corpus [6],
which demonstrated 72% accuracy in predicting long-term
engagement using game footage and controller inputs, and
GameVibe [7], which provided annotated gameplay sessions
across 30 diverse games with third-person effect traces.
These advancements align with emerging challenges and
opportunities identified in comprehensive reviews of the
field [8]. While datasets such as RECOLA and SEWA
[9], [10] established protocols for synchronized multimodal
collection, they were not gaming-specific.

Our dataset distinguishes itself through several key fea-
tures. First, it employs the experience sampling method
(ESM) [11] to collect ground truth engagement levels during
natural game pauses, minimizing both gameplay disruption
and recall bias. Second, it captures engagement across
varied gameplay scenarios and difficulty levels, enabling
analysis through flow theory [12] where player skill and
game challenge interact. Third, it complements self-reported
engagement with third-party annotations from trained judges,
providing both subjective and objective perspectives on en-
gagement indicators.

The dataset comprises 900 micro-game sessions from 39
participants (30 male, 9 female, mean age 24.3 years), with
sessions distributed across both FIFA’23 and SFV. As shown
in Table I, the dataset captures a wide range of engagement
levels and related psychological states (interest, stress, and
excitement), with session durations varying significantly
between games (FIFA: mean = 91.5 s, SD = 50.3 s; SFV:
mean = 36.7 s, SD = 9.8 s). The comprehensive nature of
this dataset, combining multiple modalities with fine-grained
temporal alignment and varied gameplay scenarios, provides
researchers with rich opportunities for investigating player
engagement across different game genres, difficulty levels,
and measurement approaches.

COLLECTION METHODS AND DESIGN
Our data collection system integrates multiple specialized
hardware and software components to capture diverse signals
indicative of player engagement. The complete experimental
setup, illustrated in Fig. 1, consists of six key components
synchronized through a central gaming PC that serves as the
primary data collection and synchronization hub. The setup
is designed to maintain participant comfort while ensuring
reliable data collection across all modalities.

A written consent was signed and obtained from all partic-
ipants and the methodology was approved by the University

TABLE I. Session Counts and Durations (Minutes) per Game and
Dimension

Dimension Level FIFA SFV Total
# Dur. # Dur. # Dur.

Engagement
0–1 14 16 88 47 102 63

2 26 40 137 79 163 119
3–4 97 170 538 342 635 512

Interest
0–1 6 10 90 48 96 58

2 56 88 227 134 283 222
3–4 75 127 446 287 521 414

Stress
0–1 53 71 282 164 335 235

2 40 74 264 165 304 239
3–4 44 81 217 140 261 221

Excitement
0–1 36 50 194 108 230 158

2 56 102 294 182 350 283
3–4 45 74 275 179 320 253

Total 137 226 763 468 900 694

Note: The overall size of dataset are highlighted in bold.

1. Webcam

2. Survey

3. Eye-Tracker

6. EEG

4. FitBit

5. Gamepad

FIG. 1. Experimental setup showing the integrated hardware components:
1) webcam; 2) survey tablet; 3) eye tracker; 4) smartwatch; 5) gamepad;
and 6) EEG headset. ©ACM reused with permission from [8]/cropped and
horizontally flipped from original and annotated.

of Ottawa’s Office of Research Ethics and Integrity, under
file number H-07-23-9439.

Hardware Configuration
The primary data acquisition hardware includes a 1080p
webcam mounted on the monitor for capturing facial expres-
sions and head pose, an EPOC X EEG headset operating at
128 Hz with 14 channels for brain activity measurement,
and a Gazepoint GP3 Eye Tracker positioned below the
monitor sampling at 60 Hz. Participants wear a Fitbit Versa 3
smartwatch on their left wrist for heart rate monitoring, while
gameplay input is captured through an Xbox USB gamepad.
A separate touchscreen tablet is positioned for engagement
survey responses, and an additional screen is used to monitor
the experiment through a unified interface.

