
Enhancing the Quality of Interactive Multimedia Services
by Proactive Monitoring and Failure Prediction

Mohammed Shatnawi
Microsoft, Redmond, WA, and

Simon Fraser University
Burnaby, BC, Canada

Mohamed Hefeeda
Qatar Computing Research Institute

Hamad Bin Khalifa University
Doha, Qatar

ABSTRACT
Online multimedia communication services, such as Skype
and Google Hangout, are used by millions of users every
day. Although these services provide acceptable quality on
average, users occasionally suffer from reduced audio quality,
dropped video streams, and even failed sessions. To mitigate
some of these problems, service providers closely monitor the
performance of different parts of the system. However, most
current techniques for monitoring and managing the quality
of service (QoS) of online multimedia communication ser-
vices are reactive and lack the ability to adapt to dynamic
changes in real time. We propose a novel proactive approach
for continuously monitoring the health of large-scale mul-
timedia communication services, and dynamically manag-
ing and improving the quality of the multimedia sessions.
The proposed approach, called Proactive QoS Manager, has
novel light-weight methods for estimating the capacity of
different components of the system and for using this capac-
ity estimation in allocating resources to multimedia sessions
in real time. We implement the proposed approach in one
of the largest online multimedia communication services in
the world and evaluate its performance on more than 100
million audio, video, and conferencing sessions. Our empir-
ical results show that substantial quality improvements can
be achieved using our proactive approach, without changing
the production code of the service or imposing significant
overheads. For example, in our experiments, the Proac-
tive QoS Manager reduced the number of failed sessions
by up to 25% and improved the quality (in terms of the
Mean Opinion Score (MOS)) of the succeeded sessions by
up to 12%. These improvements are achieved for the well-
engineered and highly-provisioned online service examined
in this paper; we expect higher gains for other similar ser-
vices.

Categories and Subject Descriptors
H.4.3 [Information Systems]: Information Systems Ap-
plications: Communications Applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MM’15, October 26–30, 2015, Brisbane, Australia.
c⃝ 2015 ACM. ISBN 978-1-4503-3459-4/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2733373.2806275.

Keywords
Online multimedia communications; quality of service; fail-
ure prediction; dynamic monitoring

1. INTRODUCTION
Interactive multimedia communication services such as

Skype, Viber, Whatsapp, and Google Hangout offer a wide
variety of services including calling, media sharing, and con-
ferencing services. There are over a billion customers who
use online communication and media sharing services ev-
eryday [21]. These social and multimedia communication
services compete in the features they provide, as well as the
quality of their services. They have Service Level Agree-
ments (SLAs) covering various aspects such as call quality,
media quality, content sharing latency, reliability, response
times, and up-times. Failure to adhere to SLAs results not
only in low customer satisfaction, but also comes with a
heavy price tag due to fines and loss of business. For exam-
ple, the estimated cost of the annual downtime of IT systems
in North America is about $26.5 billion [2].

A typical interactive multimedia communication service
includes client applications and an online cloud infrastruc-
ture deployed in multiple data centers around the world,
and it uses the Internet as the backbone for communica-
tions. When a user calls another user, a client application
initiates the session and invokes an online service endpoint in
one of the data centers. This end point manages the session
by invoking many other sub-services, referred to as compo-
nents, including identity verification, call management, me-
dia adaptation, session routing, experimentation, and ad-
vertising. Instances of these components are created and
provisioned on different data centers. The perceived quality
of session is directly impacted by the performance of these
components. Therefore, if we are able to monitor these var-
ious components in real-time to assess their current perfor-
mance and predict any failures before they happen, we can
significantly improve the quality observed by users, by rout-
ing the sessions and multimedia content through the com-
ponents and data centers that currently have the highest
performance and reliability.

We define a failure as an observed deviation of a compo-
nent from its expected behavior. For example, some users
may be having a video conference call using Skype, sharing
a presentation, and exchanging messages. Users expect the
audio and video streams and the shared presentation to work
properly without failures such as intermittent audio, video
glitches, and lost slides. Failure management, a term we use
to refer to all aspects of dealing with failures, plays a key



role in the reliability of online multimedia communication
services. It includes service monitoring, failure prediction
and detection, root-cause analysis, all the way to failure han-
dling and prevention. We focus in this paper on end-to-end
(e2e) real-time service health monitoring, failure prediction,
and making real-time decisions about component selection
and routing paths to enhance the reliability and quality of
interactive multimedia communication services.
Current approaches to health monitoring and failure pre-

diction in multimedia communication services, and online
services in general, are mostly reactive [17, 11]. For exam-
ple, Monitoring in Hystrix of Netflix takes place in real-time
but failures are noted after they happen. Also, the cre-
ation of a failure predictor is complex and time consuming
and thus not suitable for real-time management [25, 12].
Thus, failure prediction generation takes place before the
run-time lifecycle of the online service. Also, the resulting
predictor is built for certain configurations and working con-
ditions like the number and performance of audio de-jitters
and video transcoders. If these configurations change, the
predictor may no longer be accurate. For example, the pre-
dictor could be designed for a video encoder that is able to
encode N videos per minute and it fails beyond that. If the
administrator adds more resources to the encoder so that it
can handle 2 × N videos per minute, the predictor would
likely continue to predict failure if the number of videos per
minute approaches N , not 2×N . In this paper, we call these
predictors static predictors, because they do not adapt to
changes in the service functionality or the provisioned re-
sources.
We propose a novel approach to monitoring the health and

improving the quality of interactive multimedia communica-
tion services in real-time. Real-time refers to the runtime
lifecycle of the service, where the service is in production and
being used by real customers. We use synthetic transactions
to monitor the service by exercising it like real customers,
generate current data about it, and then use this fresh data
to create and maintain up-to-date failure predictors for the
service. The results of the synthetic transactions and the
failure predictors are used to make decisions, in real-time,
on which services and which paths to route audio and video
sessions to.
We implement and evaluate the effectiveness of the pro-

posed approach in a large interactive multimedia communi-
cation service in Microsoft[13]. The service handles around
2.5 million transactions per second at peak time. We run
our experiments for 5 days in a test cluster that gets 1% of
the traffic in a data center, and we process more than 100
million audio, video, and conferencing sessions. Our results
show that our proactive approach not only substantially im-
proves the quality of interactive multimedia communication
services, but it also saves network and computing resources.
This allows the service to admit more sessions and/or allow
current sessions to further improve their quality by adding
more streams.
The contributions of this work are as follows:

• Novel approach to proactively monitor the health and
quality of interactive multimedia communication ser-
vices.

