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Unsupervised Single-Image Reflection Removal

Hamed RahmaniKhezri

Abstract— Reflections often degrade the quality of images
by obstructing the background scenes. This is not desirable
for everyday users, and it negatively impacts the performance
of multimedia applications that process images with reflections.
Most current methods for removing reflections utilize supervised
learning models. These models require an extensive number of
image pairs of the same scenes with and without reflections to
perform well. However, collecting such image pairs is challenging
and costly. Thus, most current supervised models are trained
on small datasets that cannot cover the numerous possibilities
of real-life images with reflections. In this paper, we propose an
unsupervised method for single-image reflection removal. Instead
of learning from a large dataset, we optimize the parameters of
two cross-coupled deep convolutional neural networks on a target
image to generate two exclusive background and reflection layers.
In particular, we design a network model that embeds semantic
features extracted from the input image and utilizes these features
in the separation of the background layer from the reflection layer.
We show through objective and subjective studies on benchmark
datasets that the proposed method substantially outperforms
current methods in the literature. The proposed method does not
require large datasets for training, removes reflections from single
images, and does not impose impractical constraints on the input
images.

Index Terms—Image reflection, unsupervised learning.

I. INTRODUCTION

E FREQUENTLY encounter unpleasant reflections
W when taking photos through transparent surfaces such
as glass windows. These reflections reduce the visual quality
and utility of the captured photos. Reflections may also sig-
nificantly degrade the performance of multimedia applications
such as object detection and face identification. Thus, removing
reflection from images is an important problem for users and
applications. Removing reflection is, however, a challenging re-
search problem. Specifically, an image I containing reflection
can be defined as a linear superposition of two image layers,
background layer B and reflection layer R as:

I=B+R. (1
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Equation (1) implies that the reflection removal problem is
inherently ill-posed, since there are infinite valid decomposition
pairs of B and R.

To address the difficulty of the reflection removal problem,
some prior approaches utilize additional information such as
motion cues from a sequence of images captured for the same
scene [1]-[4]. In many practical scenarios, however, a sequence
of images of the same scene may not be available, and thus these
methods would fail. Other prior approaches make assumptions
on the background and reflection layers, such as sparse gradi-
ent prior [5], blurriness of the reflection layer [6], and ghosting
cues [7]. These approaches also fail when the assumptions do
not hold, which regularly occurs because of the vast diversity
of real-world images. Moreover, most prior works, especially
recent ones that utilize deep learning models, require a large
amount of training data. That is, most of them are supervised
learning methods, which produce acceptable results on images
somewhat similar to the ones seen in the training datasets. Col-
lecting large training datasets for image reflection removal is
challenging in practice, as it requires capturing each scene with
and without reflection at the same time. Thus, most datasets in
the literature tend to be small and do not cover a wide variety
of reflection scenarios. Therefore, supervised learning methods
may not produce good results because of the limited size of the
datasets, especially on images that have different characteristics
than those in the training datasets.

In this paper, we propose an unsupervised method for the
single-image reflection removal problem, which, to the best
of our knowledge, is the first unsupervised solution for such
complex problem. The proposed method does not require large
datasets for training, removes reflections from individual im-
ages, and does not make unrealistic assumptions on the input
images. Despite the difficulty of designing unsupervised learn-
ing models, we believe they have the potential to address the
complexity of the single-image reflection removal problem for
wide diversity of images.

Our method builds on recent works which show that not all
image priors must be learned from data. Rather, some of the
image characteristics can be captured by the network structure
itself. This is referred to as Deep Image Prior (DIP) [8], and
it is used for some image restoration problems by optimizing
the parameters of the untrained neural network to restore the
target image from random noise. Gandelsman et al. [9] ex-
tended this idea by utilizing multiple DIPs to decompose im-
ages into their basic components, which can be useful for ap-
plications such as image dehazing, segmentation, watermark
removal, and transparent layer separation. The generic image
decomposition method in [9], however, requires multiple
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inputs to solve the reflection separation problem. Specifically,
this method either requires a sequence of images or two different
mixtures of the background and reflection layers to address the
ambiguity in the reflection removal problem, as indicated by (1).
As mentioned earlier, in many cases a sequence of images of the
same scene may not be available. And requiring two different
mixtures of the background and reflection layers as input is not
practical, as these layers are actually the outputs we are trying
to obtain in the first place.

We present a new model which addresses the limitations of the
multiple DIPs method, especially for the single-image reflection
removal problem. Specifically, we first propose embedding high-
level semantic information into the DIP, and we refer to it as
Perceptual DIP. Second, we propose a cross-feedback structure
of two Perceptual DIPs, where the output of one Perceptual DIP
is weighted and fed back into the other DIP. Each Perceptual
DIP captures the self-similarity nature of areas within each layer.
The two Perceptual DIPs each capture the context of one of the
two layers in the input image, and the cross-feedback structure
allows our method to effectively separate layers in single images
without any additional inputs. Thus, the proposed Perceptual
DIP and the cross-feedback structure can address the ambiguity
and difficulty of the single-image reflection removal problem.

The contributions of this paper are as follows.

® We present the first unsupervised method for the challeng-
ing single-image reflection removal problem. Given only
a single image observation, our method successfully gen-
erates background and reflection layers, without any train-
ing data or additional information. The proposed method
is composed of three main components: Perceptual DIP,
cross-feedback, and refinement.

e We present a new architecture for the generator network in
the Perceptual DIP component, which allows it to utilize
both low-level image statistics and high-level perceptual
information during the optimization.