The experiment environment is carefully controlled to
simulate a natural gaming setting while maintaining data
quality. The testbed operates in a sound-isolated room with
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FIG. 2. OBS recording scene showing the synchronized capture of we-
bcam feed, gameplay footage, and system metrics. This unified view
provides a comprehensive record of each session and enables real-time
quality monitoring.

consistent lighting to minimize variations in webcam and
eye-tracking data. The viewing distance and monitor angle
are standardized (65 cm from eye tracker, monitor tilted
at 15°) to maintain eye-tracking accuracy across sessions.
An adjustable chair ensures participant comfort throughout
the session.

Software Infrastructure
The software infrastructure consists of several specialized
components operating in concert. OBS Studio captures both
the webcam feed and gameplay footage, with audio recorded
from the webcam’s built-in microphone and the game’s
audio output. As shown in Fig. 2, the OBS interface serves
as a unified auditing system, displaying the webcam feed,
gameplay footage, system clock, EEG signal quality (SQ),
and eye-tracking quality metrics in a single view. This
synchronized display enables real-time monitoring of data
quality across all modalities and provides a comprehensive
record of each session.

The collected webcam footage was processed using Open-
Face [13], a comprehensive facial behavior analysis toolkit.
This processing extracted detailed facial features including
head pose dynamics (translation, rotation, velocity, and ac-
celeration vectors), facial landmarks, gaze direction esti-
mates, and 17 facial action unit (AU) intensities. These facial
analysis capabilities complement the dedicated eye-tracking
hardware while providing additional metrics such as head
movement patterns that have been shown to correlate with
engagement in prior work [4].

The Gazepoint analysis software captures comprehensive
eye metrics including gaze position relative to the screen,
pupil dilation, fixations, saccades, and blink rate. The Gaze-
point control software manages device calibration and main-
tains tracking accuracy throughout the session. The Emotiv

Pro software handles real-time EEG signal acquisition and
processing, providing both raw EEG signals and derived
performance metrics including attention, engagement, and
stress levels. SQ is continuously monitored through contact
quality (CQ), machine learning SQ, and signal magnitude
quality (SMQ) metrics.

Heart rate data are logged and uploaded in real-time to the
Google account connected to the smartwatch at 5-s intervals,
while a custom Python script handles gamepad input logging,
recording timestamped controller interactions including but-
ton presses (A,B,X,Y, bumpers) and stick positions (left/right
X/Y coordinates from −32 767 to 32 767).

Data Collection Protocol
The collection process begins with participant registration,
capturing demographic information and gaming experience,
particularly familiarity with soccer and 2-D fighting games.
The calibration sequence includes the eye tracker’s standard
nine-point calibration procedure using Gazepoint control,
followed by a 15-s eyes-open and eyes-closed EEG baseline
recording. The Fitbit is secured snugly on the left wrist, and
proper electrode contact is verified for the EEG headset using
saline solution to ensure optimal SQ.

Two popular games were strategically selected based on
their representativeness, accessibility, difficulty variability,
and natural session boundaries. FIFA’23 and SFV represent
two distinct and popular gaming genres (sports and fighting)
with different gameplay paces and skill requirements. These
games offer precise difficulty control (FIFA: 6 levels, SFV:
8 levels) allowing systematic investigation of engagement
across challenge intensities. Importantly, while FIFA typi-
cally requires prior experience for meaningful play, SFV’s
simple core mechanics enabled participation from players
with minimal gaming background while still offering depth
through advanced techniques. This complementary selection
ensured our dataset captures a broader spectrum of player
experiences and skill levels than would be possible with a
single game type.

Both games feature natural pauses that facilitate nondis-
ruptive survey administration—a critical design considera-
tion for maintaining ecological validity. For FIFA’23, only
participants with prior soccer gaming experience partici-
pated, playing 3–5 matches with surveys conducted after
goals, at half-time, and post-match. To prevent survey fatigue
while maintaining data quality, a minimum 20-s gameplay
duration is enforced between consecutive surveys.