• Light weight algorithm for building dynamic failure
predictors in online multimedia communication ser-

Figure 1: High-level architecture of multimedia
communication services.

vices, and using these predictions to estimate the avail-
able capacity of different components of the service.

• Algorithm to provide service configuration and routing
path recommendations in real-time for the sessions in
multimedia communication services.

• Insights and experiences from our actual implementa-
tion and deployment of the proposed approach in a
large online service.

The rest of this paper is organized as follows: Section 2
discusses the background of our work and the related works.
Section 3 presents our approach. Section 4 describes the
evaluation of the proposed approach, and Section 5 con-
cludes the paper.

2. BACKGROUND AND RELATED WORK
In this section, we present a high level overview of interac-

tive multimedia communication services, describe how audio
and video sessions are created, the points of failure we try
to address, and the current research methods that attempt
to handle them.

2.1 Background
A high level diagram of an interactive multimedia com-

munication service is depicted in Figure 1. When a user
calls another user, the session is routed to the closest data
center. The session may be composed of audio, image, and
video streams. Each data center implements an instance of
the multimedia communication service that is able to handle
all streams in a session. Each data center also implements a
service routing and selection component. If the data center
is able to handle the session, it routes all aspects of the ses-
sion to its internal components. If the data center is able to
handle part of the session, e.g., the audio but not the video
stream, it routes the video stream to another data center.
Thus, a multimedia communication session may have all its
streams going through the same path from the source to the
destination, or may have some of the streams of the session
go through different paths. An example is shown in Fig-
ure 1, where the audio from the source client on the left is
processed by DC1, and the video is processed by DC3.

Figure 2 provides a more detailed look at the components
in each data center as well as the components of the pro-
posed approach, shown in the dotted rectangle. We describe
the proposed approach in the next section. For now, we de-
scribe the various components in each data center, and how



Figure 2: The components of the multimedia com-
munication service and the Proactive QoS Manager.

a session is created between two client applications. The ser-
vice has challenging requirements, and operates under strict
SLAs. It receives multimedia communication requests from
applications running on mobile devices, Web, and PCs. It
processes each request, determines the source device, iden-
tifies ads and experimentation configurations based on app
categories, device types, user information if available with
user permission to use, and user location. It processes the
media, and makes a call to the destination client app with
the target media, ads, and experimental parameters. Each
of the components in the multimedia communication service
is comprised of many geo-located instances so that the client
call is routed to the most suitable, geo-location and perfor-
mance wise, data center. The service is composed mainly
of Call Manager, Experimentation, Ads Selection, Media
Manager, and Telemetry components. The Media Manager
estimates the available compute and network resources to
maximize the session quality. The Media Manager enables
image, audio, and video content to be transported from one
endpoint to another as part of a session using UDP or TCP.
It implements audio and video encoding and decoding, and
packet loss compensation. The Ads Selection component
finds relevant ads for the session. The Experimentation com-
ponent identifies sessions that are suitable for new experi-
ments like new app functionality and/or new color schemes.
The Telemetry component collects system performance indi-
cators like available memory and compute resources, as well
as functionality measurements like the quality of a video in
a multimedia session and number of calls made per minute.
When a user makes a call from an application, the Call

Agent tries to connect to the multimedia communication
service. The Call Manager of the service handles the incom-
ing session request. It breaks down the multimedia session
into its constituents (i.e., audio, video, conferencing, ads,
experiments) and tries to identify the best instances in the
available data centers that are able to handle the multimedia
session. Depending on the used transport protocol (UDP vs
TCP) the packets of the session are routed to the selected
components, and the connection is established between the
two ends of the multimedia session. During the session, the
selected components and routing paths do not change.
As can be noted from this high-level description, the qual-

ity of the multimedia calling experience has complex de-

pendencies including the selection of components, the rout-
ing paths to get to the destination, and the scale and per-
formance characteristics of the Media Manager. There is
high demand on the Media Manager component, which may
lead the Media Manager to reduce the quality of multimedia
streams to ensure that communication sessions do not get
dropped. So if we can, in real-time, continuously know the
components that have the highest available resources, the
highest performance characteristics, and the highest multi-
media throughput quality as well as predict how these fac-
tors will change over the coming short period of time, we
can make component selection and path routing decisions
in real-time that will result in high quality multimedia com-
munication sessions.

2.2 Related Work
Several works have tried to address the reduced qual-

ity stemming from contention in multimedia communication
services. For example, Trajkovska et al. [24] propose an al-
gorithm to join P2P and cloud computing to enhance the
Quality of Service (QoS) of multimedia streaming systems.
They investigate cloud APIs with built-in functions that al-
low the automatic computation of QoS. This enables nego-
tiating QoS parameters such as bandwidth, jitter and la-
tency. The work in [24] deals with the limitations caused by
the platforms where the multimedia streaming takes place.
Tasaka et al. [22] study the feasibility of switching between
error concealment and frame skipping to enhance the Qual-
ity of Experiences (QoE). This approach utilizes a trade-
off between the spatial and temporal quality that is caused
by error concealment and frame skipping. The algorithm
they suggest switches between error concealment to frame
skipping depending on the nature of errors encountered in
the video output. Ito et al. [5] study the tradeoff between
quality and latency in interactive audio and video applica-
tions with the Internet being the medium of communica-
tions. They note that the temporal structure of audio-video
communication is disturbed by the delay jitter of packets.
They study the impact of de-jittering on latency, and the
impact of improved latency on quality, which is how the
temporal structure is preserved. Through the adoption of
psychometric methods, they adjust the initial buffering to
enhance latency and quality.