® We design a cross-feedback structure that encourages per-
ceptually more meaningful separation by jointly optimiz-
ing the parameters of two Perceptual DIPs, without requir-
ing additional inputs.

® We present a semantically-guided in-painting neural net-
work to refine the quality of the produced images after
removing the reflection.

® We conduct a subjective study to compare our unsuper-
vised method versus four state-of-the-art supervised meth-
ods for removing reflection [10]-[13]. The subjective study
was approved by our university’s Research Ethics Board.
Fifty subjects participated in this study and evaluated the
quality of the reflection separation achieved by all consid-
ered methods on 16 images chosen from datasets com-
monly used in prior works. The results show that, on
real-world images with complex reflections, our unsuper-
vised method substantially outperforms all prior works
and successfully removes most of the reflections, with-
out any training datasets. For example, an improvement
in the Mean Opinion Score (MOS) by up to 37% can be
achieved by our method compared to prior works. We also
show that our method outperforms the unsupervised image
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decomposition method in [9], without requiring any addi-
tional inputs.

e We analyze the various components of the proposed
method to show the importance and contribution of each
component to the end result. We also analyze the limita-
tions of the proposed method and the cases where it may
not produce good results.

The rest of this paper is organized as follows. Section II sum-
marizes the related work in the literature. Section III presents
the proposed method. Section IV compares the performance of
the proposed method against the closest works in the literature,
and Section V concludes the paper.

II. RELATED WORK

As mentioned in Section I, the image reflection removal prob-
lem is ill-posed and complex to solve. To address this complex-
ity, several prior works assumed the availability of multiple im-
ages from a slightly moving camera for the same scene, which
results in motion differences between the background and re-
flection layers due to their different depths with respect to the
camera (motion parallax). Examples of such multi-image ap-
proaches for reflection removal include [1]-[4]. However, mul-
tiple images for the same scene may not always be available.
Therefore, it is important and more practical to develop solu-
tions for removing reflections from single images, which is the
objective of this paper.

Several traditional, i.e., not neural network-based, prior works
addressed the single-image reflection removal problem by im-
posing priors or assumptions on the reflection to make the
problem tractable. Examples of these assumptions include the
sparse prior of gradients and local features [5], blurrier reflection
prior [6], ghosting cues [7], and different depth fields between
the two layers [14].

More recent approaches for single-image reflection removal
employ deep learning models and have been shown to outper-
form traditional ones. Examples of the most recent works in
this direction include [10]-[13], [15]-[22]. We provide brief de-
scriptions of these works in the following.

Fan et al. [15] introduce a solution using weakly supervised
learning for training a single reflection removal model. Ma et
al. [17] use unpaired supervision to design a weakly-supervised
framework by integrating reflection generation and separation
into a single model. Zhang ef al. [16] propose a two-stage
pipeline that utilizes edge hints of the background and reflec-
tion layers given by users to recover the missing details in the
background layer.

Zhang et al. [10] utilize perceptual losses to improve the sep-
aration of the background layer from the reflection layer. Yang
et al. [11] propose a cascade deep neural network (referred to
as BDN) to estimate the background and reflection layers bidi-
rectionally. Abico et al. [13] utilize a gradient constraint loss
with generative adversarial networks to produce high-quality
background layers. This approach is referred to as GCNet. Wei
et al. [12] propose a framework with a context encoding module
(called ERRNet) to handle the misalignment that usually occurs
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when collecting real datasets with pairs of images showing the
captured scenes with and without reflections.

Prasad et al. [19] propose a lightweight deep learning model
to remove reflection in two stages: processing the image using
a deep architecture in the lower scales of the image and a pro-
gressive inference stage for higher scales, which is guided by
the up-sampled lower scale outputs. Their architecture utilizes
weight sharing, which allows it to perform faster and have fewer
parameters compared to other methods. Niklaus et al. [20] in-
troduce a model that uses stereo images as input to address the
difficulty of the image reflection problem.

Zheng et al. [21] consider the absorption effect (which is, ap-
proximately, the average of the refractive amplitude coefficient
map) in their formulation of the single image reflection removal
problem. They propose a two-step solution that first estimates
the absorption effect from an image with reflection, and, then
recovers the transmission layer by taking the original image and
the estimated absorption effect as inputs.

Wan et al. [18] design a model to recover the reflection layer
from a mixed image. In our work, we separate the background
layer from the reflection layer, while focusing on improving the
quality of the recovered background layer as it typically repre-
sents the actual scene that users are interested in, whereas the
reflection layer is mostly seen as obstructing that background
scene. Wan et al. [22] address the reflection removal from face
images, by incorporating inpainting ideas into a guided reflec-
tion removal framework. Their work focuses on face images and
may not generalize to images with general scenes.

All of the above methods employ supervised-learning models,
which require training datasets. Wan et al. [23] collect a dataset
of real images with and without reflection, which is referred
to as the single-image reflection dataset (S1R?) [24], and it is
frequently used as a benchmark for evaluating image reflection
removal methods. In addition, some prior works generate syn-
thetic datasets for the image reflection problem through various
methods, including polarization pipeline [25], non-linear blend-
ing formulation [26], and generative adversarial training [27].

