Questions 1-3 will be about a mini language L for controlling robots that travel along a line. L is defined by the following syntax:

$$s \ ::= \ \text{move } n \mid \text{flip} \mid \text{skip} \mid s ; s \mid n \in \mathbb{R}$$

1 **Design Semantics**

Design a semantics for the language by writing an inductive relation:

$$s \vdash (x, b) \rightsquigarrow (x', b') \subseteq \mathbb{L} \times \mathbb{R} \times \mathbb{B}$$

where $\mathbb{B} = \{\bot, \top\}$ is the set of boolean values (\bot represents false and \top represents true) and \mathbb{R} is the set of all real numbers. These semantics should be expressed as an inductive relation defined by inference rules.

In this relation, $s \vdash (x, b) \rightsquigarrow (x', b')$ should represent that, if a robot starts at position x, facing to the right if $b = \top$ and facing to the left if $b = \bot$, then after running the program described by s, the robot ends at position x' and faces to the right if $b' = \top$ and faces to the left if $b' = \bot$.

In this language, $\text{move } n$ represents that the program moves “forward” by n steps (in other words, n is added to its position if the robot is facing to the right, and n is subtracted from its position if the robot is facing to the left).

In this language, flip represents that the robot changes direction. In other words, if the robots position is described by \top, its position should now be described by \bot, and vice-versa.

In this language, skip represents that the program does nothing.

In this language, $s_1 ; s_2$ represents that the program first runs s_1 then it runs s_2.

2 **Prove Semantics Are Functional**

We wish for these semantics to describe exactly how a robot should move. This means that, for any given starting position, and any given program, your program describes exactly one ending position.

Put more formally, I wish you to prove that for all $\ell \in \mathbb{L}$ and for all $(x, b) \in \mathbb{R} \times \mathbb{B}$, there exists $(x', b') \in \mathbb{R} \times \mathbb{B}$ such that $\ell \vdash (x, b) \rightsquigarrow (x', b')$. Furthermore, show that for all (x', b') and $(x'', b'') \in \mathbb{R} \times \mathbb{B}$, if $\ell \vdash (x, b) \rightsquigarrow (x', b')$ and $\ell \vdash (x, b) \rightsquigarrow (x'', b'')$ then $x' = x''$ and $b' = b''$.

3 **Write a Derivation Showing That the Semantics Operate Correctly**

Write a full derivation using your rules that shows:

$$\text{flip; (move 3; (skip; flip))) \vdash (3, \top) \rightsquigarrow (0, \top)}$$
4 Prove Anything Holds on Uninhabited Types

Consider the language M described by the following syntax:

\[s ::= \text{Continue}\ s \]

Prove via structural induction the theorem $\forall x \in M. \phi$ for any arbitrary ϕ. (Hint 1: prove a stronger theorem first) (Hint 2: \bot implies ϕ for all ϕ).

5 Prove One Inductive Proposition Implies Another

Consider the language N described by the following syntax:

\[n ::= S\ n \mid O \]

Consider the inductive proposition $even\ n \subseteq N$ defined below:

\[
\begin{align*}
\text{even}\ O & \quad \text{EVENO} \\
\text{even}\ S\ n & \quad \text{EVENSS}
\end{align*}
\]

and consider the inductive proposition $\text{mod4}\ n \subseteq N$ defined below:

\[
\begin{align*}
\text{mod4}\ O & \quad \text{Mod4O} \\
\text{mod4}\ S\ S\ S\ S\ n & \quad \text{Mod4SSSS}
\end{align*}
\]

Prove that for all $n \in N$, $\text{mod4}\ n$ implies $\text{even}\ n$.

6 Prove One Inductive Proposition Implies Another Exists

Consider the language T described by the following syntax:

\[t ::= \text{Node}\ (t, t) \mid \text{Leaf} \]

Consider the inductive proposition $\text{right_lean}\ t \subseteq T$ defined below:

\[
\begin{align*}
\text{right_lean}\ \text{Leaf} & \quad \text{RIGHTLEANLEAF} \\
\text{right_lean}\ \text{Node}(\text{Leaf}, t) & \quad \text{RIGHTLEANNODE}
\end{align*}
\]

Consider the inductive proposition $\text{line_length}\ t = n \subseteq T \times N$ defined below:

\[
\begin{align*}
\text{line_length}\ \text{Leaf} & = 0 \quad \text{LINELENGTHLEAF} \\
\text{line_length}\ t = n & \quad \text{LINELENGTHLEAFF} \\
\text{line_length}\ \text{Node}(t, \text{Leaf}) = n + 1 & \quad \text{LINELENGTHLEAFR}
\end{align*}
\]

Prove that for all $t \in T$, if $\text{right_lean}\ t$ then there exists some $n \in N$ for which $\text{line_length}\ t = n$ holds.