To study the impact of geographical distribution of mul-
timedia services and distributed peers, Rainer and Tim-
merer [14] suggest a self-organized distributed synchroniza-
tion method for multimedia content. They adapt IDMS
MPEG-DASH to synchronize multimedia playback among
the geographically distributed peers. They introduce ses-
sion management to MPEG-DASH and propose a new dis-
tributed control scheme that negotiates a reference for the
playback time-stamp among participating peers in the mul-
timedia session. The goal is to improve synchronization,
enhance quality, reduce jittering, and enhance latency.

A number of works have attempted to address video ren-
dering problems in real-time. Li et al. [9] propose a new
rendering technique, LiveRender, that addresses the prob-
lems of bandwidth optimization techniques like inter-frame
compression and caching. They address problems of latency
and quality by introducing compression in graphics stream-
ing. Shi et al. [20] propose a video encoder to select a set
of key frames in the video sequence which uses a 3D image
warping algorithm to interpolate non-key frames. This ap-



proach takes advantage of the run-time graphics rendering
contexts to enhance the performance of video encoding.
The aforementioned approaches work on the limitation

of the systems, and try to make the best of available re-
sources to enhance the multimedia communication experi-
ences. These schemes aim at controlling QoS, and managing
latency and lack of quality. They come short of addressing
the actual cause of the problem, which is knowing the state
of the services, identifying the services and components that
are not performing well, and/or will not perform well in the
coming period, and trying to avoid contention and conges-
tion before they happen. We propose a different approach
to enhancing the quality in multimedia communication ser-
vices. We proactively and dynamically monitor the multi-
media services to get an insight into their state, and contin-
uously know the best available components where there is
minimal contention and congestion, best quality, and least
jitter and delay.

3. PROACTIVE QOS MANAGER
We define three terms that we use in this paper: Appli-

cation, Service, and Platform. Application refers to the
software used by real customers to make calls. Service is the
online backend system that applications invoke to accom-
plish the required functionality such as calling other parties
and sharing media with them. A service may be comprised
of one or more online services. To avoid confusion, we refer
to these other services as components of the main service.
Platform refers to the stack of software, hardware, and op-
erating system that is used to run the applications and ser-
vices. For example an Apple iPhone is a client platform,
and Microsoft Azure is a service platform.

3.1 Overview
The proposed approach, denoted by Proactive QoS Man-

ager in Figure 2, monitors the health and QoS of multi-
media communication services and predicts failures in real-
time. We use synthetic transactions to proactively and con-
tinuously test the services and platforms and generate cur-
rent data about them. The data is used in its ephemeral
state to: (1) provide situational awareness about the whole
service, (2) correlate failures between applications, services,
and platforms, and (3) build a failure prediction algorithm
that predicts future failures. The data is used to keep the
failure prediction system up to date with the changes of the
services and platforms. These three steps result in the abil-
ity to make decisions about which components to use that
result in the best possible multimedia session experiences.
Before getting into the details of the proposed approach,

we describe the Testing in Production (TiP) concept, be-
cause our approach uses it. TiP entails software testing
techniques that utilize real production environments, while
mitigating risks to end users [16, 3, 23]. Online service
providers such as Facebook, Google, Microsoft, and Yahoo
use TiP to perform functional, stress and performance test-
ing in real-time [23]. Synthetic transactions are used in TiP
to generate testing loads, and they are marked with special
moniker(s) so that they are distinguished from real trans-
actions. Synthetic Transactions should not interfere with
the service destructively, or result in an incorrect state of
the service like product inventory reduction due to test pur-
chases. Synthetic transactions in TiP do use the computing
resources of the tested service. Service designers account for

such an impact due to the importance of TiP; without it
the service would be flying blind [16, 23]. We add our syn-
thetic transactions for QoS management to the existing TiP
transactions as described in the next section. No code is in-
strumented in the production code of the service to generate
the data for our approach. This is an important advantage
for our approach, because we do not impact the production
code, and thus no extra testing is needed. Also, updates to
the service monitoring and failure predictor do not require
production code update or redeployment.

Figure 2 shows the high-level diagram of the multime-
dia communication service with the proposed approach in
the dotted rectangle. The proposed approach consists of
four components: (1) Proactive Monitor, (2) Capacity Es-
timator, (3) Component Selector, and (4) Monitoring Data
Repository. The first three components are implemented
for each service instance deployed in a single data center,
and the Monitoring Data Repository is centralized to all in-
stances; i.e., one instance for the whole system. The Proac-
tive Monitor tests the individual components of the service
as well as the whole service e2e. It collects the test results
and makes them available to the Capacity Estimator and
the Component Selector. The Capacity Estimator uses this
data to implement a dynamic failure predictor and to keep
it up to date to handle any changes. It predicts the capac-
ity of individual components of the service and the loads at
which the components will start to violate their SLAs. The
Component Selector collects the current status of the ser-
vice and its components from the Proactive Monitor, and
the capacity limits that will result in SLA violations for the
coming monitoring period from the Capacity Estimator. It
then creates a Service Capacity Plan for the coming mon-
itoring period. The plan contains the available components
in the service, their current state, and their projected ca-
pacity before SLA violations start to happen. It pushes this
plan to the Monitoring Data Repository which gets the ser-
vice capacity plans from all service instances from all data
centers. It combines these plans into one Global Capacity
Plan, and makes it available to each service instance to pull
through an API. The plans are updated regularly; the fre-
quency of update depends on the service at hand, typically
this would range from 30 seconds to a few minutes. The
following subsections describe each of the elements of the
proposed approach.