In our evaluations, we compare the proposed (unsupervised)
method against four supervised methods for image reflection re-
moval, which are Zhang el al. [10], BDN [11] GCNet [13] and
EERNet [12]. These four methods represent the state-of-the-art
and they published their codes and datasets, which allows us
to conduct fair comparisons using common benchmark im-
age datasets such as [24]. We could not include methods such
as [18]-[22] in our comparisons as they did not release their
codes or datasets. Furthermore, the four methods we compare
against, Zhang et al. [10], BDN [11] GCNet [13] and EER-
Net [12], produce results with better or similar visual quality
compared to other works, as shown in the evaluation sections of
these papers.

It is important to notice that our method is unsupervised, yet
we compare it against supervised methods to demonstrate its
strength. A fairer comparison would have been against other
unsupervised methods. However, we are not aware of any unsu-
pervised methods in the literature. We note that Chandramouli
et al. [28] proposed an unsupervised model for removing re-
flection from single face images. They use a generative model
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Fig. 1. The structure of the proposed Perceptual DIP.
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Fig. 2. Overview of the proposed method for image reflection removal. Two

DIP networks with perceptual embedding are coupled with cross-feedback and
loss functions, generating background and reflection layers from an input image.
The (main) background layer goes through a final refinement stage.

pre-trained on facial images as a deep image prior to suppress
unwanted reflections from a single face image. Unlike our work,
however, this method can only handle face images and does not
generalize to other types of images with reflection. Thus, we
could not compare our work against it.

Finally, we also compare against the unsupervised image de-
composition method (Double-DIP) in [9], although, as men-
tioned in Section I, this method requires extra inputs that are
typically not available in practice. We show that our proposed
method outperforms Double-DIP, even when Double-DIP uses
the extra inputs.

III. PROPOSED METHOD
A. Basic Elements

Prior works have shown that the entropy of small patches
inside a natural image is smaller than the entropy across dif-
ferent images [29]. That is, patches of a natural image tend to
have stronger internal self-similarity. For an image with reflec-
tion, this observation indicates that patches in the background
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Fig. 3. The effect of cross-feedback. At early stages, up to 500 iterations,

layers are separated mostly based on low-level features like colors and edges.
However, at later stages, more semantic features get considered in the separation
and the background and reflection layers start to exclude each other.

layer will likely have stronger self-similarity within this layer
than across patches in the other reflection layer, and vice versa.
To effectively utilize this observation in separating the reflec-
tion and background layers, we introduce two new structures:
Perceptual DIP and Cross-Feedback Perceptual DIPs, which are
explained in the following.

Perceptual DIP: Employing perceptual cues has shown re-
markable advantages in capturing the semantic meanings in im-
ages, which improves the performance of various image pro-
cessing tasks. Several recent deep-learning techniques improve
the performance with the combination of two perceptual losses:
a feature loss to measure some distance in the high-level feature
space from a pre-trained perceptual network, and an adversarial
loss to generate realistic images by training a separate discrim-
inator network in parallel. However, computing the L1 or L2
distance between high-dimensional features is not sufficient to
capture the real difference between them. In addition, an adver-
sarial loss requires paired ground truth datasets of background
and reflection layers to discriminate between real and fake data
via supervised learning.

Reflection separation is a complex and ill-posed problem. To
address this complexity and reduce ambiguity, we propose to
utilize some high-level semantics. We propose perceptual em-
bedding, which contains multi-level feature maps directly fed to
the corresponding layers of an encoder, rather than leveraging
perceptual losses.

Inspired by the perceptual discriminator [30], we design an
encoder-decoder network with perceptual embedding, which
is referred to as Perceptual DIP, as shown in Fig. 1. At the
initialization step, the perceptual embedding module extracts
multi-level features from a pre-trained image classifier. We chose
ResNet18 [31] as our backbone structure of the perceptual mod-
ule, which has four layers. We do not use the first layer output
as the features from this layer are more sensitive to low-level in-
formation of the image, similar to those captured by DIP, while
our goal is to incorporate high-level features. Then, the extracted
feature maps are concatenated with the features of each layer in
the encoder, which is constructed to fit well with the size of the
perceptual embedding and the input image.
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Cross-feedback Perceptual DIPs: We propose the coupling of
two perceptual DIPs, where the output of one Perceptual DIP is
fed back into the other DIP, as shown in Fig. 2. Each perceptual
DIP iteratively captures similar small patches inside one of the
two layers while excluding patches from the other layer. Once a
perceptual DIP outputs its estimation, the corresponding cross-
feedback estimation can be calculated from (1) at each iteration
tas Bf =1 — Ryand R = I — B.

In Fig. 3, we show how the two Perceptual DIPs are excluding
each other throughout the iterations, which enables our method
to effectively separate the reflection layer from the background
layer without additional inputs.

We note that we utilized dilated convolution in the last down-
sampler in the encoder of the Perceptual DIP. Dilated convolu-
tions require far fewer parameters than conventional convolu-
tions and they better capture local and global semantics within
the image. We analyze the impact of the perceptual embedding
on the reflection separation in Section I'V-E.