For SFV, participants undergo a 5–10-min training phase
until they report comfort with basic controls and mechanics.
Each round has a maximum duration of 99 s, though rounds
typically conclude earlier through knockouts. Participants are
targeted to play three rounds at each difficulty level (low:
1–3, medium: 4–5, and high: 6–8), with the actual number
varying based on remaining session time and training dura-
tion. Surveys are administered between rounds, coinciding
with the game’s natural break points.
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TABLE II. Survey Questions and Response Options

Dimension Question and Response Scale

Engagement How engaged did you feel?
0. Very Bored 1. Somewhat Bored
2. Neutral 3. Somewhat Engaged
4. Very Engaged

Interest How much did you enjoy?
0. Strongly Disliked 1. Disliked
2. Neutral 3. Liked
4. Strongly Liked

Stress How stressed did you feel?
0. Very Relaxed 1. Relaxed
2. Somewhat Stressed 3. Stressed
4. Very Stressed

Excitement How excited did you feel?
0. Not Excited 1. Slightly Excited
2. Moderately Excited 3. Extra Excited
4. Extremely Excited

Survey Design
The survey application captures self-reported metrics across
four key dimensions using five-point Likert scales, as de-
tailed in Table II. The selection of these specific metrics
serves two theoretical frameworks. First, while engagement
serves as the primary metric, interest, and excitement map
to the fundamental dimensions of emotion measurement
(valence and arousal), while interest connects to conation—
the desire to continue playing—which is often used as an
engagement proxy [14]. Stress levels relate to the flow theory
of engagement [12], particularly regarding game challenge
intensity. Second, these metrics mirror those reported by
the EMOTIV Pro EEG software but in a gaming-specific
context, enabling analysis of correlations between general
EEG-based metrics and gaming-specific self-reported states.
The engagement dimension ranges from very bored (0) to
very engaged (4). Interest is measured from strongly disliked
(0) to strongly liked (4). Stress levels span from very relaxed
(0) to very stressed (4), and excitement ranges from not
excited (0) to extremely excited (4).

Synchronization Implementation
The synchronization system aligns all data streams through
careful clock calibration. The high-frequency data streams
(EEG at 128 Hz, eye tracking at 60 Hz, and gameplay
footage at 30 fps) are logged on the gaming PC with a single
clock. While the smartwatch clock exhibits a 1–2-s gap with
the PC clock, this discrepancy is tolerable given its 5-s sam-
pling interval for heart rate data. The PC and survey tablet
clocks are manually calibrated to the smartwatch’s clock with
subsecond discrepancy, ensuring temporal alignment across
all data streams while accommodating the lower sampling
rate of the heart rate measurements.

TABLE III. EEG Data Structure

Category Rate Column Format Values
Raw EEG 128 Hz EEG.channel µV readings

Contact Quality 128 Hz CQ.Overall 0–100
CQ.channel 0–4

Signal Quality 2 Hz EQ.Overall 0–100
EQ.channel 0–4

Performance 0.1 Hz PM.metric Type:
Metrics - IsActive (0/1)

- Scaled (0–1)
- Raw (unbounded)
- Min, Max (bounds)

Band Powers 8 Hz POW.channel Band type:
- Theta (4–8 Hz)
- Alpha (8–12 Hz)
- BetaL (12–16 Hz)
- BetaH (16–25 Hz)
- Gamma (25–45 Hz)

VALIDATION AND QUALITY
To validate the quality and utility of our dataset, we present
evidence supporting both our measurement framework and
demonstrate the dataset’s effectiveness through multiple use
cases.

Quality Monitoring
We collected quality metrics for EEG, heart rate, and
eye-tracking samples provided by the corresponding data
collection software. The EPOC X EEG headset provides
continuous SQ metrics including CQ, machine learning SQ,
and SMQ. These quality metrics are aggregated into a 0–100
overall quality score indicated in column EQ.OVERALL
(see Table III). The Fitbit heart rate measurements include
confidence levels (0–3 scale). We also use the FPOGV flag
in gazepoint data as a binary quality score indicating whether
there is a valid point of gaze (POG) detected. These metrics
are included in the dataset, allowing researchers to establish
appropriate quality thresholds for their specific analyses.