3.2 Proactive Monitor
The goal of the Proactive Monitor is to provide real-time

insights into the state of the multimedia communication ser-
vice. We define two concepts: Local System and Sce-
nario. Local System refers to the stack of software, hard-
ware, and operating system used to perform a specific func-
tionality in the online service. Scenario refers to the collabo-
ration of the set of local systems that are used to implement
an e2e user scenario. As an example, assume a multimedia
communication service that allows users to invite other users
to watch a video together. The e2e scenario is the process
of calling others and sharing videos with them. Assume the
event of interest is video quality. The video quality SLA for
the e2e transaction could be 4, i.e., good quality, using the
Mean Opinion Score (MOS) [10]. The video sharing pro-
cess meets its SLA if the video MOS quality is 4 or 5, and
fails otherwise. Assume that the sharing service makes the
following calls behind the scene: buffer and encode video,



transmit video, receive video, decode video, and de-jitter
video. Each of these calls represents a local system. The
collaboration of these local systems to implement the video
sharing process represents the e2e scenario.
We define three levels of monitoring: (1) local system

level, (2) scenario level, and (3) platform level. The Proac-
tive Monitor implements the first level by regularly perform-
ing Local System synthetic transaction Tests (LSTs), to con-
tinuously monitor the health of each local system. For ex-
ample, this would be calling the video buffer and encode
function and passing it a video, and noting its output video
and the time it took to perform the encoding. The Proactive
Monitor implements the scenario level of monitoring by per-
forming an e2e Scenario Synthetic Transaction Tests (SSTs)
that implement the functionality provided to customers, i.e.,
sharing a video between two clients. The SST test calls all
the local systems that collaborate to perform the functional-
ity, and notes the e2e output of the scenario. These two sets
of tests, the LSTs and SSTs, are used to monitor the individ-
ual local systems and the e2e scenarios. The Proactive Mon-
itor also implements Platform Synthetic Transaction Tests
(PSTs) to collect performance indicators like CPU utiliza-
tion, memory consumption, and process count to correlate
with the observed failures. We do not implement applica-
tion synthetic transactions, i.e., test calls to the applica-
tions, as applications are generally installed on user devices
and are mostly on metered networks. We use the default
client telemetry implemented on these devices that provide
information about the application usage. We combine this
information with the service and platform synthetic transac-
tion information to monitor the service e2e, and to generate
failure prediction systems.
The Proactive Monitor makes LST and SST calls using

test loads, which are similar to real loads. The real user be-
havior, loads and call distributions, is found from logs of pre-
vious deployments of the service, or from field/market stud-
ies about the service. For example, it would be known, based
on previous production logs and/or estimated from market
research, that the average user of a multimedia communi-
cation service shares a video of 60 seconds with 2-5 friends
at a time, and that the service gets around 1,000 concur-
rent users at peak times. The SSTs made by the Proactive
Monitor start with these loads, and progressively add more
loads until the failure causing loads are found. If the SLA
of video quality is, say, a minimum MOS value of 4, then
any video quality of MOS value less than 4 is considered a
failure. The test loads are executed on the current service,
thus they generate information that represent the current
state of the service and its performance characteristics. The
synthetic transactions are run for a short period of time,
e.g., 5 seconds every couple of minutes. Thus, they do not
increase the load on the service considerably.
The LST, SST, and PST calls are made at equidistant

time series; once every M seconds. The value of M is con-
figurable, depending on the service, and it varies during run
time, depending on the state of the service. If the service
is churning and failures are happening more, then M is re-
duced to get a better pulse of the service. The event, i.e.,
video quality, is captured after each of these tests, and its
value is compared to the result of the prediction. If the ac-
curacy of the predictor starts to drop, the tests are done at
a higher rate to generate data to build a new predictor.

The set of tests performed every M seconds need not be
exactly like those of customer behavior. However, if the
service at hand requires an exact replica of the user behavior,
then parts of previous production logs representing real user
behavior can be replayed as suggested by [15, 7, 18].

3.3 Capacity Estimator
The Capacity Estimator tries to find the maximum capac-

ity that the service and its components can handle before
SLA violations start to happen. It does so by predicting
the capacity at which failure starts to happen. It imple-
ments a dynamic failure predictor that is able to cope with
the service and component changes in real-time. The failure
predictor is an independent module that runs in the same
environment where the online multimedia service runs. It
is part of the TiP system. It has access to the same re-
sources as the production service, but is not part of the
online service code. Updates and re-deployments of the pre-
dictor code can be done anytime without interfering with
the service production system.

Failure predictors are designed to predict the outcome of
an event [4, 6]. In multimedia communication applications
and services, events represent a variety of measurable as-
pects of the service, such as the call quality, the response
time of the service, and the availability of the service. In
this paper, failure prediction means predicting when the out-
come of an event does not meet its SLA. For example, if the
event of interest is multimedia quality, then failure predic-
tion means predicting the cases where the quality of the
shared media drops below the MOS value specified in the
SLA. We need a dynamic failure predictor that can be cre-
ated and updated in real-time. We implement one of the
latest failure predictors called Real-Time Dynamic Failure
Prediction (RTDFP) algorithm [19]; other predictors can
be used in our approach as well. We choose RTDFP be-
cause it can be created and maintained in real-time in a
short amount of time, and has high prediction accuracy. We
customize RTDFP for our Proactive QoS Management ap-
proach. The main steps of the Capacity Estimator are sum-
marized as follows:

• Step 1: Use the Proactive Monitor to exercise the ser-
vice and generate current data about it.

• Step 2: Collect, from the Proactive Monitor, the syn-
thetic transactions and applications’ inputs, service
and platform outputs, e2e scenario outputs, such as
media quality and response times, and events of inter-
est. This data is collected into in-memory constructs
with a predefined dimensional model (explained be-
low).

• Step 3: Build a real-time predictor, from the data col-
lected from the applications, services, and platforms
and the events of interest.

• Step 4: Estimate the available capacity based on the
outcomes from the failure predictor.