B. Approach Overview

A high-level overview of the proposed method for single im-
age reflection removal is depicted in Fig. 2. The figure shows two
Perceptual DIPs with the cross-feedback idea discussed above.
High-level features are first extracted from the input image using
a simple image classifier. These features are fed to the two cou-
pled Perceptual DIPs, which through iterations generate two dif-
ferent layers. Different types of loss functions are used to ensure
good layer separation and minimize the distortion, as discussed
in the following subsection. After convergence, the output of the
cross-coupled Perceptual DIPs is given to a semantically-guided
refinement step to produce images with high visual quality.

We define the structure of a Perceptual DIP as a parametric
function y = Gy(x). Specifically, in our method, two Percep-
tual DIPs can be represented as By = Gy (B¢ ,,I) and R, =
Go(RS 4, I) given an input image I and each cross-feedback,
Btil =I—R,;and thq = I — B,_1, at each iteration ¢. In
addition, we add an external parameter «; to control which Per-
ceptual DIP network generates which image layer based on the
following equation:

?t =(1 Aat) B, @)
Rt = Q¢ - Rt
where B; and R, are the direct outputs from the two Perceptual
DIP networks. The range of « is between 0 and 0.5, as the range
of (0.5, 1) would have the same effect. We set the initial value
of o as 0.1, which implies that reflections are relatively weaker
than the background scene in general cases. The impact of « in
our model is analyzed in Section IV-E.
Algorithm 1 summarizes the proposed optimization method.
The details of the loss functions are presented in the following.

C. Loss Functions

For a given input image I with reflection, our goal is to find a
perceptually meaningful decomposition of [ into B and R lay-
ers. We realize this goal by designing various loss functions and
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Mixed Image Ground Truth Our Method

BDN ERRNet GCNet Zhang et al.

Fig. 4. Comparing our unsupervised method versus four supervised methods on dataset DS1.

Mixed Image Ground Truth Our Method

BDN ERRNet GCNet Zhanget al.

Fig. 5. Comparing our unsupervised method versus four supervised methods on dataset DS2.

integrating them into the model. These loss functions are: recon-
struction loss, exclusive loss, similarity loss, and regularization
loss. The total loss function can be written as:

Etotal =Ar- Eracon + Az Eemcl + )‘3 . Esim + Aq- L:Teg;
3)

where A1, Ao, A3, and A4 are the corresponding weights for each
loss function; we experimentally set the values of these weights.
Once determined, we fixed all parameters throughout the entire
evaluation. The details of each loss are explained below, while
an ablation study to analyze the impact of each loss is presented
in the Supplementary Materials.

Reconstruction Loss: We find that combining different types
of reconstruction losses helps the network to converge faster.
Thus, we define our reconstruction loss as:

Lrecon = Leotor + w1 - Lgray + w2 - Lgrad,

Leotor = I = 1|2,

Lyray = lle(I) = e(D)]l2,

Loraa =V I =11, @)

where ¢(+) is the conversion function from RGB image to gray-
scale image, and v/(-) denotes the gradient of the input with
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Mixed Image Our Method BDN ERRNet GCNet Zhang et al.

Fig. 6. Comparing our unsupervised method versus four supervised methods on dataset DS3.
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Background Reflection Background

Reflection

Ground Truth Our Method Zhang et al.

Fig. 7. Comparison of the separation quality produced by our method versus
BDN [11] and Zhang et al. [10] methods.

PSNR =19.54
SSIM =0.73
7155 7 T

PSNR =21.93

PSNR =21.32
SSIM =0.84

PSNR =19.2
SSIM =0.81

GCNet

Our Method

Ground Truth

Fig. 8. Comparison between the output of our model and GCNet to show the
importance of the visual quality over the objective PSNR and SSIM metrics.
Although GCNet’s output achieved better PSNR and SSIM, it did not remove
much of the reflection, whereas our method removed most of the reflection.

Algorithm 1: Optimization Algorithm.

Input: The image I with reflection
Output: Decomposed layers, Band R

1: initialize By = Rg = I, = 0.1

2: fort=0toT://T is set to 5,000 iterations

3: l?t =(1—ay)-Gi(I— Ri 1)

4 Ry=a;-Go(I — By 1) o

5:  Compute the gradients of Ly, W.EL. By, Ry, oy
6: Update Bh Rt, o using the Adam optimizer [32]
7. Bé=1-R,

8: =I1—-B

9: end for
10: return Bt, Ry
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Background Reflection Background

Reflection

Double-DIP2

Ground Truth Our Method Double-DIP1

Fig. 9. Comparing our method against the unsupervised Double-DIP
method [9].

the Sobel filter, which we use in the initial steps. The main re-
construction loss is a pixel-wise £2 distance between the given
image and the recombined image in the RGB color space. We
also design the same £2 losses both in the gray space (Lg.qy)
and in the gradient domain (L,,4). We find that £ ,.,,, enhances
the generated output and £,.,q makes the network more robust.

Exclusion Loss: The exclusion loss aims to minimize the cor-
relation between edges of the background layer and the reflec-
tion layer at multiple spatial resolutions. Thus, similar to [10],
we define the exclusion loss as:

N
Lezel = Z ||n0rm(vgn,) ® norm(vén)||p, 5)

n=1

where n is the image downsampling factor, as exclusion loss
minimizes the correlation between edges of background and
reflection at multiple spatial resolutions. For each n in (5), the
image is downsampled by a factor of 2, and we chose N as
3 in our experiments. norm/(-) is the normalization in gradient
fields of the two layers, ® is the element-wise multiplication,
and || - || 7 denotes the Frobenius norm.