To understand the effect of different quality thresholds
on the dataset size, we calculate the average quality scores
per sample (i.e., an annotated game session) for each of
the three modalities. Fig. 3 shows the complementary cu-
mulative distribution function (CCDF) of samples given a
quality threshold. Interestingly, only 50% of samples have an
average EEG quality (EQ.OVERALL) of at least 75%. This
is mostly due to sudden player movements during gameplay,
which we observed to cause a short-term decline in EEG
SQ. This can be an interesting research direction to explore
the relationship between sudden drops in EEG quality as a
proxy for sudden movement and highly engaging gameplay
moments. Similarly, the heart rate signals show relatively low
confidence overall. These results emphasize the importance
of postprocessing physiological signals to maximize their
utility in modeling player engagement. Most eye-tracking
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FIG. 3. Sample survival rate versus score threshold.

samples have 75%–80% valid POG. Notably, invalid FPOGV
flag are often associated with blinking events, which do not
necessarily indicate noisy data.

Technical Limitations and Dataset Scope
While our dataset offers rich multimodal data across different
games and participants, we acknowledge certain constraints
in its scope and technical implementation. The game selec-
tion, though strategically chosen to represent different genres
and skill levels, is limited to two titles and may not fully
represent all gaming experiences across the vast landscape of
game genres. However, this limitation is partially mitigated
by our diverse participant demographics, which include indi-
viduals ranging from those with no prior gaming experience
to casual players and experts in the selected games.

Prior to the main data collection, we conducted an initial
trial with four participants to refine the experimental protocol
and identify potential issues. During the full data collection,
technical and procedural limitations were encountered.

1) One participant (ID: 559) reported being previously
diagnosed with ADHD and was using stimulant medi-
cation during the experiment. The divergence between
this participant’s EEG signals and the baseline signal
resulted in a diminished EEG quality score, consis-
tent with prior research on stimulant effects on EEG
signals [15].

2) Six participants (IDs: 872, 850, 568, 533, 297, and
183) were recorded under different lighting conditions
than the standard protocol.

3) Controller input data were not captured for ten partic-
ipants (IDs: 120, 166, 462, 539, 623, 703, 754, 507,
514, and 744).

4) Eye-tracking data were incomplete for one participant
(ID: 407).

These missing data points represent a limitation that
researchers should consider when analyzing the affected
sessions. However, our dataset’s modular structure enables
researchers to selectively include participants based on avail-
able modalities for specific research questions. For instance,

FIG. 4. Spearman correlation matrix between engagement metrics.

in our multimodal neural architecture implementation, we
utilized only participants with complete data for the specific
modalities being investigated. The multimodal nature of
our dataset provides inherent redundancy across different
data streams, potentially enabling more robust analyses even
when certain modalities are unavailable for some partic-
ipants. We recommend that researchers clearly document
which participant subsets they use for each analysis to
ensure reproducibility. Future extensions of this work could
include additional game genres and address these technical
challenges to build upon the foundation established by this
dataset.

Validation of Engagement Dimension Selection
The theoretical framework underlying our 4-D survey de-
sign was validated through two complementary analyses.
First, correlation analysis between metrics revealed mean-
ingful relationships supporting our measurement approach,
as shown in Fig. 4. Engagement showed strong positive
correlations with excitement (ρ = 0.68, p < 0.001) and
interest (ρ = 0.58, p < 0.001), validating our connection to
fundamental dimensions of emotion measurement (valence
and arousal). The moderate correlation between stress and
engagement (ρ = 0.40, p < 0.001) aligns with flow theory’s
emphasis on challenge intensity, while the weak correlation
between interest and stress (ρ = 0.11, p = 0.001) confirms
these capture distinct aspects of gameplay experience.