The data collected in Step 2 includes the current load and
state of the service like the number of videos to process,
and the used resources like media processors and call de-
jitters. Service and platform related data such as memory
utilization, number of processes, and CPU utilization are
also collected. We describe in the evaluation section how



we capture such data in our experiments. The data is col-
lected and hosted in memory in an array with a dimensional
model schema [8]. Dimensional modeling refers to a set of
techniques used in data analysis to provide insights into the
cause-effect relationships between entities. Data is organized
into two sets, a set of measured or monitored data, called
facts, and a set of parameters, called dimensions that de-
fine and control the facts. For this paper, the fact is the
event of interest that is to be predicted, such as media qual-
ity. The dimensions are the other sets of data that impact
the event, such as:

• The LST that is called: this allows us to know which
test is run.

• The time that LST is called: the time stamp allows us
to relate the cause and effect in the service calls, i.e.,
at a specific time there were that many function calls
and tasks, which caused the observed response time.

• The number of tasks: the number of media process-
ing jobs in the service.

• The component: the specific component, like Ads
Selection or Experimentation, in the service instance.

• The data center: where the components are deployed;
this could include more details such as the deployment
ID.

Table 1: Dimensional Model for the online
Multimedia Service.
Dimensions Fact

Dim1
LST

Dim2
Tasks

Dim3
Data
center

Dim4
Com-
ponent

Dim5
LST
time

Fact1
Video
Qual-
ity
(MOS)

1 53 3 5 23 4
2 53 3 2 17 4
3 53 3 3 31 3
4 53 3 1 19 5

Table 1 represents a service QoS dimensional model. Note
that we use surrogate keys [8] to represent non-measured and
non-numeric values. A surrogate key is a unique identifier of
an entity; it is an integer and it is not derived. This makes
a table with smaller footprint in memory, as only integers
are used, and enhances the performance of operations done
on it. The map between the surrogate keys and the actual
values is stored in a local table that has the actual dimension
values and the corresponding surrogate keys. For example,
the service instance in the US western data center maps to
”Dim3 Service” surrogate key value 3.
The collected data is used for two purposes. The first

purpose is to feed the Monitoring Data Repository to build
reports and dashboards that represent the current state of
the service such as how many users are making multimedia
calls in a given data center and the average quality of shared
media over time. This provides situational awareness about
the service on an ongoing basis. The other purpose that we
use this data for is to generate a real-time failure predictor,
and maintain its accuracy over time (Step 3).
A predictor is a classification system [4, 6] that defines

and monitors boundaries of working conditions that result

in an event success or failure. The event could be the MOS
quality. The working conditions are the independent and
dependent variables that control the outcome of the event.
We use the load of each component as the independent vari-
able, and the CPU utilization as the dependent variable;
because it is dependent on the load of each component, yet
it plays a key role in controlling the event outcome. We im-
plement a light-weight predictor based on RTDFP that uses
the load and the CPU utilization of each component as a
logical expression model [19]. The logical expression model
is a set of conditions defining the safe component working-
conditions that result in the success of the event. We define
the following model for the MOS value to be successful:

• MOS Quality Condition for Success for Component N :

– Independent Variable for Component N <
IndependentV ariableMaxV alue found by the Proac-
tive Monitor

– Dependent Variable For Component N <
DependentV ariableMaxV alue found by the Proac-
tive Monitor

The Capacity Estimator (Step 4) gets the maximum val-
ues for the independent and dependent variables that are
found by the Proactive Monitor LST and SST tests, builds
the Service Capacity Plan for the coming monitoring pe-
riod, and passes it to the Component Selector. In other
words, the Capacity Estimator utilizes the RTDFP failure
prediction to build the component capacity for the coming
monitoring period that will not result in SLA violations.

3.4 Component Selector
The Component Selector combines the current data about

the service from the Proactive Monitor with the projected
capacity that the service and its components can handle
from the Capacity Estimator. Table 2 shows an example
of this combined data that represents the Service Capacity
Plan for the coming monitoring period. The Component
Selector pushes Table 2 to the Monitoring Data Repository
to be combined with similar data about the components
of the rest of the data centers. The Component Selector
pulls the Global Capacity Plan from the Monitoring Data
Repository into a new instance of Table 2.

The Service and Global Capacity Plans are computed at
the beginning of each monitoring period. Each Component
Selector reads these plans from the Monitoring Data Repos-
itory, and makes them available for its local service instance
in its data center. The local service reads the Global Ca-
pacity Plan from the Component Selector into an in-memory
array to make access to it fast and suitable for routing ev-
ery session in real-time. When a client invokes the local
service, the local service finds the most suitable component
to handle the session from its in-memory copy of Table 2,
and routes the session to it. Two factors are used in de-
termining the most suitable component: (1) geo-graphical
location; the Data Center dimension in Table 2 is used to
find the closest component that can be used, so locally first
then the same region, and (2) the component that has the
highest available capacity; the Projected Extra Media Jobs
fact in Table 2 provides this information. Once a session
is committed to a component, it remains there until com-
pleted. In other words, session routing to components using



Procedure 1 Component Selector Algorithm

COMPONENT SELECTION

function GetCurrentStateOfServices

Select Service, Component, ProcessingJobCount, AvgMOS
from Table1
orderdescendingby AvgMOS
groupby Service and Component;

end function

function GenerateServiceCapacityPlan

GetCurrentStateOfServices();
Use RTDFP to get Predicted JobCount until failure;

MergeJoin Ordered list with Predicted JobCount until failure
orderdescendingby Service and Component;

Select Service, Component, ProcessingJogCount,
AvgMOS, JobCountUntilFailure
orderdescendingby AvgMOS and JobCountUntilFailure;