Similarity Loss: We design the similarity loss function with
two components: Cross-Consistent loss L.. and the Input-
Background-Similarity (IBS) loss L;5s.

Our goal is to empower the model to make the layers exclude
one another, such that each generated layer should be similar to
its corresponding cross-feedback from the other network as well
as its previous output. The Cross-Consistent loss contributes to
this goal, and it is defined as:

(I—Re1)2+ 1R — (I = Bica)|2. (6

Our observation suggests that although the reflection could
be evident in an image, the dominating part of the image is
the background. Thus, we would like the produced background
layer to resemble the input image. The IBS loss tries to make

»Ccc = HBt -
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Background Reflection Background Reflection Background

Reflection

Background

Reflection

Ground Truth | Il Il \Y)

Fig. 10. Ablation study to analyze the impact of different losses in four different scenarios in two real images: “I”’: Using only the Reconstruction Loss, “II"":
Reconstruction + Exclusion, “III”’: Reconstruction + Exclusion + Regularization Loss, and “IV”": All the losses.
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the produced background layer similar to the input image, and
it is defined as:

»CIBS = w3+ (H-B~t - IH2 + ['percep)a
[/percep = )\m ' Z ||f(Bt) - f(I)Hla (7)

Since we do not want complete similarity between the input
image and the output to avoid a case where the model keeps on
generating the reflection in the background, we found through
experiments that the Ly loss with a small effect is more suitable
in both preserving details and separating reflection. In addition,
the IBS loss also includes a perceptual component, which as
shown in prior works, e.g., [33], helps in producing visually
pleasing images. The perceptual component is defined based
on the activation of the 19-layer VGG network [34] trained on
ImageNet. The f(-) operator is the activation of an image at a
certain level, and the perceptual loss calculates the L distance
between the activation of two images at each level. X, is a
balancing weight for each layer and we put the largest weight to
emphasize low-level features and edges. We used convolution
layers similar to [12].

Combining the two loss components, the similarity loss is
given by:

Ls’im = ['cc + [IIBS- (8)

Notice that the relative weights for the terms in (8) are controlled
by the parameters in the (7).

Regularization Loss: We regulate the network under three
priors: a total-variance loss L7y[35], a total-variance balance
loss L7y p that we developed, and a ceiling rejection loss L.
[4], which are defined as follows:

Lreg = (Lrv + LrvB) + Leeils
Loy = Billi + | v Rl

Lrvp =V Bl — || v Bilx,
Leeit = Y f(Bi, I,m) + f (R, I,m),

Fyyym) = A om =l AT T > gy
0 otherwise

where m denotes each image pixel. While a total-variance loss
boosts the spatial smoothness in both generated scenes, our
total-variance balance loss penalizes the system when one of
the networks is giving up on generating the output (degenera-
tion problem) by balancing the total gradients of each output.
Also, the ceiling rejection loss constrains each pixel whose in-
tensity is larger than the input one, helping to resolve the color
ambiguity.

D. Refinement

The cross-coupled Perceptual DIPs generate images for the
background and reflection layers. In the generation process,
there are multiple downsampling and upsampling operations.
During these operations, some details of the input image can be
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lost, which may result in an output with poor visual quality even
if the layers are perfectly separated. To address this issue, we
add a final stage to the proposed model to refine the output.
The refinement model is inspired by recent works on im-
age in-painting and restoration, e.g., the contextual in-painting
method in [36]. The contextual in-painting method [36] requires
user-specified masks for areas that have damage in the image.
We adapt this contextual in-painting method to the reflection re-
moval problem as follows. Reflections in images can be thought
of as obstructions that cause damage to images. Thus, we con-
sider the reflection layer extracted by our cross-coupled Per-
ceptual DIPs as obstructions (damages) to the main background
layer in the image. We then create a mask based on this reflection
layer and use it to fix the damages (reflections in this case) in
the full-resolution input image using the contextual in-painting
method, without requiring any user-specified masks as in [36].

IV. EVALUATION

We evaluate the performance of the proposed unsupervised
method and compare it against the state-of-the-art supervised
methods for image reflection removal in the literature using a
subjective study as well as multiple objective metrics. In addi-
tion, we analyze the impact of various components of the pro-
posed method. We also compare our method against the un-
supervised image decomposition method in [9] and its limited
application to the image reflection removal problem.

‘We note that the images presented in this paper contain subtle
reflections and thus they are best viewed digitally and zoomed
in to see these details and differences.

A. Experimental Setup

Datasets: We assess the performance of the proposed method
using three datasets, referred to as DS1, DS2, and DS3. These
datasets contain images with diverse reflection characteristics
for indoor and outdoor scenes, and they have been used to eval-
uate prior methods for image reflection removal in the literature,
including the ones compared against in this paper.

The first dataset, DS1, comes from [24]. There are hundreds
of images in the dataset available from [24]. However, there are
only 55 real-world images with reflections having corresponding
ground truth background and reflection layers, which we use as
our DSI. An image in this dataset is first captured through a
glass barrier, which produces a mixed image with reflection and
background layers. Then, the ground truth reflection layer is
captured by putting a sheet of black paper behind the glass. The
ground truth background is later captured by removing the glass.