Second, comparison with EMOTIV Pro’s EEG-based met-
rics during gaming sessions revealed important insights about
engagement measurement in gaming contexts. The weak
correlation between EEG-measured engagement and self-
reported engagement (ρ = 0.076, p < 0.05), along with
similarly weak correlations for other metrics (EEG-measured
stress: ρ = 0.089, p < 0.01; interest: ρ = 0.003, p = 0.92;
excitement: ρ = −0.113, p < 0.001), validates our choice
of gaming-specific engagement dimensions over general
EEG-based metrics. These results demonstrate that while
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commercial EEG systems can measure general cognitive
states, gaming engagement requires domain-specific mea-
surement approaches.

RECORDS AND STORAGE
The Multimodal Player Engagement dataset is publicly avail-
able on Kaggle1 and is organized as follows.

Samples/
pid /

EEG/
EYE/
HR/
OBS/
OpenFace/
XBOX/

Questionnaires/
participants.csv
submissions.csv

splits/
fold_[0-6]/

[0-6].csv
Human Panel Samples/

Samples/
sid.mp4

Training/
annotations.csv
annotators.csv

The Samples folder contains the primary multimodal data
collection organized by participant (pid: participant id) and
modality. The Questoinnaires folder contains the primary
ground truth data collected during the experiment through
participant surveys. The splits folder provides a standardized
benchmark framework implementing nested stratified group
cross validation. The Human Panel Samples folder provides
a curated subset of gameplay sessions for human evaluation
of player engagement through visual cues. We explain each
folder in the following.

Samples: The Multimodal Data
Each participant’s data are stored in a separate subfolder
identified by their unique participant ID (pid), with further
subfolders for each data modality (EEG, eye tracking, heart
rate, OBS scene, and XBOX controller inputs). The hierar-
chical structure ensures clear organization of the extensive
multimodal data while maintaining the relationship between
different data streams for each gaming session. The naming
convention of samples is pid_sid_eng_int_str_exc,
where sid: submission id, eng: engagement, int: in-
terest, str: stress, and exc: excitement. The file exten-
sion of samples is .mp4 for OBS videos, and .csv for
the rest.

1kaggle.com/datasets/ammarrashed23/multimodal-player-engagement

EEG Data Files
The EEG files contain measurements from an EPOC X head-
set with 14 channels (AF3, AF4, F3, F4, F7, F8, FC5, FC6,
O1, O2, P7, P8, T7, and T8). Each file begins with metadata
columns: a timestamp in datetime format (e.g., “2023-10-
31 14:24:22.025-04:00”), a sample Counter (0-127, resets
every second), and an Interpolated flag indicating whether
the sample was received from the headset (0) or interpolated.
The data are organized into several measurement categories,
each sampled at different frequencies, as shown in Table III.
The primary data consist of raw EEG voltages sampled at
128 Hz. For each channel, the SQ is monitored through
two metrics: CQ indicates the physical connection quality
between electrodes and scalp, while EEG quality (EQ) pro-
vides a more comprehensive SQ assessment updated every
500 ms. The headset computes higher level performance
metrics at 0.1 Hz, including measures of engagement, ex-
citement, stress, relaxation, interest, and focus. Each metric
includes both raw algorithm outputs and normalized values.
Additionally, the power in five frequency bands is computed
for each channel at 8 Hz, providing insights into different
aspects of brain activity during gameplay.

Eye-Tracking Data Files
The eye-tracking data are collected at 60 Hz using a Gaze-
point GP3 eye tracker. Each record contains a timestamp
and a video frame counter (VID FRAME), along with three
main categories of measurements.

1) The gaze data include both filtered (FPOG) and
unfiltered (BPOG) point-of-gaze coordinates. Fil-
tered coordinates (FPOGX, FPOGY) represent fixation
points with associated start time (FPOGS), duration
(FPOGD), and a unique identifier (FPOGID). Un-
filtered coordinates (BPOGX, BPOGY) provide raw
gaze positions. Each measure includes a validity flag
(FPOGV, BPOGV).

