Decoupling Video Upscaling from Rendering for Cloud Gaming

Deniz Ugur
School of Computing Science
Simon Fraser University
Burnaby, BC, Canada

ABSTRACT

Many recent video games require powerful hardware to render
them. To reduce such high hardware requirements, upscalers have
been proposed in the literature and industry. Upscalers save com-
puting resources by first rendering games at lower resolutions and
frame rates and then upscaling them to improve players’ qual-
ity of experience. Current upscalers, however, are tightly coupled
with the rendering logic of video games, which requires updating
the source code of each game for every upscaler. This increases
the development cost and limits the use of upscalers. The tight
coupling also stifles the deployment of upscalers in cloud gaming
platforms to reduce the required computing resources. We propose
decoupling upscalers from game renderers, which allows utilizing
various upscalers with games without changing their source code.
It also accelerates deploying upscalers in cloud gaming. Decoupling
upscalers from renderers is, however, challenging because of the
diversity of upscalers, their dependency on information at different
rendering stages, and the strict timing requirements of video games.
We present an efficient solution that addresses these challenges. We
implement the proposed solution and demonstrate its effectiveness
with two popular upscalers. We also develop a cloud gaming system
in the emerging Media-over-QUIC (MoQ) protocol and implement
the proposed approach with it. Our experiments show the potential
savings in computing resources while meeting the strict timing
constraints of video games.

CCS CONCEPTS

« Information systems — Multimedia information systems.

KEYWORDS

Super Resolution, Video Games, Cloud Gaming

ACM Reference Format:

Deniz Ugur, Thah Amer, and Mohamed Hefeeda. 2025. Decoupling Video
Upscaling from Rendering for Cloud Gaming. In The 16th ACM Multimedia
Systems Conference (MMSys '25), March 31-April 4, 2025, Stellenbosch, South
Africa. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3712676.
3714439

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMSys 25, March 31-April 4, 2025, Stellenbosch, South Africa

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM
ACM ISBN 979-8-4007-1467-2/25/03...$15.00
https://doi.org/10.1145/3712676.3714439

Thah Amer
Advanced Micro Devices, Inc.
Markham, ON, Canada

Mohamed Hefeeda
School of Computing Science
Simon Fraser University
Burnaby, BC, Canada

1 INTRODUCTION

Recent video games strive to offer a rich and engaging experience
to players. This requires video games to have high frame rates to
support fast motions, complex lighting and shadowing effects to
increase realism, and high resolutions to represent detailed textures
and graphical elements. All of these features, however, require ex-
tensive computing resources. For example, the popular Star Wars
Outlaws game supports up to 144 frames per second (fps) and 4K
resolution, which requires a GPU with 10-24 GB of memory [23].
This kind of GPU costs hundreds of dollars and requires power-
ful/expensive gaming consoles or workstations, which may not
be available to many players, limiting the potential reach of the
game. To partially address this problem, upscalers have been pro-
posed in the literature, e.g., RenderSR [11], ExtraSS [32], Mob-FGSR,
[34], and Neural Supersampling [33], and developed by industry,
including AMD FidelityFX Super Resolution (FSR) [7], NVIDIA
Deep Learning Super Sampling (DLSS) [10], and Intel Xe Super
Sampling (XeSS) [9]. Upscalers enable running video games with
less computing resources. This is done by first rendering the game
at lower resolutions and/or frame rates and then upscaling them
across the spatial and/or temporal domains.

Upscalers, however, are quite different in their software designs
and algorithms. For example, some upscalers use computational
image processing methods, while others use deep learning models.
Moreover, the computational methods and deep learning models
vary across versions of the same upscaler. The myriad of upscalers,
with multiple versions each, pose a significant challenge for game
developers, as they need to customize the source code of their games
for each upscaler and often versions of the same upscaler. This not
only increases the development time and cost but also practically
limits the possible number of upscalers that can be supported.

One of the critical problems behind increasing the development
time/cost of utilizing upscalers and limiting their wide deployment
is the tight coupling of the upscalers with game renderers. That is,
the upscaler code currently must be integrated within the game
code itself. Although common upscalers from the industry provide
instructions and libraries to facilitate the integration process with
various game development and rendering frameworks, the process
has to be repeated for every single upscaler and often for the differ-
ent versions of the same upscaler. In addition, the tight coupling of
upscalers and game renderers complicates the deployment of up-
scalers in cloud gaming environments, which are gaining popularity
but require extensive computing and bandwidth resources.

To address this problem, we propose decoupling upscalers from
game renderers, which allows them to be developed separately
with minimal dependence on each other. It also allows various up-
scalers to be easily integrated with video games without significant
changes in the games’ source codes, accelerating the wide adoption

https://doi.org/10.1145/3712676.3714439
https://doi.org/10.1145/3712676.3714439
https://doi.org/10.1145/3712676.3714439

MMSys °25, March 31-April 4, 2025, Stellenbosch, South Africa

of upscalers in stand-alone and cloud gaming environments. Realiz-
ing this decoupling, however, is challenging because of the diversity
of upscalers, their dependency on information at different stages of
the rendering process, and the strict timing requirements of video
games. We address these challenges and present mechanisms to
achieve this decoupling efficiently. In particular, the contributions
of this paper are:

e We propose the idea of decoupling upscalers from game renderers,
providing flexibility and cost-effectiveness.

o We analyze common upscalers in practice and identify the graph-
ics resources and camera parameters required to enable upscalers
and renderers to run independently.

o We design efficient synchronization schemes to support distribut-
ing upscalers and renderers on different GPUs and machines.

e We implement the proposed decoupled approach in an open-
source game rendering engine to demonstrate its practicality.

e We implement an end-to-end cloud gaming system and show the
potential resource saving achievable by upscalers. Our results also
show that the decoupled upscaling approach does not increase
latency and provides high-quality streams in real time.

2 BACKGROUND AND RELATED WORK
2.1 Background

Video Games. The logic, structure, and graphics of video games
are written using frameworks such as Unity [29], Unreal [13], and
O3DE [12], which are called rendering engines. Such frameworks
offer high-level constructs for developing games. These constructs
abstract and utilize APIs from common 3D graphics libraries such
as Microsoft DirectX, OpenGL, and Vulkan.

Game Rendering. When a player issues a command, e.g., pressing
a button, the game engine determines what needs to happen, e.g.,
firing a weapon. It then updates the game state, such as object
positions, animations, and lighting. Most modern video games, e.g.,
Cyberpunk 2077, Call of Duty, and Battlefield, use ray tracing [24]
to render realistic scenes. In ray tracing, light rays are cast into the
scene, where each pixel corresponds to a ray traveling through the
scene. Rays are then intersected with the scene objects to determine
their appearance, which also depends on the material properties of
objects, secondary reflections, and shadows. Rendering is computa-
tionally expensive and typically done on GPUs.

We provide a high-level illustration of rendering in Figure 1. The
Initialization step pre-loads objects, textures, and other assets that
will be used in rendering each frame. This is done at the start of
the game and when significant changes occur, e.g., selecting a dif-
ferent game level. After initialization, multiple steps are performed
for each frame, constituting the rendering loop. The Scene Setup
step collects player actions and game decisions to create the scene,
including objects, cameras, and lights. Culling techniques [21] de-
termine which objects will be in the camera’s view and need to be
rendered. Then, the Geometry Processing step transforms the 3D
models into a form that can be rendered on the GPU. This includes
applying transformations like rotation, scaling, and translations.
It also applies materials and textures to objects. The Lighting and
Shading step determines how light interacts with various surfaces,
accounting for multiple light sources, reflections, and subtle effects
like ambient occlusion. Then, Shadow Mapping determines which

Deniz Ugur, lThah Amer, and Mohamed Hefeeda

s N\
® 2 o
Z @ £ =2 o
= Q = ko] a < c
o S © o 7]]

= o (&) o 17, =
c S 2 o) g o IS
SHP» 0P EP>PL>PI> > o> 5
© c 15) = o 2 o %)
N g Z c g I)
— - — (n S
g N I = g o o
= 5] k) 5 a
£ D |
S
J

Figure 1: Main rendering steps in video games (simplified).

areas are shadowed from the perspective of each light source. Fi-
nally, post-processing effects, e.g., color correction and anti-aliasing,
are applied, and the frame is presented on the display.