The second dataset, DS2, contains 20 images [10]. This
dataset has a ground truth for the background layer only. Im-
ages are captured by a camera on a tripod with a portable glass
in front of the camera. The ground truth background is captured
after removing the glass. The third dataset, DS3, is collected
from the Kaggle website [37] and it includes 1,000 image pairs
with and without reflections from 108 different scenes.

Methods Compared Against: We compare the proposed
method against four state-of-the-art methods, which are
BDN [11], GCNet [13], ERRNet [12], and Zhang et al. [10]. All
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of these methods use supervised deep learning models and have
been shown to outperform prior works. We use the implemen-
tations released by the authors of these works in our evaluation,
to ensure fair comparisons. Some works, e.g., [18]-[22], did not
release their codes and datasets, and thus we could not include
them in the evaluation.

Implementation Details: To address the complexity of the re-
flection removal problem, our model uses multiple losses. We
set the relative weights of different losses experimentally. How-
ever, once the parameters are determined, they do not change for
all experiments. We set A1, Ao, A3 and A4 to 1.5, 0.13, 1.0, and
1.0, respectively. For the reconstruction loss, we set the value of
wy and wy to 0.09 and 0.07. The value of v, the regularization
loss coefficients, is set to 0.003. As for ws in the similarity loss,
we set it to 0.1. The A,, parameters are set according to their
values in prior works that used the same structure as detailed
in [12].

Since our method is based on optimizing the model param-
eters for each single image, the batch size is set to 1, and the
parameters are updated with a learning rate of 0.0001 until the
number of iterations (epochs) reaches 5500.

B. Comparison Using Subjective Study

Reflections in images come in different forms and vary sub-
stantially based on numerous factors such as the illumination of
the scene, the nature of the surfaces causing the reflections, and
the angles of capturing images. Reflections may also cover small
parts of an image or the entire image. Reflections can be very
subtle or they could dominate an image and obstruct objects in
it. Thus, performance evaluation of reflection removal methods
should account for these complex and inter-dependent issues.
However, objective metrics, such as PSNR and SSIM, can only
partially capture the performance of the reflection removal meth-
ods, as they typically focus on comparing pixels and they can-
not accurately consider the above issues. Although demanding
and time consuming, subjective studies provide more accurate
assessment of the performance of reflection removal methods,
where humans can consider various aspects in the evaluation of
the quality of the produced results.

We conducted a subjective study to compare the quality of
the produced images by our method against those produced by
four supervised reflection removal methods. The study was ap-
proved by the Research Ethics Board of our university. A
total of 50 subjects participated in this study, where 34% of the
subjects were female. The subjects have various education and
work backgrounds and are from different age groups: 72% are
between 18-25 years old, 24% between 2635, and 4% are older
than 35.

The experiments were conducted through web forms, where
a subject is shown an input image that contains reflection along
with the outputs produced by five reflection removal methods:
BDN [11], GCNet [13], ERRNet [12], Zhang et al. [10], and
ours. The web form contains two rows of images, where the im-
age in the leftmost column in the first row is the input image with
reflection, with purple boxes indicating where reflections are lo-
cated. The other images are the reflection-removed versions of
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TABLE I
SUMMARY STATISTICS OF THE SUBJECTIVE STUDY
Average MOS | Median MOS
BDN [11] 2.68 2.75
GCNet [13] 2.49 2.5
ERRNet [12] 2.87 2.84
Zhang et al. [10] 2.74 2.75
Our 3.82 3.94

the image produced using the considered methods. We ask sub-
jects to give a score between 1 (Poor) and 5 (Excellent) for each
generated image indicating the “quality of reflection removal”.
We ask subjects to consider whether the method has removed
the reflection while preserved image visual quality. We explain
and show examples to subjects before they start ranking. The
names of the used reflection removal methods are not shown to
subjects and the order of showing the results changes randomly
for each input image.

Each of the 50 subjects evaluated the quality of removing
reflections from 16 representative and diverse images chosen
from DS1, DS2, and DS3. Thus, in total, we collected 50 x 16 =
800 data points.

A summary of the results is given in Table I. The table com-
pares the average and median of the Mean Opinion Score (MOS)
computed across all users and images for the five considered
methods. The results in Table I show that our method substan-
tially outperforms all prior works, despite being unsupervised
and not requiring any training data. For example, the median
MOS resulted from our method is 3.94, which is 37% higher
than the best median MOS resulted from prior works (2.87 pro-
duced by ERRNet [12]).

C. Visual and Objective Comparisons

Visual Comparisons: We present samples of our results to
visually compare the proposed method versus the state-of-the-art
methods in Figs. 4, 5, and 6, on datasets DS1, DS2, and DS3,
respectively. In these figures, we draw rectangles showing some
areas that have reflections. The input to all methods is shown on
the left, which is an image with reflection. These figures show
only the background layer of each image after removing the
reflection layer. We analyze the reflection layer later.

The results in the Figs. 4, 5, and 6 show that our method pro-
duces better (or at least the same) reflection removal than the
supervised methods that require a substantial amount of train-
ing data. For example, in the sample images of the second row
and third row in Fig. 4, all methods except ours failed to detect
and remove the reflection. Similarly, for the sample in the fourth
row, our method generated an output close to the ground truth
background, whereas the other methods failed to remove the re-
flection in the image. As for the first row, our model has managed
to locate and remove the reflection better than the other meth-
ods. Similar observations can be made on the results in Figs. 5
and 6.