2) Individual eye measurements track pupil position
(LPCX/RPCX, LPCY/RPCY), diameter in both pix-
els (LPD/RPD) and millimeters (LPMM/RPMM), and
a scale factor normalized to the calibration depth
(LPS/RPS). Each measurement includes its validity
flag (LPV/RPV, LPMMV/RPMMV).

3) The system also tracks blink events with unique iden-
tifiers (BKID), durations (BKDUR), and frequency
(BKPMIN, blinks per minute), as well as saccade char-
acteristics including magnitude (SACCADE MAG)
and direction (SACCADE DIR). A pixel-to-millimeter
conversion scale (PIXS) is provided with its validity
flag (PIXV).

Heart Rate Data Files
The heart rate data are collected at 0.2 Hz (every 5 s)
using a Fitbit Versa 3 smartwatch. Each record contains
a timestamp, heart rate in beats per minute (BPM), and
a confidence measure (0–3) indicating the reliability of
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TABLE IV. Structure of Questionnaire Files

File Column Description
participants.csv participant id Unique identifier

age Participant age
sex M/F
fifa exp FIFA experience (0–4)
sf exp Street Fighter experience (0–4)

submissions.csv submission id Unique session identifier
participant id Player identifier
game FIFA23 or Street Fighter V
difficulty Game-specific level
session no Sequential session number
start ts Session start
end ts Session end timestamp
engagement Overall engagement (0–4)
interest Interest/enjoyment (0–4)
stress Stress level (0–4)
excitement Excitement level (0–4)

the reading. The confidence value is determined by the
smartwatch’s internal algorithms based on factors such as
sensor CQ and motion artifacts.

Controller Input Data Files
The Xbox controller inputs are recorded asynchronously
(event-driven) and consist of two types of events: analog
inputs (Absolute) and button presses (Key). Each record
contains a timestamp and the event details, including the
specific control (Event) and its state.

Analog inputs (EventType: “Absolute”) include
stick positions (left stick x, left stick y, right stick x,
right stick y), trigger depths (left trigger, right trigger),
and d-pad directions (dpad x, dpad y). For these events,
the state ranges from −32 767 to 32 767, representing the
full range of motion. Button events (EventType: “Key”)
capture binary states (0 or 1) for all controller buttons: face
buttons (a button, b button, x button, y button), bumpers
(left bumper, right bumper), stick clicks (left stick button,
right stick button), and menu buttons (start button,
back button).

Questionnaires: The Survey Data
This folder contains the primary ground truth data collected
during the experiment through participant surveys. The data
are organized in two CSV files shown in Table IV: a
participant registry capturing demographic information and
gaming experience, and a comprehensive session log con-
taining engagement metrics and contextual information. All
timestamps follow the format (YYYY-MM-DD HH:MM:SS-
ZZZZ). For FIFA23, difficulty levels progress from easiest
to most difficult as: Beginner, Amateur, Semi-Pro, Profes-
sional, World Class, Legendary. SFV difficulties are indi-
cated numerically from (1)–(8), where 1 is easiest and 8 is
most difficult. The session number is reset for each unique

TABLE V. Structure of Human Panel Folder

Folder/File Contents/Column Description
Samples/ 20 files Webcam footage cropped

session id.mp4 from OBS recordings

Training/ high1, high2 Engagement labels 3–4
neutral1, neutral2 Engagement label 2
low1 Engagement labels 0–1

annotations.csv participant id Unique player identifier
submission id Unique session identifier
engagement Ground truth rating (0–4)
annotator [0-13] Annotator ratings (0–4)
annotator [0-13] conf Annotator confidence (0–4)

annotators.csv annotator id Unique identifier (0–13)
experience Gaming experience (0–4)
clues Engagement indicators used

participant-game-difficulty combination to track progression
within specific difficulty levels.