Spatial and Temporal Upscaling. To save computational re-
sources, rendering can be done on a subset of pixels. Then, an
upscaling method is used to estimate the remaining pixels. This is
called spatial or resolution upscaling. Estimating pixels typically
requires less computational resources than rendering them. To save
even more resources, the game can be rendered at a lower frame
rate. Upscaling can then be used to interpolate additional frames
between the rendered ones. This is called temporal upscaling or
frame generation. Example commercial upscalers include FSR [7]
and DLSS [10]; both provide spatial and temporal upscaling.
Limitations of the Current Approach. In the current approach
for utilizing upscalers in video games, developers need to tightly
integrate and customize their code for each upscaler and even for
different versions of the upscalers. As mentioned before, this process
increases development costs and limits the number of upscalers that
can be implemented. In addition, the tight integration of upscalers
with renderers prevents upscalers from being utilized to reduce the
required computational resources in cloud gaming. This is because
current upscalers are designed for end users: they assume direct
access to various renderers’ data structures and display buffers.
Cloud Gaming. Players in cloud gaming run thin clients on virtu-
ally any device. The computationally expensive rendering process
runs on cloud servers. The thin client captures the player’s actions
and sends them to a cloud server. The server runs the game logic,
renders scenes, encodes frames using a video encoder, and streams
them to the client. The client decodes and plays the received frames
using any of the widely available video decoders. The entire pro-
cessing pipeline must be completed within a strict deadline (around
30 msec, depending on the game), which poses a major challenge
for any optimization method designed for cloud gaming.

2.2 Related Work

Upscalers. Upscalers are used to reduce the required hardware to
play recent video games, which have rich graphics and fast motions
[1]. There are several upscalers developed by the industry, including
DLSS [10], FSR [7], and XeSS [9]. Each upscaler has its guidelines for
integrating with video games. This requires developers to integrate
each upscaler separately, increasing development time and cost.

In this paper, we do not present new upscalers. Instead, we
propose a method to decouple renderers from upscalers.

Decoupling Video Upscaling from Rendering for Cloud Gaming

Cloud Gaming Optimizations. Multiple works strive to address
the challenges of cloud gaming, including reducing latency, band-
width, and hardware requirements [14]. Latency is critical as even
minor delays can severely impact the gaming experience, especially
in fast-paced games where responsiveness is critical [5]. Bandwidth
requirements of cloud gaming pose a challenge due to the high
data transmission demands needed to stream high-quality graphics
and maintain a smooth experience [14]. On the hardware side, sev-
eral studies highlight the complexity of providing sufficient GPU
resources to support diverse gaming workloads across different
devices [15, 25, 27].

The proposed decoupling approach enables cloud gaming plat-
forms to utilize upscalers to reduce computational resources.
Distributed Rendering. Some prior approaches focus on reducing
the computational complexity of game renderers by modularizing
and distributing them over multiple computing nodes [17, 19, 22,
28, 35]. For example, the authors of [17, 28, 35] propose distributing
rendering tasks to edge servers, which can deliver lower latency
to end users. The approach in [3] utilizes edge servers to support
cloud gaming servers when they cannot meet the required quality.
The work in [28] reduces bandwidth costs on the backbone network
by sending lower-resolution game streams to edge servers, which
are then upscaled using a game-specific model. Further, multiple
works, e.g., [2, 19, 22], propose dividing the rendering workload
between the gaming server and client.

This body of research is orthogonal to our work and can be
combined with it to achieve further resource savings.

3 PROPOSED SOLUTION

3.1 Overview and Challenges

Overview. In contrast to the current approach of implementing up-
scalers within the game code, we propose decoupling the upscalers
from renderers as illustrated in Figure 2. That is, the game renderer
and upscaler run as independent processes, either on the same ma-
chine or different machines. Further, the upscaler and renderer can
run on different GPUs within the same machine. This is enabled by
identifying the critical graphics elements and structures required by
upscalers and efficiently sharing them across distributed processes.
The current approach requires changing the source code of each
game and customizing it for each upscaler version separately, limit-
ing its scalability. Whereas the proposed approach does not require
changing the source code of the game. It only makes minor modifi-
cations to the rendering framework and adds thin wrappers around
various upscalers without changing their source codes. This enables
upscalers to be easily and transparently used with many games.
Challenges. Realizing the proposed decoupling approach faces
multiple challenges. First, upscalers are quite diverse in their in-
ternal designs and requirements. Some, e.g., DLSS and XeSS, are
implemented using deep learning models, while others, e.g., FSR,
are implemented using computational image processing methods.
Computational upscalers tend to require accessing more graphical
structures than deep learning ones, as they execute detailed mathe-
matical equations on various aspects of the pixels and frames. Deep
learning upscalers rely on the mapping power of neural networks.
In addition, most upscalers are designed assuming tight integra-
tion with the renderer, which allows them to access the needed

MMSys *25, March 31-April 4, 2025, Stellenbosch, South Africa

Rendering Engine

Game Code

Exporter

Shared Info

@8 Wrapper

Figure 2: Overview of the proposed approach of decoupling
upscalers and renderers.

structures and information at different stages of the rendering pro-
cess, not necessarily at the end of the pipeline. For example, FSR
may require accessing color textures pre- and post-translucency
passes [8]. In §3.2, we analyze the most commonly used upscalers
in practice, FSR and DLSS, and identify the general requirements
to support various upscalers.

The second main challenge stems from running the upscaler and
renderer as independent processes instead of one as in the current
approach. This is because they run at different speeds. Thus, they
need synchronization to access the shared data structures. However,
current video games can render up to 144 fps at 4K, generating large
amounts of data and imposing high computational demands that
must be performed by strict deadlines. Further, the upscaler and
renderer processes can run on different GPUs or even different
machines, making it harder to meet the deadlines over the network.
In §3.4, we present an efficient solution using ring buffers and
fences. Fences are synchronization primitives for sharing resources
within GPUs as well as between GPUs and CPUs, and they support
remote direct memory access (RDMA). Fences or their equivalent
are available in common 3D graphics libraries, including DirectX,
OpenGL, Vulkan, and Metal.

Finally, rendering engines and upscalers have large and complex
code bases. Thus, changes to them must be clearly defined and mini-
mized for the proposed approach to be practical. In §3.3, we present
a simple wrapper around upscalers that does not change their code.
We also identify and localize the required minor modifications to
rendering engines.

Benefits of Decoupling Upscalers and Renderers. The proposed
approach offers multiple advantages to game developers, cloud
providers, and players, as summarized below.

MMSys °25, March 31-April 4, 2025, Stellenbosch, South Africa

Benefits for Game Developers: The proposed approach does not
require integrating upscalers inside the game code, which reduces
the development time. Upscalers can be used transparently and on
different machines, increasing the game’s availability to players.