Populate Service Capacity Plan instance of Table 2;

end function

function GetGlobalCapacityPlan
Push Service Capacity Plan to Monitoring Data Repository;
Wait until Monitoring Data Repository builds Global Capac-
ity Plan;
Pull Global Capacity Plan from Monitoring Data Repository;
Push Global Capacity Plan to local service Configurations
component;
end function

the Global Capacity Plan affects new sessions only. This
prevents session oscillation between components.
As shown in Procedure 1, the Component Selector imple-

ments three functions: GetCurrentStateOfServices(), Gen-
erateServiceCapacityPlan(), and GetGlobalCapacityPlan().
GetCurrentStateOfServices() gets the current loads and sta-
tus of each component in the system from the Proactive
Monitor. This function returns an instance of Table 1. Gen-
erateServiceCapacityPlan() uses the failure predictor to pre-
dict the loads that will result in SLA violations. These loads
are used to determine the available capacities in the compo-
nents for the next monitoring period. The available capac-
ities are combined with the instance of Table 1 to produce
an instance of Table 2, which is the Service Capacity Plan.
GetGlobalCapacityPlan() pushes the Service Capacity Plan
to the Monitoring Data Repository which gets all such plans
from all Component Selectors. The Monitoring Data Repos-
itory combines all these instances into the Global Capacity
Plan. GetGlobalCapacityPlan() pulls the Global Capacity
Plan from the Monitoring Data Repository and pushes it to
the service configurations so that the service can use it in
routing sessions.

Table 2: Service Capacity Plan.
Data
Center

Com-
ponent

Current
Pro-
cessing
Jobs

Current
Avg
MOS at
Service

Projected
Extra
Media
Jobs

4 5 36 5 28
2 6 41 5 23
3 2 27 5 19
7 4 17 5 17

3.5 Monitoring Data Repository
The main function of the Monitoring Data Repository is

to combine the local Service Capacity Plans into one Global
Capacity Plan that represents the whole system, and to
make it available to all components to pull as needed. This is
an important functionality that prevents excessive communi-
cation between the Component Selectors of each data center
instance of the Proactive QoS Manager. With the Monitor-
ing Data Repository, every Component Selector computes
the Service Capacity Plan, and communicates twice with
the Monitoring Data Repository. The first is to send its
Service Capacity Plan, and the second is to get the Global
Capacity Plan. The Monitoring Data Repository gets all
Capacity Plans, merges them, and generates one Global Ca-
pacity Plan that represents the current usage of all compo-
nents as well as their projected capacities. The Monitoring
Data Repository is implemented as a single instance. It is
part of the TiP system, so it does not have the high avail-
ability requirements that production systems have. In case
it is down, each Component Selector continues to use its
own Service Capacity Plan until the Global Capacity Plan
is built. The production service uses the suggested Proactive
QoS Monitor as a heuristic agent to enhance its component
selection and routing functionality. The production system
is designed to survive and function well, even if the whole
TiP system is down.

4. EVALUATION
We implement the proposed approach in an operational

online multimedia communication service offered by Microsoft
[13] and we present results from more than 100 million video
and audio sessions.

4.1 Implementation and Setup
We implement LSTs for four local systems: Call Man-

ager, Experimentation, Ads Selection, and Media Manager.
The geo-distributed multimedia communication service pro-
cesses about 2.5 million requests per second at the peak. It
is deployed in 8 data centers in 3 continents. LSTs are API
calls to each of these components, with loads as explained in
the Proactive Monitor section. The setup we implement is
based on the model shown in Figure 2. We use a small test
cluster of 10 servers in the data center, which gets about
1% of the data center traffic to run our experiments. Each
server is a quad-core intel Xeon server with 12 GB RAM.
We implement a Proactive Monitor that makes LST, SST,
and PST calls to exercise each component and we capture
the inputs to the LSTs and the outputs of the Local sys-
tems. Similarly, we record the output of SSTs and PSTs.
An SST is composed of the LSTs that represent the sce-
nario; so a session with audio and video is composed of Call
Manager, Experimentation, Ads Selection, and Media Man-
ager LSTs with parameters that specify the audio and video
characteristics like length and encoding. We measure the
SST response time and quality of the multimedia session
using a proprietary automated MOS algorithm. PSTs are
implemented in an infinite loop that reads CPU utilization,
memory utilization, and number of processes from the per-
formance monitoring APIs of the operating system of each
component every 30 seconds.

The Proactive Monitor makes the calls to each of the local
systems and controls the various aspects of the multimedia
communication request, including media type, media size,



location, and automated user information. The Proactive
Monitor also simulates multimedia sessions made by multi-
ple clients, by making simultaneous calls with different user
agent information. It controls the load in two ways: the
number of media sessions made by each simulated client in
a given time, and the number of simultaneous media sessions
representing multiple client calls. The data is collected into
in-memory arrays with a schema similar to Table 1. The syn-
thetic transactions are designed to run 100 concurrent LSTs
every minute. The accuracy of the predictor is measured by
comparing its predictions with the actual results and moni-
tored event value from running LSTs and SSTs. Each LST
set of tests takes about 5 seconds to complete. The resulting
data from the Proactive Monitor synthetic transactions are
collected by the Capacity Estimator and Component Selec-
tor. The Capacity Estimator makes capacity estimates for
the coming monitoring period of one minute. The Compo-
nent Selector builds the Service Capacity Plan every minute,
and communicates with the Monitoring Data Repository to
get the updated Global Capacity Plan.

4.2 Performance Metrics
We study the quality of media during the multimedia ses-

sion and the number of shared media streams, i.e., video,
audio, and image. We use the following metrics in our ex-
periments:

• Media Quality: the quality of media (audio, video,
and image) that is shared between clients. We use
MOS for this metric. We use a proprietary automated
MOS algorithm. Other automated MOS test software
is commercially available, e.g., [1]. These automated
MOS algorithms enable quality measurements in test
environments, where sessions are generated program-
matically between test clients.

• Number of Failures: the number of sessions that
failed to meet the required MOS quality as specified
by the service SLAs.

• Increase in Service Capacity: the number of ad-
ditional sessions that the service can handle. This
value is found by the Capacity Estimator and using
the Proactive Monitor tests to verify its accuracy. We
measure the service capacity, by finding the loads that
the service can handle until failure, with and without
the proposed approach.