“Splits”: The Cross-Validation Folds
The structure consists of seven outer folds, each is further
divided into seven inner folds. Each test set contains 4–6
participants, while validation sets comprise 3–5 participants.
The splitting strategy ensures representation of minority
classes across all folds to address data imbalance concerns.
This nested structure supports various evaluation approaches:
the outer folds provide unbiased performance estimates,
while inner folds enable systematic hyperparameter tuning
or ensemble model development. The consistent participant-
level splitting across all folds ensures reproducible bench-
marking for future research using this dataset.

“Human Panel Samples”: The Human Evaluation Subset
As detailed in Table V, the folder contains standard-
ized webcam recordings and corresponding annotation data.
The Samples folder contains 20 gameplay sessions, with
video files named using the format < session_id >
.mp4. Each video maintains consistent quality specifica-
tions (480 x 480 pixels, 30 FPS) achieved by cropping
the player webcam feed from the original OBS recordings.
The Training folder contains five reference samples repre-
senting distinct engagement levels (two high, two neutral,
and one low), sourced from different participants to establish
diverse baseline examples. These training samples were used
to calibrate annotators and establish common rating criteria
before their evaluation of the main sample set. The samples
were selected to represent various engagement levels and
player demographics, enabling comprehensive assessment
of human annotators’ rating consistency and accuracy. To
facilitate evaluation against human annotators, the samples
were sourced exclusively from the test set of the final outer
fold (fold 6).
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TABLE VI. Performance Comparison of Baselines

Model Class Precision Recall F1-score

Human*
High 0.38 ± 0.14 0.45 ± 0.22 0.40 ± 0.16
Low 0.59 ± 0.13 0.53 ± 0.18 0.55 ± 0.13

Flow-based
High 0.77 ± 0.08 0.75 ± 0.08 0.76 ± 0.05
Low 0.43 ± 0.16 0.45 ± 0.14 0.43 ± 0.12

Multimodal
High 0.73 ± 0.08 0.69 ± 0.19 0.70 ± 0.11
Low 0.28 ± 0.20 0.36 ± 0.24 0.31 ± 0.22

Note: *Human evaluation performed on 20 random samples only. The
bold values indicate the highest performance.

INSIGHTS AND NOTES
To demonstrate our dataset’s suitability for developing en-
gagement detection systems, we implemented three baseline
approaches for real-time engagement prediction, as shown
in Table VI. We formulated the task as binary classification,
differentiating between engagement levels above and below
our dataset’s mean of 2.87. All experiments used sevenfold
stratified group cross validation to ensure participant-level
separation between training and testing data.

Human Annotation Analysis
First, we conducted human annotation analysis to understand
the capabilities and limitations of humans in visually assess-
ing engagement in gaming contexts, not as an alternative
ground truth but as a baseline for comparison against sensor-
based approaches. We recruited 14 human judges who, after
training on the said five reference samples, analyzed webcam
footage from 20 gameplay sessions across five different
participants. The training consisted of providing judges with
sample videos representing different engagement levels and
suggesting potential visual cues (e.g., eye blinking patterns,
head and eye movements, and facial expressions) without
mandating specific indicators to observe. When asked about
their rating criteria, judges reported primarily using eye
blinking patterns, head and eye movements, and facial ex-
pressions as cues.

Inter-rater agreement analysis revealed consistently low
agreement across different granularities: raw five-point Likert
scores (Krippendorff’s α = 0.092, Cohen’s κ = 0.001),
low/neutral/high classes (α = 0.080, κ = 0.036), and
binary low/high classes (raw agreement: 52.1%, α = 0.040,
κ = 0.043). When evaluated against survey answers, anno-
tators achieved 50%± 12% accuracy. This low agreement,
consistent across multiple agreement metrics and classifi-
cation granularities, highlights a fundamental challenge in
engagement measurement: unlike more explicitly manifested
emotional states (such as happiness indicated by smiling),
engagement appears to lack consistently interpretable visual
cues. This finding underscores why our dataset relies on self-
reported engagement as ground truth rather than third-party
observations, and why multimodal approaches that incor-
porate physiological and behavioral signals beyond visual
cues are necessary. The limited accuracy of human judges

using only visual information serves as an important baseline
when comparing against our computational approaches that
leverage multiple data streams. This finding aligns with pre-
vious research suggesting engagement is a complex internal
state that may not reliably manifest in observable facial
expressions or behavioral patterns.