Benefits for Cloud Gaming Providers: Decoupling upscalers
from renderers allows utilizing upscalers in cloud gaming, which
is currently not possible. Upscalers save substantial computing
resources, as discussed in §2.1. Decoupling also allows running
upscalers and renderers on different machines, i.e., offloading up-
scalers to other machines. Given the different computational re-
quirements of renderers and upscalers, this enables the optimization
of their performance separately by customizing the machines that
run each. Further, upscalers are themselves quite diverse regarding
the ideal platforms to run each. For example, DLSS runs better
on NVIDIA GPUs because it relies on native NVIDIA APIs, while
FSR may yield similar performance on various GPUs as it uses
standard computational image processing functions. The proposed
decoupling approach allows large cloud gaming providers to deploy
multiple upscalers on different machines.

Finally, the proposed approach enables cloud providers to dy-
namically manage the computing resources allocated to different
gaming sessions. This can be achieved by controlling the spatial
and temporal scaling factors of the upscaler, which can easily be
accessible since the upscaler is running as an independent process.

Benefits for Players: Players benefit from the ability to deploy
various upscalers that best suit their hardware and the games they
are playing, improving their gaming experience.

3.2 Identifying Upscalers Requirements

Simple upscaling methods, e.g., bilinear and bicubic interpolation,
only require a color input to function. The results from these meth-
ods significantly lack quality compared to methods like FSR and
DLSS. The underlying reason is that the upscaler lacks the context
around each pixel and, therefore, must apply generic upscaling for
each pixel. Modern upscaling methods require additional textures
from the rendering engine to understand the scene in greater detail.

We analyzed the most popular upscalers currently deployed:
AMD FSR [7], NVIDIA DLSS [10], and Intel XeSS [9]. We inspected
their code integration guidelines and steps. We also experimented
by implementing them with different games. Based on our analysis,
we define three categories of resources for decoupling upscalers
from renderers: (i) required resources, (ii) optional resources, and
(iii) camera parameters.

The required resources are essential for the operation of up-
scalers. They determine which regions of the scene need to be up-
scaled and how. We identified three common resources needed by
all upscalers: Depth Map, Motion Vectors, and Final Color. Optional
resources assist in improving the quality produced by upscalers
but are not necessary for the operation. For example, the UI Color
and Alpha resource helps ensure that UI elements like health bars,
menus, and text do not become blurry during the upscaling process.
Optional resources vary across upscalers. Thus, we identified the
optional resources for each upscaler. Then, we export the union
of all optional resources to support a wide variety of upscalers.
Based on our analysis, the most common optional resources are:
Final Color Subrect, Hudless, UI Color and Alpha, Bidirectional

Deniz Ugur, lThah Amer, and Mohamed Hefeeda

Rendering Engine

Final Color

Depth Map Motion Vectors

/

Preparation
Geometry

Exporter

\WETIOEId Upscaler
5 R

Display

: Game Assets)

1
1
1 GLTF
1
1

]
]
1
------- ' Shared Buffers

Figure 3: Collecting graphics resources and camera parame-
ters at different rendering stages.

Distortion Field, T&C Mask, Reactive Mask, and Opaque Color. All
of the required and optional resources are handled by the GPU.

The third category of resources for decoupling upscalers from
renderers is the camera parameters. There are two types of pa-
rameters: intrinsic and extrinsic. Both are used in game rendering
to accurately capture and display 3D scenes. Intrinsic parameters
include: Focal Length (determines the zoom level of the camera),
Principal Point (where the optical axis intersects the image plane),
Skew Coefficient (describes the angle between the x and y pixel
axes), and Lens Distortion Coefficients (corrects distortions caused
by the camera lens). Extrinsic parameters define the position and
orientation of the camera in the 3D world, and they include: Ro-
tation Matrix (specifies the camera’s orientation) and Translation
Vector (specifies the camera’s position). Camera parameters are
essential for upscalers. For example, the Focal Length and Field
of View parameters help the upscaler understand the depth and
perspective and the scene. Similarly, the extrinsic position and ori-
entation parameters ensure that the upscaled frames align with the
game’s world and have consistent motions.

In addition, camera parameters are essential for upscalers to uti-
lize sub-pixel jittering in collecting more information and correctly
upscaling frames. Sub-pixel jittering means slightly shifting the
camera’s position by a fraction of a pixel, capturing more detail in
each frame. Sub-pixel jittering allows upscalers to sample different
points within a pixel across multiple frames, giving it more infor-
mation to upscale lower-resolution frames to higher quality. The
intrinsic camera parameters, e.g., focal length, principal point, and
lens distortion coefficients, affect how sub-pixel jittering is applied
and how frames are upscaled. Similarly, the extrinsic parameters
define the camera’s position and orientation in the world, and sub-
pixel jittering requires these parameters to ensure that the small
movements are accurately captured and aligned.

Camera parameters are managed by the CPU, unlike the other
two categories of resources, which are stored on the GPU.

3.3 Modifying Renderers and Upscalers

We propose a general approach for decoupling upscalers from ren-
derers, illustrated in Figure 3. We identify all required resources and
make them available to different upscalers. This approach allows

Decoupling Video Upscaling from Rendering for Cloud Gaming

Algorithm 1 Renderer Process

. InitializeResources()

: while RendererRunning() do
WaitOnFence(ResourceEvicted, bufferIndex)
ProcessUserInputs()

‘ GenerateCommandList(rm)

‘ if RequiredForUpscaling(rm) then

‘ ‘ CopyTextureRegion(texture, buffer)
ExecuteCommandList()
10: SignalFence(ResourceReady, bufferIndex)

1
2
3
4
5: for all render module rm do
6
7
8
9

Algorithm 2 Wrapper Process

. InitializeResources()
while WrapperRunning() do
WaitOnFence(ResourceReady, bufferIndex)
for all bufferTexture in buffer do

texture = GetReference(bufferTexture)

EvaluateUpscaler()

ExecuteCommandList()

PresentFrame()
SignalFence(ResourceEvicted, bufferIndex)

switching upscalers on demand and easily utilizing future upscalers.
As discussed above, the required and optional graphics resources
are stored in the GPU memory, whereas the camera parameters
are maintained in the main CPU memory. Thus, we create two
shared buffers: one in the GPU and another in the CPU. In addition,
our approach allows running multiple upscalers independent of
the game renderer. A small wrapping code enables the upscalers
to transparently access the needed graphics resources and camera
parameters. The wrapping code also handles synchronization of
the shared buffers with renderers, even if both run on different
machines, as explained in §3.4.

Implementation in Rendering Engines. We first note that game
rendering engines, such as Unity and Unreal Engine, provide all the
required textures in their own way. Internally, the process needed
to generate these textures is largely the same. Existing upscaler
plugins for these engines modify the rendering pipeline to generate
these textures or obtain a reference to them if they are already being
used by the developer. These textures are fundamental building
blocks of any rendering engine, and game engine developers ensure
they are easily accessible.

A typical rendering pipeline consists of multiple render modules,
each responsible for a specific aspect of the rendering process.
For example, geometry processing transforms 3D scene data into
screen-space coordinates, while lighting modules compute how
light interacts with objects, and texturing modules apply image
textures to surfaces. Afterward, post-processing modules may add
visual effects such as bloom or depth of field.