• CPU Utilization: this reflects how much of the total
available resources are freed up due to better resource
utilization and load balancing. We get this as part of
running the PSTs, through an operating system API
call every 30 seconds. This is extracted for each com-
ponent.

• Overhead: We measure the CPU utilization of the
service with and without the TiP system, to find the
overhead of TiP.

4.3 Results
The service we test our approach in has a high track record

for meeting its strict SLAs; on average and over a period of
almost three years, the service is able to meet its multimedia
communication quality SLA more than 99.9% of the time.
The service strives to do better, as a 0.1% failure rate is

0

5000

10000

15000

20000

25000

1 2 3 4 5

F
ai

le
d

 S
es

si
o
n

s

Time (days)

Base Service

With Proactive QoS Manager

Figure 3: Failure reduction with proposed approach.

still high and costs a lot of money for a service that man-
ages 2.5 million transactions per second at peak. That’s
25,000 transactions per second at peak that potentially did
not meet SLA. To provide an idea of the monetary impact
alone of such a failure rate, note that the ads monetization
for such a service runs at a rate higher than $10 per a thou-
sand ad impressions. That is, advertisers pay $10 for every
1,000 ads shown to customers. So that’s an opportunity loss
of minimally $250 per second, let alone the negative impact
of the lower customer satisfaction, which can lead to losing
customers to competitors.

Our test cluster gets about 3,000 transactions per second
at peak. We ran the experiment for 5 days, and we divide the
test time into two alternating parts: (1) the base or reference
part, where we run the traffic over the service without the
proposed solution for one hour, and (2) the updated service
or optimized part, where we run the traffic over the service
with the proposed solution for another hour. We aggregate
the results of our tests at a granularity of 6 hours; i.e., each
point in the graphs we show in this section represents a
6-hour aggregation, unless otherwise mentioned. In each 6-
hour period, 3 hours have the results for the base service,
and the other 3 hours have the results for the optimized
service with our Proactive QoS monitoring approach.

We processed more than 100 million sessions over the 5-
day period. For each period of 6 hours, the average number
of multimedia sessions we get is about 5 million, half of them
with our approach and the other half without it.

Number of Failures: We measure the number of failed
sessions with and without our approach, and we plot the re-
sults in Figure 3. As the figure shows, the average number of
failed sessions is about 19,000 failures without our approach.
Using the proposed approach to monitor, estimate capacity,
predict failures, and route to components with higher capac-
ity and better performance, the failed sessions count drops
to an average of 14,000. Therefore, the proposed approach
manages to drop the failed sessions by about 26%, on av-
erage. The average is fairly smooth because it is measured
across a large period of 3 hours. The gain from our ap-
proach is much higher during peak times, where resources
are constrained.

Media Quality: We measure the media quality of the
succeeded sessions. Our results show that not only did the
failed session count drop by about 26%, but the quality of
the sessions that meet SLA have seen an improvement as
well. Figure 4 shows that, on average, around 12% of the
sessions that used to meet SLA with MOS 4, are now meet-
ing their SLA with MOS 5, Excellent Quality. We study



0%

5%

10%

15%

20%

1 2 3 4 5

M
O

S
 I

m
p

ro
v

em
en

t 

Time (days)

MOS 4 to 5 Improvement

Figure 4: MOS increase from 4 to 5 over 5 days.

0%

5%

10%

15%

20%

1:00 2:00 3:00 4:00 5:00 6:00

M
O

S
 I

m
p

ro
v
em

en
t 

Time (hours)

MOS 4 to 5 Improvement

Figure 5: MOS increase from 4 to 5 over 6 hours.

the MOS improvement from 4 to 5 in more details over 12
hours, while alternating between using the service with and
without our approach every hour. We average the MOS
measurement every 5 minutes. We see an improvement of
about the same average, around 12%, as we see in the 5 days
experiment with 6 hour aggregation; please refer to Figure
5. This shows the stability and predictability of the pro-
posed approach over different time ranges and aggregation
periods.
Increase in Service Capacity: The average available

service capacity has also seen an improvement. This is the
number of extra multimedia sessions the service can handle.
Because of the enhanced component selection, the service is
seeing less bottlenecks and delays, and so is able to handle
more multimedia sessions. Figure 6 shows that the service
has an average of about 17% session capacity increase over
the 5 day experiment, and a maximum of up to 21% increase
can be achieved.
CPU Utilization: The service CPU utilization has seen

a drop of an average of 10% over the 5 day experiment, as
shown in Figure 7. This is closely related to the increase
in service capacity. Because of the optimized component
selection, the components are observing better load distri-
bution and so less congestion. The demand on their CPUs
has dropped by about 10%, which allows the components
to handle more sessions, by about 17%, with the same re-
sources.
Overhead: we measure the overhead of the TiP system

on the production system to determine the cost of the pro-
posed approach. We measure the service CPU utilization
with and without TiP. We find that the average service CPU
impact caused by the whole TiP system is around 3% over
5 days, as seen in Figure 8. This includes the proposed
Proactive QoS Manager approach as well as all other test-

0%

5%

10%

15%

20%

25%

1 2 3 4 5

S
er

vi
ce

 C
ap

ac
it

y 
In

cr
ea

se

Time (days)

Figure 6: Increase in the available capacity.

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5

C
P

U
 U

ti
li

za
ti

o
n

Time (days)

Base Service

With Proactive QoS Manager

Figure 7: Reduction of CPU utilization.

ing in production functionality. All computations of our
approach are done on the TiP system, not the production
system. The improved multimedia quality, reduced failures,
enhanced service session capacity, and reduced CPU usage
are gains made by the proposed approach that make the
overall investment in the TiP system more than justified.