Flow Theory-Based Engagement Detection
Second, building on flow theory, which suggests optimal
engagement occurs when skill matches challenge levels,
we developed a random forest classifier using participant
experience as a skill proxy and normalized game difficulty
as a challenge measure. The model incorporated two key
features: player skill (represented by self-reported experience
levels on a five-point scale) and normalized game difficulty
(six levels for FIFA’23, eight levels for SFV, normalized to
0–1 range). This relatively simple approach achieved 66%
accuracy (±6%) across the full dataset, with particularly
strong performance in detecting high-engagement states (pre-
cision: 0.77 ± 0.08, recall: 0.75 ± 0.08). While effective, this
method’s applicability is inherently limited to games with
clear difficulty levels and quantifiable player skill measures.

Multimodal Neural Architecture
Third, to explore the dataset’s potential for comprehensive
engagement prediction, we implemented a neural architec-
ture combining three key modalities: EEG, eye tracking, and
facial features. The input streams were processed as follows.

For EEG data, we used band powers (theta, alpha,
low/high beta, and gamma) from all 14 channels as provided
by the EMOTIV software without additional filtering or
artifact removal beyond the system’s built-in processing.

For eye tracking, we extracted specific features from the
Gazepoint software output including fixation position and
duration (FPOGX, FPOGY, and FPOGD), saccade character-
istics (SACCADE MAG, SACCADE DIR), pupil diameter
(LPD, RPD), and blink patterns (binary blink state, blink
duration, and blinks per minute).

Facial features were extracted from OpenFace [13] anal-
ysis following the approach in [4], focusing on head pose
dynamics (3-D translation vectors and their derived velocity
and acceleration) and facial AU intensities. We utilized the
intensity values (ranging from 0 to 5) of all 17 AUs detected
by OpenFace, which include raising chin (AU17), stretching
lips (AU20), and blinking (AU45).

Heart rate data, while collected and included in the dataset,
were not incorporated into our neural architecture. This de-
cision was influenced by the known challenges in processing
photoplethysmography (PPG) signals from consumer-grade
wearables. The complexity of properly filtering and nor-
malizing these signals, especially during physical movement
associated with gameplay, presents an opportunity for future
work with this dataset.

The architecture employs modality-specific encoders with
temporal convolutions (kernel size = 5, stride = 2) and
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global pooling. Each encoder processes 5-s windows of its
respective input stream. The EEG encoder handles 14× 5
matrices (channels × frequency bands), the eye-tracking
encoder processes 8-D feature vectors (fixation metrics,
pupil size, and blink rate), and the facial feature encoder
takes 20-dimensional vectors (AU intensities and head pose
parameters).

Late fusion combines these encoded features through
concatenation, followed by a two-layer MLP (hidden units
= 128*3 then 128) with dropout (0.3) between layers.
We used the Adam optimizer with learning rate 1e−4
and a class-weighted cross-entropy loss function to ad-
dress the class imbalance (635 high-engagement samples
versus 265 low-engagement samples). Following our strict
participant-level separation protocol, each fold’s training
data were further split using stratified group sampling,
holding out 3–4 participants as a validation set for early
stopping.

The multimodal approach achieved 61%± 9% accu-
racy, with notably strong performance in high-engagement
detection (precision: 0.73± 0.08) but challenges in low-
engagement cases (precision: 0.28± 0.20). This performance
pattern reflects both the dataset’s class imbalance and the
inherent difficulty of detecting disengagement states. While
the overall accuracy is lower than the flow-based approach,
the multimodal model demonstrates the feasibility of en-
gagement prediction using purely sensor-based inputs, with-
out requiring game-specific knowledge such as difficulty
levels.

SOURCE CODE AND SCRIPTS
The scripts used in this work are publicly available in the
GitHub AmmarRashed/MultimodalEngagement repository.2
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