Each render module generates commands that describe actions
like drawing objects, applying shaders, or switching textures. These
commands are collected into a master command list, which is then

MMSys *25, March 31-April 4, 2025, Stellenbosch, South Africa

submitted to the GPU for execution. Since this process is performed
for every frame and these steps may occasionally take longer than
the duration of a single frame, the renderer uses a swap chain
to avoid blocking the main thread. A swap chain is a sequence of
render targets (buffers) that are used in rotation. While the GPU
executes commands to render the current frame to one buffer (called
the back buffer), the renderer processes the next frame in another
buffer. When it is time to present the next frame, the back buffer
and front buffer are swapped, displaying the newly rendered frame
while the next one is prepared.

We summarize the proposed rendering engine modifications to
support decoupling renderers and upscalers in Algorithm 1. Mainly,
we added new commands to copy various resources at different
rendering stages (lines 7-8) and synchronize shared memory buffers
(lines 3 and 10). Everything else in the rendering engine is not
changed. Conventional upscaling methods are tightly integrated
with the game’s rendering pipeline, allowing them to reference
the texture directly rather than copying it. However, if a texture
is only valid at a particular stage (i.e., it may be released before
being presented), it is copied to an intermediary texture to preserve
its state. Upscalers need this process to reference all necessary
resources to upscale the frame. When the upscaler is decoupled, we
must always preserve the texture’s state, so we copy the textures
whenever the renderer finishes using them.

Additionally, when a frame completes execution on the GPU, it
signals the shared resource buffer to indicate that the frame data is
ready for upscaling. This is shown in Algorithm 1 at line 10 for the
renderer and in Algorithm 2 at line 3 for the wrapper. Both processes
use fences to synchronize their state and determine when to act
on a buffer. This is crucial because the wrapper acquires references
to individual textures in the buffer slot as if they were its own,
allowing the upscaler to use them as usual. The synchronization
process is explained in §3.4.

Wrappers for Upscalers. To support decoupling upscalers from
renderers, we have developed a wrapper that emulates the actual
game environment. The wrapper supplies the necessary resources
and textures to upscalers, just as the game would if the upscalers
were tightly integrated. We summarize the wrapper design in Al-
gorithm 2. It waits until resources are ready in the shared resource
ring buffer. Upon receiving the signal, the wrapper continues to
acquire references to textures within the buffer. Then wrapper calls
the upscaler (line 6), which generates the necessary commands to
upscale the frame on the GPU. These commands are appended to
the main command list before sending it to GPU (line 7). Once the
commands are executed, the upscaled frame is presented on the
display (line 8). Finally, the wrapper evicts the buffer slot that was
used by the frame by signaling the synchronization fence.

TransparentSR Library. We abstracted the creation and manage-
ment of shared resources into an open-source library called Trans-
parentSR [30]. This library simplifies the integration of detached
upscaling into custom rendering engines. Our repository provides
examples demonstrating how this library can be used effectively.
For instance, the renderer can generate a low-resolution 3D scene
and leverage the TSROps: : TransferToSharedBuffer method to
transfer the necessary resources to the upscaler. Additionally, the
library offers a utility function, tsr_map_udta, which facilitates

MMSys °25, March 31-April 4, 2025, Stellenbosch, South Africa

Renderer Upscaler

GPU 2

_.-~'Fences

-

Ring Buffer

Figure 4: Synchronization of shared resources between ren-
derer and upscaler deployed on different machines using
fences and RDMA (remote direct memory access).

seamless management of user data (e.g., camera parameters) across
frames, ensuring consistency and ease of use.

3.4 Synchronizing Shared Buffers

The proposed approach runs the game renderer and upscaler as
independent processes, which provides flexibility and ease of utiliz-
ing various upscalers. However, both processes execute at different
speeds and can be allocated on different machines. Thus, efficiently
sharing the required graphics resources and camera parameters
among them is critical for ensuring the quality and timeliness of
rendered frames.

We propose a general approach that allows renderers and up-
scalers to run on: (i) the same GPU, (ii) different GPUs within the
same machine, and (iii) GPUs running on distributed machines.
Figure 4 provides a high-level illustration of the proposed approach.
Specifically, we create a shared buffer on the renderer machine.
Then, we virtually map this buffer to the upscaler machine to
avoid duplicating the resources. The upscaler process can access the
shared buffer using DMA (Direct Memory Access) if it resides on the
same machine as the renderer. If the upscaler is on a different GPU
or machine, it uses RDMA (Remote DMA). Current technologies,
such as AMD Radeon Open Compute (ROCm), NVIDIA GPUD:i-
rect, and Intel oneAPI, support RDMA. Distributing renderers and
upscalers to different machine is particularly beneficial for cloud
gaming platforms, where the renderer may run on GPUs optimized
for ray tracing and graphics operations and upscalers may be de-
ployed on GPUs with tensor cores optimized for neural network
operations and/or computational upsampling.

To enable this generality of deploying renderers and upscalers,
we propose synchronizing access to the shared buffer through
fences. Fences are synchronization primitives designed for inter-
CPU and inter-GPU communications. They are supported in widely-
used 3D graphics libraries, such as DirectX, OpenGL, Vulkan, and
Metal. Fences also function in distributed environments and sup-
port RDMA. As described in our implementation (§4), we create
fences and share their handlers between renderers and upscalers.

Deniz Ugur, lThah Amer, and Mohamed Hefeeda

We design the shared buffer as a ring buffer with a fixed size of
three slots. Having more slots wastes memory and could introduce
undesirable delay between when the frames are rendered and when
they are displayed (i.e., after the upscaler finishes processing them).
Video gaming is an interactive application, and players expect to
see the effect of their actions on the display within a strict deadline.
On the other hand, having less than three slots in the ring buffer
can lead to wasting computing resources, as one of the processes
may have to wait to access the shared buffer: The renderer may
have to wait for a free slot to write the output frame in, and the
upscaler may wait until for a frame to be available to upscale it.

We note that in most cases, the upscaling process will run faster
than the renderer. Thus, at least two slots in the shared buffer are
needed so that while the renderer is writing frame data into one,
the upscaler is reading from the other. The third slot in our design
serves as a relief buffer. If upscaling takes longer than expected
due to complex operations or OS-level scheduling, for example, the
renderer can continue without stalling.

Implementation wise, we place fences at the end of the command
list to signal when the resources are ready for upscaling. When the
command list is executed on the GPU, the data will be copied to the
next available slot in the shared ring buffer. Simultaneously, we copy
the camera data to the shared buffer region located in the system
memory. When the fence is signaled, our wrapper immediately
upscales the frame using the frame data generated by the renderer.
Once the upscaling is complete, the upscaled frame is presented,
and the shared buffer region is signaled to release the frame data.

3.5 Overheads and Practical Considerations

The proposed decoupling solution requires minor modifications to
the rendering engine, and it imposes small overheads. The modifica-
tions can be easily added to existing rendering engines. Importantly,
these modifications are applied once to the rendering engine rather
than to each individual game. This significantly reduces the de-
velopment effort and streamlines the integration process across
multiple games.

Regarding overheads, the primary considerations are the mem-
ory and time associated with copying resources. In our experiments,
copying resources to the shared ring buffer adds approximately
10.6 MB for the entire frame data, a small amount for modern sys-
tems. Also, it takes, on average, 0.16 ms for the exporter to copy the
needed resources to the shared buffer. This is insignificant, consid-
ering the typical rendering time per frame is 33.3 ms (for a frame
rate of 30 fps). Even for a high frame rate of 100 fps (i.e., rendering
time of 10 ms), the added overhead time is 1.6%.

We believe these are small overheads considering the potential
gains of easily and transparently integrating various upscalers with
many video games.