5. CONCLUSIONS AND FUTURE WORK
Current approaches to the management of the health and

quality of service in online multimedia communication ser-
vices are mostly static and can not keep up with the frequent
changes that happen during the real-time lifecycle of the ser-
vices. Monitoring the services and waiting for real sessions
to fail in order to gain insights into the state of the service
is a not an efficient solution. Online services have dynamic
situations that require them to change often, and the cost
of failures is higher. We presented a dynamic approach to
monitoring the health and quality of multimedia commu-
nication services. We use synthetic transactions to moni-
tor the service by exercising it like real customers, generate
current data about it, and then use this fresh data to cre-
ate and maintain up-to-date capacity predictions of different
components of the multimedia communication service. We
then take component selection and routing path actions in
real-time to enhance the quality of multimedia sessions. On
average, the proposed approach increased the overall media
sharing quality by 12%, decreased the percentage of failures
by 25%, reduced the CPU usage by 10%, and increased the
session capacity in the service by 17%.

A potential future work is to apply the proactive QoS
management approach to other multimedia services, such as
on-demand and live streaming systems.

6. REFERENCES



0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5

C
P

U
 U

ti
li

za
ti

o
n

Time (days)

With TiP

Without TiP

Figure 8: TiP impact on CPU utilization.

[1] Automated mean opinion score.
http://voip.about.com/od/voipbasics/a/MOS.htm.

[2] IT Channel. http://www.itchannelplanet.com/.

[3] E. Elliot. Testing in production A to Z - tip
methodologies, techniques, and examples. In Proc. of
Software Test Professionals (STP’12), New Orleans,
LA, March 2012.

[4] J. Han, M. Kamber, and J. Pei. Data Mining Concepts
and Techniques. Morgan Kaufmann, 3rd edition, 2011.

[5] Y. Ito, S. Tasaka, and Y. Fukuta. Psychometric
analysis of the effect of buffering control on user-level
QoS in an interactive audio-visual application. In
Proc. of ACM Multimedia Workshop on
Next-generation Residential Broadband Challenges
(NRBC’04), New York, NY, October 2004.

[6] M. Kantarczic. Data Mining Concepts, Models,
Methods and Algorithms. Wiley and IEEE Press, 2nd
edition, 2011.

[7] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat.
Life, death, and the critical transition: Detecting
liveness bugs in systems code. In Proc. of USENIX
Symp. on Networked Systems Design and
Implementation (NSDI’07), pages 243–256,
Cambridge, MA, April 2007.

[8] R. Kimball and M. Ross. The Data Warehouse Toolkit:
The Definitive Guide to Dimensional Modeling. Wiley
Computer Publishing, 3rd edition, 2013.

[9] L. Lin, X. Liao, G. Tan, H. Jin, X. Yang, W. Zhang,
and B. Li. Liverender: A cloud gaming system based
on compressed graphics streaming. In Proc. of ACM
International Conference on Multimedia (MM’14),
pages 347 – 356, Orlando, Florida, November 2014.

[10] Mean opinion score. https://technet.microsoft.com/en-
us/library/bb894481(v=office.12).aspx.

[11] Real-time monitoring.
http://techblog.netflix.com/2012/11/hystrix.html. and
https://github.com/Netflix/Hystrix.

[12] K. Nagaraj, C. Killian, and J. Neville. Structured
comparative analysis of systems logs to diagnose
performance problems. In Proc. of USENIX
Conference on Networked Systems Design and
Implementation (NSDI’12), pages 353–366, San Jose,
CA, April 2012.

[13] Microsoft application and services group.
http://www.microsoft.com.

[14] B. Rainer and C. Timmerer. Self-organized
inter-destination multimedia synchronization for

adaptive media streaming. In Proc. of ACM
International Conference on Multimedia (MM’14),
pages 327–336, Orlando, FL, November 2014.

[15] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul,
M. A. Shah, and A. Vahdat. Pip: Detecting the
unexpected in distributed systems. In Proc. of Symp.
on Networked Systems Design and Implementation
(NSDI’06), pages 115–128, San Jose, CA, May 2006.

[16] L. Riungu-Kalliosaari, O. Taipale, and K. Smolander.
Testing in the Cloud: Exploring the Practice. IEEE
Software Magazine, 2012.

[17] F. Salfner, M. Lenk, and M. Malek. A survey of online
failure prediction methods. In Proc. of ACM
Computing Surveys, Vol. 42, No. 3, Article 10, March
2010.

[18] F. Salfner and S. Tschirpke. Error log processing for
accurate failure prediction. In Proc. of USENIX
Workshop on Analysis of System Logs (WASL’08),
San Diego, CA, December 2008.

[19] M. Shatnawi and M. Hefeeda. Real-time failure
prediction in online services. In Proc. of IEEE
INFOCOM’15, Hong Kong, April 2015.

[20] S. Shi, C. Hsu, K. Nahrstedt, and R. Campbell. Using
graphics rendering contexts to enhance the real-time
video coding for mobile cloud gaming. In Proc. of
ACM International Conference on Multimedia
(MM’11), pages 103–112, Scottsdale, AZ, November
2011.

[21] Social networking statistics.
http://www.statisticbrain.com/social-networking-
statistics.

[22] S. Tasaka, H. Yoshimi, A. Hirashima, and T. Nunome.
The effectiveness of a qoe-based video output scheme
for audio-video ip transmission. In Proc. of ACM
International Conference on Multimedia (MM’08),
pages 259–268, Vancouver, BC, Canada, October 2008.

[23] Testing in production.
http://blogs.msdn.com/b/seliot/archive/2011/06/07/testing-
in-production-tip-it-really-happens-and-that-s-a-good-
thing.aspx.

[24] I. Trajkovska, J. Rodriguez, and A. Velasco. A novel
p2p and cloud computing hybrid architecture for
multimedia streaming with QoS cost functions. In
Proc. of International Conference on Multimedia
(MM’10), pages 1227–1230, Firenze, Italy, October
2010.

[25] W. Xu, L. Huang, A. Fox, D. Patterson, and
M. Jordan. Detecting large-scale system problems by
mining console logs. In Proc. of ACM Symp. on
Operating Systems Principles (SOSP’09), pages
117–132, Big Sky, MT, October 2009.