We further analyze the quality of the layer separation of dif-
ferent methods in Fig. 7. This figure shows both the background
and reflection layers produced by various methods and compares
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TABLE II
COMPARING OUR METHOD AGAINST SUPERVISED METHODS USING THE SSIM
AND PSNR METRICS. B: BACKGROUND, R: REFLECTION
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TABLE III
COMPARING OUR METHOD AGAINST DOUBLE-DIP METHOD USING THE SSIM
AND PSNR METRICS. B: BACKGROUND, R: REFLECTION

Dataset DS1 Dataset DS1
Metric PSNR SSIM Metric PSNR SSIM
B R B R B R B R
BDN [11] 22.01 9.01 0.86 0.31 Double-DIP1 [9] 16.61 10.02 0.73 0.39
GCNet [13] 24.53 — 0.92 — Double-DIP2 [9] 16.53 20.35 0.65 0.66
Zhang et al. [10] 21.13 20.88 0.87 0.64 Our Method 20.52 20.28 0.82 0.41
ERRNet [12] 23.86 — 0.88 —
Our Method 20.52 20.28 0.82 0.41

them against each other and the ground truth. We show the re-
sults for only our method as well as the BDN [11] and Zhang
et al. [10] methods, as they were the ones that produced the best
results from prior works, as indicated in Figs. 4, 5, and 6. As
Fig. 7 shows, our method produces a cleaner separation of the
background and reflection layers.

Objective Comparisons: As we mentioned above, objective
image quality metrics, including PSNR and SSIM, do not accu-
rately measure the quality of separating the reflection layer from
the background layer, which is the main goal of our method. In-
stead, they measure the quality of the produced images, even if
the separation of the layer was not done properly. Nonetheless,
for completeness, we compare our method versus others using
the PSNR and SSIM objective metrics. The results for dataset
DSI1 are presented in Table II, which shows that our method re-
sults in somewhat smaller SSIM and PSNR values than some of
the other methods.

We illustrate the shortcomings of the PSNR and SSIM in
assessing the performance of the reflection removal methods in
Fig. 8, where we compare the produced background layer of our
method versus the one produced by GCNet. As the figure shows,
GCNet produced a background that is similar to the input image
without removing much of the reflection. Thus, the computed
PSNR and SSIM values are high, despite the poor performance
in the main task at hand (removing reflection). On the other hand,
our method removed most of the reflection from the image and
produced images with acceptable PSNR and SSIM values.

We note that the PSNR metric is sensitive to the variations
in pixel intensity between the produced image and the reference
image. Effectively removing reflections from an image indicates
that the pixel values could substantially change compared to the
original image, leading to lower PSNR values, as is the case in
our method. Similarly, the SSIM metric measures the structural
similarity between two images. And since removing reflections
from an image can change different parts of the image (e.g.,
by removing objects reflecting on the background scene), the
structural similarity between the image before and after remov-
ing reflections is expected to decrease.

Remark: We note that the performance of prior supervised
methods heavily depends on the used datasets in the training and
their performance typically degrades on images that do not have
similar ones in the training datasets, which is usual as real-life
images have numerous varieties. In contrast, our method exploits
both high-level and low-level statistics of an image to find two

layers that are as close as possible to a natural image. It optimizes
the parameters of the model on each input sample separately,
which means that it learns the image statistics of the input and
uses them to separate the input into two layers.

D. Comparison Against the Double-DIP Unsupervised Layer
Separation Method

As mentioned in Section I, the unsupervised image decom-
position method in [9] requires a sequence of images or two
different mixtures of the background and reflection layers to ad-
dress the ambiguity in the reflection removal problem. Although
requiring two different mixtures of the background and reflec-
tion layers is not practical, since we do not know these layers
beforehand, we compare the proposed method against the unsu-
pervised method in [9], which we refer to as Double-DIP.

To be able to compare against Double-DIP, we use images in
dataset DS1, because they have ground truth background and
reflection layers. This enables us to create the mixtures of back-
ground and reflection layers needed by Double-DIP to func-
tion. As there was no specific method in [9] for mixing the two
layers, we experimented with two different configurations, re-
ferred to as Double-DIP1 and Double-DIP2. For Double-DIP1,
we mix the original (ground truth) background layer with the
reflection layer that was modified by a Gaussian kernel. For
Double-DIP2, we linearly add the background and reflection
layers with a higher weight for the reflection layer. We expect
Double-DIP2 to produce better results as it solves a simpler prob-
lem with linear combinations of the ground truth layers. We used
the Double-DIP implementation released by the authors of [9].
We realize that Double-DIP1 and Double-DIP2 only represent
two possible combinations. However, the main point here is that
the Double-DIP method requires unrealistic inputs to solve the
single-image reflection removal problem. Nonetheless, we com-
pare our method against Double-DIP as it represents the closest
work in the literature that considered unsupervised models for
the complex single-image reflection removal problem.

Fig. 9 shows sample results comparing our method versus
Double-DIP. The results in the figure show that our method pro-
duces better separation quality, despite not needing any extra
inputs. For example, as shown in the first two rows, our method
performed better and separated the reflection from the back-
ground, whereas Double-DIP1 and Double-DIP2 failed to re-
move the reflection.