4 EVALUATION

First, we describe our proof-of-concept implementation in an open-
source rendering platform. Then, we demonstrate the effectiveness
of the proposed decoupled approach with two common upscalers
(FSR and DLSS) with different upscaling configurations and game
scenes. Then, we present our implementation in a cloud gaming

Decoupling Video Upscaling from Rendering for Cloud Gaming

(b) Brutalism

(a) Sponza

Figure 5: Game scenes used in our experiments. They are
open-source samples with AMD FSR upscaler [8].

platform using Media-over-QUIC, and we conduct end-to-end anal-
ysis showing the feasibility of utilizing upscalers to save computing
resources in cloud gaming.

4.1 Prototype Implementation

We implement our proposed solution in the open-source rendering
engine Cauldron [6], which is used to showcase various rendering
technologies, including FSR [8]. To modify this engine to support
our decoupled approach, we had to understand how it prepares the
rendering command list, updates the camera matrices, and allows us
to access the graphics resources. We summarize our modifications
in the following.

Modifying the Renderer. The renderer modifications primar-
ily involved ensuring that textures and related upscaling data are
consistently copied for each frame at the appropriate times in the
rendering pipeline. To achieve this, we issue copy commands once
the renderer finishes that particular piece of data. For GPU-bound
data, we append the copy command to the command list when a
resource is not modified further. The necessary operation is similar
for CPU-bound data; we copy it when the renderer has completely
finished with that frame. Before copying textures to their destina-
tion, we initialize the shared ring buffers.

To achieve the synchronization described in §3.4, we create two
shared ring buffers, one on the GPU and one on the CPU. Addi-
tionally, we establish shared fences to facilitate synchronization
between the GPU and CPU. This requires creating textures with
the D3D12_HEAP_FLAG_SHARED flag and fences with the D3D12_-
FENCE_FLAG_SHARED flag. These flags allow the renderer or up-
scaler processes to obtain a handle to the resources using DirectX
12 device methods OpenSharedHandleByName and OpenShared-
Handle. Each buffer stores the textures associated with a frame in
a contiguous memory region, and both processes access the buffer
using offsets. When both processes are active, they wait for an
available slot in the ring buffer to operate on. The renderer requires
an empty slot to write to, while the upscaler needs a slot with all the
frame data written and ready for upscaling. Each process signals the
other about the status of a particular slot, allowing coordination for
further work. By keeping both processes synchronized and aware
of the shared ring buffer’s status, we effectively eliminate any race
conditions that may occur in multi-process designs.

Wrappers for FSR and DLSS. Wrappers create a renderer-like
environment for the upscalers. They supply the frame data in the
same manner as a typical renderer would. From the upscalers’
perspective, there is no difference in the input data compared to
when they are tightly integrated with the actual renderer. When the
wrapper is signaled that a slot on the shared ring buffer is available,

MMSys *25, March 31-April 4, 2025, Stellenbosch, South Africa

1.0 38 95
m
= =36 E; 80
20.9] =
a Z 34 265
g

3 50775 1.7 2.0 3.0

Upscaling Factor

215 1.7 2.0 3.0
Upscaling Factor

087517 2.0 3.0
Upscaling Factor

(a) SSIM (b) PSNR (c) VMAF

Figure 6: Comparison of the quality achieved by the decou-
pled (Red) and current (Blue) approaches. Results for DLSS
with no frame generation processing Sponza game.

it copies the textures into its own address space, along with the
camera properties stored in the CPU-side shared ring buffer. This
information is continuously supplied to the upscalers, allowing
them to track the temporal data as needed. The wrapper itself does
not alter the upscalers’ implementation; it simply enables them to
function by redirecting the necessary data from the actual renderer.

4.2 Experimental Setup

Upscalers and Game Scenes. We consider two popular upscalers:
FSR and DLSS. FSR uses computational image processing methods
and is open source. DLSS uses deep learning models and is partially
open source. Both support various configurations, including frame
generation and multiple spatial upscaling ratios.

We utilize two game scenes that are open source and diverse,
as shown in Figure 5. We summarize all parameters used in the
experiments in the following.

e Upscalers: None, FSR 3, DLSS 3

e Modes: Decoupled, Conventional

e Frame Rate (FPS): 20, 30

e Frame Generation: Enabled, Disabled
e Upscaling Ratios: 1.5, 1.7, 2.0, 3.0

e Scenes: Sponza, Brutalism

Performance Metrics. For each test run, we collect several per-
formance and quality metrics, which are summarized below.

e System Memory: Total, Renderer, Upscaler

e CPU Utilization: Overall , Renderer, Upscaler

e GPU: Power Usage, Load Percent, Memory Usage
e Processing Time:! Render time, Upscale time

e Quality: SSIM, PSNR, VMAF

The system resource usage metrics are gathered from three sep-
arate tools. Metrics related to the overall utilization of individual
resources are collected by the HWiNFO tool [20]. Process-specific
CPU and memory utilization is collected by the Python library
psutil [26]. In-process timings for different stages of rendering and
upscaling are collected by the sample applications and reported as
aggregated values at the end of each test run.

Quality comparisons are performed using SSIM (Structural Simi-
larity Index) [31], PSNR (Peak Signal-to-Noise Ratio), and VMAF
(Video Multi-Method Assessment Fusion) [36] metrics. SSIM and
PSNR provide visual similarity to human perception and objective
quality, respectively. VMAF leverages multiple metrics to assess
video quality more comprehensively.

These are collected inside the Renderer/Upscaler processes

MMSys °25, March 31-April 4, 2025, Stellenbosch, South Africa

1.0 38 95
m
= =36 =180
209 e =
1%5] Z 34 > 65
wn
Ay
087550 30 327790 30 507550 30

Frame Rate (fps) Frame Rate (fps) Frame Rate (fps)

(a) SSIM (b) PSNR (c) VMAF

Figure 7: Comparison of the quality achieved by the decou-
pled (Red) and current (Blue) approaches. Results for FSR
with frame generation processing Sponza game.

Workstation Specifications. For all our tests, we use a worksta-
tion with 19-14900K CPU, 64 GB DDR5 Memory, and NVIDIA RTX
4060 GPU with 8 GB memory. This workstation provided sufficient
performance to run all tests smoothly.

4.3 Evaluation on Individual Gaming Stations

We analyze the quality of upscaling produced by the proposed
decoupled approach and compare it against the current, fully in-
tegrated, upscaling approach, which requires changing the source
code of each game. We also analyze the overheads imposed by the
proposed approach.

Quality Analysis. Accurately computing the SSIM [31], PSNR,
and VMAF [36] quality metrics requires alignment of camera move-
ment across different test runs; otherwise, the produced frames will
have different pixel values and will not be comparable. While it
is possible to keep the camera static, doing so would hinder the
proper evaluation of the upscalers. To consider the dynamic aspects
of game scenes, we move the camera in a torus curve to create
a relatively complex camera movement. During the test run, we
save the front buffer (presented frame) as a JPEG file without any
compression at every animation step. Then, we combine the frames
into a MOV container and save the video file without re-encoding
the frame data.

To ensure our experiments are conducted as consistently as
possible, we automate the entirety of our experiments and quality
evaluation, including the camera movement of the renderer. We
also fix the animation step time to achieve pixel-perfect frame
alignment between test runs. This means that regardless of how
long it takes to render a particular frame, we always capture the
same scene setup. We run each test for 30 seconds, with a 30-second
cool-down period, and we repeat the process three times. We run
every permutation of the configuration parameters in §4.2.

We present representative samples of our results in Figure 6 and
Figure 7; other results are similar. In these figures, we plot aver-
age results across all runs as well as the 95% confidence intervals
as error bars. The results in Figure 6 for the DLSS upscaler show
that the quality achieved by the proposed decoupled approach is
indistinguishable from the quality of the current approach for all
spatial upscaling ratios considered and all three quality metrics. Fig-
ure 7 demonstrates similar results for the FSR upscaler with frame
generation enabled. That is, the proposed approach of decoupling
upscalers from renderers does not negatively impact the upscaling
quality, while it facilitates utilizing upscalers with different games.
In addition to analyzing the quality using various objective met-
rics, we have also visually inspected the produced frames with and

Deniz Ugur, lThah Amer, and Mohamed Hefeeda

50 50
S S
4
g 43 % 3
3 3
- =
36 36
[a [
&} &}
30
30 1.5 1.7 20 3.0 20 30

Upscaling Factor Frame Rate (fps)

(a) No Frame Generation (b) With Frame Generation

Figure 8: GPU utilization for the decoupled (Red) and current
approaches (Blue). Results for DLSS processing Sponza.

without our transparent upscaling method to ensure that there is
no distinguishable quality difference.

Overhead Analysis. To assess the overheads of the proposed
approach, we terminate all applications running on the workstation
and keep only our renderer and upscaler processes. We measure
the various system utilization metrics mentioned in §4.2 using
HWINFO [20] and psutil [26] tools.

We present a sample of our results in Figure 8 and Figure 9,
showing the GPU utilization and CPU memory usage, respectively.
The proposed decoupling approach runs the renderer and upscaler
as separate processes, which requires synchronization and copying
of some data structures. This marginally increases the GPU utiliza-
tion as shown in Figure 8. For example, with no frame generation
(Figure 8a), the average increase in GPU utilization is less than 1%.
Even when the upscaler generates additional frames (Figure 8b),
which requires more processing, the increase in GPU utilization
because of decoupling is up to 2.54%. We note similar increases in
the CPU load have been observed in our experiments; figures are
omitted due to space limitations.

In Figure 9, we analyze the memory requirements. We measure
and plot the memory of the renderer and upscaler of the decoupled
approach separately. The current approach, however, integrates the
renderer and upscaler, and thus, its memory is not separated. As
the figure shows, the decoupled approach requires less than 1 GB
of additional memory. We also analyze the GPU memory require-
ments (figure not shown). Our results indicate that the decoupled
approach requires up to 927 MB of additional GPU memory. The
additional memory is because the decoupled approach creates two
independent processes for the renderer and upscaler instead of one.
Each process allocates its memory and resources. This is in addition
to the shared buffers for exchanging required information between
the renderer and upscaler. For practical deployments, multiple code
optimizations can be performed to reduce the memory footprint
of decoupling; our proof-of-concept prototype focused more on
demonstrating the feasibility of decoupling.

4.4 Evaluation in Cloud Gaming

Implementation in Cloud Gaming using Media-over-QUIC.
We implement the proposed decoupled upscaling approach in a
cloud gaming platform to demonstrate its practicality. We are not
aware of other works in the literature that utilize upscaling to re-
duce the extensive computing resources required by cloud gaming.

Decoupling Video Upscaling from Rendering for Cloud Gaming

4 4
=3 [)) . @3
&) &
2 =2
2 2
E 1 >1
0715 17 20 30 090 30

Upscaling Factor Frame Rate (fps)

(a) No Frame Generation (b) With Frame Generation

Figure 9: CPU Memory usage for the decoupled approach
and current approach (Blue). Memory of the decoupled ap-
proach is divided into two parts: Renderer (Red) and Upscaler
()- Results for FSR processing Sponza.

Client

MoQ

5\ Publisher

Figure 10: Overview of our cloud gaming testbed.

We consider the emerging Media-over-QUIC (MoQ) platform,
which is being actively developed by the Internet Engineering Task
Force (IETF) for efficient and low-latency streaming environments
[16]. It is built on top of the widely deployed QUIC transport proto-
col, which is used in popular streaming services such as YouTube.
Compared to WebRTC and other existing frameworks, MoQ offers
several advantages, including better scalability and efficient conges-
tion control. It also offers the ability to prioritize packets, such as
player inputs or critical game frames, ensuring that essential data
is delivered promptly, which is crucial for cloud gaming, where
latency directly affects gameplay.

Our MoQ cloud gaming testbed is illustrated in Figure 10. The
game renderer produces frames at low resolution and frame rate,
which consume less computing resources. The upscaler, running
as a separate process, improves the spatial resolution and gener-
ates new frames. The result of the upscaler is frames in RGBA32
pixel format. We pipe this raw pixel data into an FFmpeg module,
which encodes and packages it into a fragmented MP4 container
format. The encoded video stream is then piped through two other
modules: MoQ Publisher and MoQ Relay. Both are based on the
open-source implementation of MoQ [18]. MoQ Publisher publishes
the stream using HTTP/3 (on top of QUIC). MoQ Relay takes the
stream from the MoQ Publisher and serves it to clients, while per-
forming functions such as adaptation, metadata processing, and
caching. Clients connect to the MoQ Relay using a web browser
that supports WebTransport, which provides low-latency and bidi-
rectional communication over QUIC. The browser demultiplexes
the stream, extracts video segments, and displays them.

Quality Analysis. We first subjectively validated the visual quality
of the rendered frames on the receiver side after going through the

MMSys *25, March 31-April 4, 2025, Stellenbosch, South Africa

—— Achieved ---- Target

w
N

W
N

Frame Rate (fps)
N w
0] en]

V)
(o

0 5 10 15 20 25
Time (sec)

Figure 11: Performance of the FSR upscaler in the cloud gam-
ing testbed implemented using the decoupled approach. Re-
sults show that our approach achieves the target frame rate.

entire pipeline in Figure 10. We observed no glitches, freezes, or
visual distortions. This served as a sanity check for our implemen-
tation.

To objectively analyze performance, we measure the frame rate
achieved at the receiver. We set a target frame rate of 30 fps and
configure the game engine to render at this rate with low resolution.
Then, we upscale the resolution by 3.0x using FSR. We chose a 3.0x
upscaling ratio because the FSR documentation recommends it as
the maximum resource-saving option. There is no limit imposed
on the upscaling ratio otherwise.

Following upscaling, frames are then encoded and transmitted

over the MoQ testbed to the receiver. We record the arrival time of
each frame at the receiver and compute the achieved frame rate over
an extended period of time. The results, shown in Figure 11, con-
firm that our decoupled approach implemented in a cloud gaming
testbed can achieve the target frame rate.
Timing Analysis. We analyze the time used by the renderer and
upscaler for each frame. We record the timestamps as a frame
passes through key stages of the pipeline. These stages include the
start and end times for rendering and the start and end times for
upscaling. Since our solution performs rendering and upscaling in
separate processes, we also record the texture transfer time from
the renderer to the upscaler. The results are shown in Figure 12a,
where each stage is stacked on top of the previous stage to show the
accumulated processing time for individual frames. The majority
of the processing is done in the rendering stage, which accounts
for more than 65% of the total processing time. Upscaling is much
faster compared to rendering but still takes about 6-7 ms to perform.
Transferring shared data between the renderer and upscaler takes
about 1-2 ms.

To put these numbers in perspective, we plot, in Figure 12b, the
time taken by the renderer for each frame without using any upscal-
ing. In this case, the renderer produces the full resolution. As the
figure indicates, the renderer takes, on average, slightly more time
than the total time in Figure 12a, by about 2-3 ms per frame. That is,
upscaling can actually reduce the total latency, which is especially
important in cloud gaming where latency is critical. In addition,
Figure 12b shows more occasional spikes in frame processing time

MMSys °25, March 31-April 4, 2025, Stellenbosch, South Africa

BN Render Transfer BB Upscale

B Render

o) k7]
g =
A 5 10 15 20 25 ™ 5 10 15 20 25
Time (sec) Time (sec)
(a) Decoupled Upscaling (b) No Upscaling

Figure 12: Timing analysis from our cloud gaming testbed.

than the case with upscaling. This means the decoupled upscaling
can provide a smoother performance.