Next, we compare our method versus Double-DIP using
PSNR and SSIM in Table III. The table shows that our method
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achieves higher PSNR and SSIM values, especially for the back-
ground layer. As commented before, PSNR and SSIM indicate
the quality of the produced images, but they may not consider
the layer separation quality.

E. Analysis of Our Method and Ablation Study

We conduct a detailed analysis of various components of the
proposed method.

Ablation Study-Impact of Different Losses: Our method uti-
lizes four types of losses: reconstruction loss, exclusion loss,
similarity loss, and regularization loss. Since the reconstruction
loss performs the most important role in the problem definition,
we adjusted the weights of other losses based on this loss to
obtain better separation results. Thus, we evaluate the impact of
the different losses by adding each loss sequentially to the re-
construction loss as shown in Fig. 10. Since we utilize high-level
features of perceptual embeddings, the separation result in the
second column from the left in Fig. 10, when using only re-
construction loss, looks reasonable but not sufficient due to the
ambiguity between the two layers. We add the exclusion loss
to make the model decompose the input sample into two layers
having different contents based on edge information. The re-
sults in the third column in Fig. 10 show better separation but still
have some small artifacts. While the results in the fourth column
might be similar to the ones in the third, the regularization term
brings improvement in the speed of convergence and robust-
ness of the model. We enhance the model with a cross-feedback
structure and its corresponding loss to perform well even when
the gradient information of the reflection layer is not enough.
By adding the similarity loss, we obtain our best output shown
in the last column in Fig. 10, which shows more solid separation
in colors and shapes, in addition to its help on convergence and
robustness.

Impact of o: The parameter « gives different weights to the
background and reflection layers that are generated during the
iterations and fed back to the two perceptual DIPs. We conducted
experiments to analyze the impact of a by varying the value of
« within its rage, which is between 0.0 and 0.5. Two sample
results for & = 0.1and 0.4 are shown in Fig. 11. Our experiments
show that the impact of o diminishes as we get closer to 0.5,
as its influence on the two Perceptual DIPs becomes equal. In
addition, smaller values of « tend to yield better layer separation
results, as these values assign lower weights to the reflection
layer. This is in line with the observation that the reflection layer
tends to have lower pixel intensity than the background layer
in natural images. Through experimentation, we found that «
values around 0.1 produced the best results.

Perceptual Embedding: We analyze the impact of the per-
ceptual embedding on the reflection separation using multiple
images with different degrees of reflection. Recall that we mod-
ify a ResNet18 model to extract these features. We trained this
model using two common datasets of objects: ImageNet [38]
and Places365 [39]. This training does not need any datasets for
image reflection removal and is done once.

Fig. 12 shows the importance of the perceptual embedding in
separating the background layer from the reflection layer for two
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Reflection
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Fig. 11. Impact of « on the layer separation.

sample images. The results in the figure also indicate that using
the Places365 dataset yields better layer separations than using
the ImageNet dataset. This is because the Places365 dataset has
more images for indoor and outdoor scenes, which usually exist
in many reflection removal problems.

F. Limitations of the Proposed Method

Asmentioned before, reflections in images can have many dif-
ferent forms, and removing these reflections is an ill-posed and
complex problem. We analyze the cases in which our method
fails to properly remove the reflections, and we contrast the per-
formance of our method versus the performance of the two meth-
ods that produced the best results in our experiments, which are
ERRNet [12] and Zhang et al. [10]. We note that ERRNet pro-
duces only the background layer, and thus in the figures the
reflection images of ERRNet are not shown.

Through our experiments, we identified three challenging sit-
uations in which our method (and others) failed to remove the
reflection: (i) dominant reflection, (ii) weak reflection, and (iii)
dark images. An example of the first case is shown in Fig. 13,
where the reflection is so strong that it dominates most of the
objects in the background and makes it hard for our method
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Fig. 12.  The impact of Perceptual Embedding on layer separation.
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Fig. 13.  Performance of our method and others in case of dominant reflections.
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Fig. 14.  Performance of our method versus others in the cases of weak reflec-
tion (top) and dark images (bottom).

to separate the background layer from the reflection layer. Ex-
amples of the other two cases are shown in Fig. 14, where in
the second case, the reflection exists in the image, but it is very
subtle, and in the third case, the image does not have enough
illumination, and the pixels of the background and reflection
layers cannot easily be distinguished.

V. CONCLUSION AND FUTURE WORK

We have presented an unsupervised method for single-image
reflection removal. To the best of our knowledge, this is the first
unsupervised work for removing reflection from individual im-
ages of natural scenes. We have proposed a novel architecture
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of cross-coupled Perceptual DIPs that is capable of capturing
not only the low-level statistics of a natural image but also the
high-level semantic cues. We have also designed an optimiza-
tion scheme using multiple loss functions without training on
any dataset, which addresses the ambiguity of the single-image
reflection removal problem, and leads to good separation re-
sults for natural images. Both qualitative and quantitative eval-
uations using real datasets show that our method outperforms
the state-of-the-art supervised models. They also show that our
method significantly outperforms the closest unsupervised ap-
proach in the literature, which, unlike our method, requires ad-
ditional inputs to function.

The work in this paper can be extended in multiple directions.
For example, the quality of the separated layers can further be im-
proved by incorporating recent image restoration and inpainting
techniques, which can potentially address some of the extreme
reflection cases, e.g., when the reflection is strong and dominates
the background scene.
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