Benefits of Upscaling in Reducing Computing Resources. We
study the potential benefits of using upscalers to reduce computing
resources. Specifically, we analyze two video games: Forza Horizon
5 and F1 23. Both are graphically rich car racing games. We first
play each game without any upscaler, and we measure the fps
achieved by the GPU on our workstation. We use CapFrameX [4]
to record frame timings. Then, we run the game with different
upscaler configurations. Then, we repeat the whole experiment for
the other game.

A sample of our results is shown in Figure 13 for the F1 23 game
using the FSR upscaler, where we plot the overall average frame
rate achieved by the renderer across the whole experiment time.
The figure shows that significant savings in computing resources
could be realized by using upscalers. For example, without using
any upscalers, our machine could render, on average, about 40 fps.
Whereas, when we render at low resolution and then use FSR to
upscale the resolution by 2.0x or 3.0x, the machine could almost
double or triple the average number of rendered frames. This is
achieved with almost no impact on the visual quality in the case of
2.0x and minimal impact in the case of 3.0x, based on our subjective
analysis of the displayed frames during the experiments.

In Figure 14, we plot the achieved frame rate by the renderer
across time with and without using upscalers. The results in the
figure are for DLSS with frame generation enabled. We also plot
the average across 1-sec periods as thicker lines. Two observations
can be made on this figure. First, significant gains, in terms of the
number of rendered frames per second, can be achieved by using
upscalers. This aligns with the aggregate results in Figure 13, which
were obtained with different upscaler and video games. Second,
the achieved frame rate, with and without upscaler, fluctuates with
time. This is because both the visual complexity of frames and the
temporal motion across frames change during the game. This fluc-
tuation indicates that the required computing resources in cloud
gaming vary. Since our proposed approach decouples the renderer
from upscaler, it offers a flexible and easy method to control the con-
figuration parameters of the upscaler. This, in turn, enables cloud
providers to dynamically manage these parameters across different
gaming sessions to maximize the utilization of their computing
resources and achieve the target quality of experience.

In summary, our cloud gaming testbed demonstrated that the
proposed decoupled upscaling approach can successfully process
and deliver high-quality gaming streams in real time, and it does
not introduce additional latency. In addition, our experiments show

Deniz Ugur, lThah Amer, and Mohamed Hefeeda

_/100<
[<B]
=
~ 75
[«B]
g
S]
&= 50
[«B]
&0
= 251
(<]
-
= 0
1.0x 1.5x 1.7x 2.0x 3.0x

Figure 13: Performance gains from using upscalers. Results
for FSR processing F1 game.

—— No Upscaler —— DLSS-FG

160

£ 140,
e

& 120
<}

% 100
at
=

80+

0 20 40 60

Time (sec)

Figure 14: Performance gains from using upscalers. Results
for DLSS with frame generation processing Forza game.

using upscalers in cloud gaming can save computing resources
and/or serve more gaming sessions with the same resources.

5 CONCLUSION

Current upscalers require tight integration with the source code
of video games, increasing the development cost and limiting their
wide deployment. We presented a method to decouple upscalers
from game renderers, which facilitates transparently using various
upscalers without the need to change the source code of games. It
also enables the utilization of upscalers in cloud gaming to save
computing resources, which has not been done before. We demon-
strated the practicality of the proposed method by implementing
it in an open-source rendering game engine and showed its effec-
tiveness with two popular upscalers. In addition, we developed a
cloud gaming testbed using the Media-over-QUIC (MoQ) frame-
work. The results from this testbed demonstrated that the proposed
decoupled upscaling approach can successfully process and deliver
high-quality gaming streams in real time. Our experiments also
showed that using upscalers in cloud gaming can save substantial
computing resources and/or serve more gaming sessions with the
same resources.

Decoupling Video Upscaling from Rendering for Cloud Gaming

REFERENCES

(1]

[2

—

(3]

[4

=
= =

[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19

[20

[21

[22]

[23]

[24]
[25]

[26]

[27]

Saeed Anwar, Salman Khan, and Nick Barnes. 2021. A Deep Journey into Super-
resolution. Comput. Surveys 53, 3 (5 2021), 1-34. https://doi.org/10.1145/3390462
Keith Bugeja, Kurt Debattista, and Sandro Spina. 2019. An asynchronous method
for cloud-based rendering. The Visual Computer 35 (12 2019), 1827-1840.
James Bulman and Peter Garraghan. 2020. A cloud gaming framework for
dynamic graphical rendering towards achieving distributed game engines. In
Proceedings of the 12th USENIX Conference on Hot Topics in Cloud Computing
(HotCloud). 1.

CapFrameX. 2024. CapFrameX: Frametimes Capture and Analysis Tool. https:
/[www.capframex.com/. Accessed 2024-08-23.

Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. 2012.
The brewing storm in cloud gaming: A measurement study on cloud to end-user
latency. In Proceedings of the 11th Annual Workshop on Network and Systems
Support for Games (NetGames). 1-6.

AMD Corporation. 2024. AMD FidelityFX™ Cauldron Framework. https://
gpuopen.com/fidelityfx-cauldron-framework/.

AMD Corporation. 2024. AMD FidelityFX™ Super Resolution (FSR).
https://www.amd.com/en/products/graphics/technologies/fidelityfx/super-
resolution.html.

AMD Corporation. 2024. AMD FSR GitHub Repository. https://github.com/
GPUOpen-LibrariesAndSDKs/FidelityFX-SDK. ~GitHub repository, Accessed
2024-08-23.

Intel Corporation. 2024. Intel X® Super Sampling (XeSS). https://www.intel.com/
content/www/us/en/products/docs/discrete- gpus/arc/technology/xess.html.
NVIDIA Corporation. 2024. NVIDIA Deep Learning Super Sampling (DLSS).
https://www.nvidia.com/en-us/geforce/technologies/dlss/.

TingxingTim Dong, Hao Yan, Mayank Parasar, and Raun Krisch. 2022. RenderSR:
A Lightweight Super-Resolution Model for Mobile Gaming Upscaling. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’22)
Workshops. New Orleans, LA, 3086-3094. https://doi.org/10.1109/CVPRW56347.
2022.00348

Open 3D Foundation. 2024. Open 3D Engine. https://o3de.org/.

Epic Games. 2024. Unreal Engine. https://www.unrealengine.com/.

Philippe Graff, Xavier Marchal, Thibault Cholez, Stephane Tuffin, Bertrand
Mathieu, and Olivier Festor. 2021. An Analysis of Cloud Gaming Platforms
Behavior under Different Network Constraints. In Proceedings of the 17th In-
ternational Conference on Network and Service Management (CNSM). 551-557.
https://doi.org/10.23919/CNSM52442.2021.9615562

Hua-Jun Hong, Fan-Chiang Tao-Ya, Cheng-Hsin Hsu, Kuan-Ta Chen, Chun-Ying
Huang, and Cheng-Hsin Hsu. 2014. GPU consolidation for cloud games: Are we
there yet?. In Proceedings of the 13th Annual Workshop on Network and Systems
Support for Games (NetGames). 1-6. https://doi.org/10.1109/NetGames.2014.
7008969

IETF. 2024. Media over QUIC (MoQ). https://datatracker.ietf.org/group/mogq/
about/.

Youngjin Kim, Yubin Choi, Young Choon Lee, Hyuck Han, and Sooyong Kang.
2022. E-Render: Enabling UHD-Quality Cloud Gaming Through Edge Rendering.
IEEE Access 10 (7 2022), 72107-72119.

kixelated. 2023. mogq-rs: Rust library for Media over QUIC. https://github.com/
kixelated/moq-rs. GitHub repository, accessed 2024-08-23.

Li Lin, Xiaofei Liao, Guang Tan, Hai Jin, Xiaobin Yang, Wei Zhang, and Bo Li. 2014.
LiveRender: A Cloud Gaming System Based on Compressed Graphics Streaming.
In Proceedings of the 22nd ACM International Conference on Multimedia (MM).
347-356.

Martin Malik. 2024. HWiNFO: System Information and Diagnostics Tool. https:
//www.hwinfo.com/.

Toannis Pantazopoulos and Spyros Tzafestas. 2002. Occlusion culling algorithms:
A comprehensive survey. Journal of Intelligent and Robotic Systems: Theory and
Applications 35, 2 (2002). https://doi.org/10.1023/A:1021175220384

Giacomo Parolini, Dario Maggiorini, Davide Gadia, and Laura Anna Ripamonti.
2022. Distributed Rendering for Video Games via Object Streaming. In Proceed-
ings of the IEEE 42nd International Conference on Distributed Computing Systems
Workshops (ICDCSW). Bologna, 209-214.

PCGuide. 2024. Our graphics settings guide for Star Wars Outlaws on
PC. https://www.pcguide.com/software/guide/best- graphics- settings- for-star-
wars-outlaws/. Accessed 2024-08-23.

Jon Peddie. 2019. Ray Tracing: A Tool for All. Springer.

Zhengwei Qi, Jianguo Yao, Chao Zhang, Miao Yu, Zhizhou Yang, and Haibing
Guan. 2014. VGRIS: Virtualized GPU Resource Isolation and Scheduling in Cloud
Gaming. ACM Transactions on Architecture and Code Optimization 11, 2 (6 2014),
1-25. https://doi.org/10.1145/2632216

Giampaolo Rodola. 2024. Psutil. https://github.com/giampaolo/psutil. GitHub
repository, accessed 2024-08-23.

Ryan Shea, Di Fu, and Jiangchuan Liu. 2015. Cloud Gaming: Understanding
the Support From Advanced Virtualization and Hardware. IEEE Transactions on
Circuits and Systems for Video Technology 25, 12 (12 2015), 2026-2037. https:

[28

[29

[30

[31

[33

(34

[35

]

MMSys *25, March 31-April 4, 2025, Stellenbosch, South Africa

//doi.org/10.1109/TCSVT.2015.2450172

Xinkun Tang, Ying Xu, Feng Ouyang, Ligu Zhu, and Bo Peng. 2023. A Cloud-Edge
Collaborative Gaming Framework Using Al-Powered Foveated Rendering and
Super Resolution. International Journal on Semantic Web and Information Systems
(IISWIS) 19, 1 (4 2023), 1-19.

Unity Technologies. 2024. Unity Engine. https://unity.com/products/unity-
engine.

Deniz Ugur. 2024. TransparentSR. https://github.com/DenizUgur/TransparentSR.
GitHub repository, accessed 2024-08-23.

Z. Wang, A.C. Bovik, HR. Sheikh, and E.P. Simoncelli. 2004. Image Quality
Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on
Image Processing 13, 4 (4 2004), 600-612. https://doi.org/10.1109/TIP.2003.819861
Songyin Wu, Sungye Kim, Zheng Zeng, Deepak Vembar, Sangeeta Jha, Anton
Kaplanyan, and Ling-Qi Yan. 2023. ExtraSS: A Framework for Joint Spatial Super
Sampling and Frame Extrapolation. In Proceedings of ACM SIGGRAPH. New York,
NY, USA, 1-11. https://doi.org/10.1145/3610548.3618224

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and
Anton Kaplanyan. 2020. Neural supersampling for real-time rendering. ACM
Transactions on Graphics 39, 4 (7 2020). https://doi.org/10.1145/3386569.3392376
Sipeng Yang, Qingchuan Zhu, Junhao Zhuge, Qiang Qiu, Chen Li, Yuzhong Yan,
Huihui Xu, Ling-Qi Yan, and Xiaogang Jin. 2024. Mob-FGSR: Frame Generation
and Super Resolution for Mobile Real-Time Rendering. In Proceedings of the ACM
SIGGRAPH 2024 Conference Papers. 1-11.

Xu Zhang, Hao Chen, Yangchao Zhao, Zhan Ma, Yiling Xu, Haojun Huang, Hao
Yin, and Dapeng Oliver Wu. 2019. Improving Cloud Gaming Experience through
Mobile Edge Computing. IEEE Wireless Communications 26, 4 (4 2019), 178-183.
Zhi Li, Anne Aaron, loannis Katsavounidis, Anush Moorthy, and Megha
Manohara. 2016. Toward A Practical Perceptual Video Quality Metric.

https://doi.org/10.1145/3390462
https://www.capframex.com/
https://www.capframex.com/
https://gpuopen.com/fidelityfx-cauldron-framework/
https://gpuopen.com/fidelityfx-cauldron-framework/
https://www.amd.com/en/products/graphics/technologies/fidelityfx/super-resolution.html
https://www.amd.com/en/products/graphics/technologies/fidelityfx/super-resolution.html
https://github.com/GPUOpen-LibrariesAndSDKs/FidelityFX-SDK
https://github.com/GPUOpen-LibrariesAndSDKs/FidelityFX-SDK
https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/technology/xess.html
https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/technology/xess.html
https://www.nvidia.com/en-us/geforce/technologies/dlss/
https://doi.org/10.1109/CVPRW56347.2022.00348
https://doi.org/10.1109/CVPRW56347.2022.00348
https://o3de.org/
https://www.unrealengine.com/
https://doi.org/10.23919/CNSM52442.2021.9615562
https://doi.org/10.1109/NetGames.2014.7008969
https://doi.org/10.1109/NetGames.2014.7008969
https://datatracker.ietf.org/group/moq/about/
https://datatracker.ietf.org/group/moq/about/
https://github.com/kixelated/moq-rs
https://github.com/kixelated/moq-rs
https://www.hwinfo.com/
https://www.hwinfo.com/
https://doi.org/10.1023/A:1021175220384
https://www.pcguide.com/software/guide/best-graphics-settings-for-star-wars-outlaws/
https://www.pcguide.com/software/guide/best-graphics-settings-for-star-wars-outlaws/
https://doi.org/10.1145/2632216
https://github.com/giampaolo/psutil
https://doi.org/10.1109/TCSVT.2015.2450172
https://doi.org/10.1109/TCSVT.2015.2450172
https://unity.com/products/unity-engine
https://unity.com/products/unity-engine
https://github.com/DenizUgur/TransparentSR
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1145/3610548.3618224
https://doi.org/10.1145/3386569.3392376

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Proposed Solution
	3.1 Overview and Challenges
	3.2 Identifying Upscalers Requirements
	3.3 Modifying Renderers and Upscalers
	3.4 Synchronizing Shared Buffers
	3.5 Overheads and Practical Considerations

	4 Evaluation
	4.1 Prototype Implementation
	4.2 Experimental Setup
	4.3 Evaluation on Individual Gaming Stations
	4.4 Evaluation in Cloud Gaming

	5 Conclusion
	References

