1 Full Evaluation Step

Provide the full derivation for a single step of evaluation of

\(((\lambda x.\lambda y. x y y) ((\lambda z. (\lambda a.\lambda b. b a))) ((\lambda c.c) (\lambda d.d))) \)

You don’t need to provide a derivation for the variable replacements \(e[v/x] \) – you can simply replace the variables.

2 Check for Zero Applications

Define a class of untyped lambda calculus terms \(App(n) = \lambda f.\lambda x.x^n x \). So \(App(0) = \lambda f.\lambda x.x \) and \(App(1) = \lambda f.\lambda x.x f x \) and \(App(4) = \lambda f.\lambda x.x(f(f(f(f x)))) \). Write an untyped lambda calculus expression \(g \) such that \(g App(0) = \lambda x.\lambda y.x \) and if \(n > 0 \) then \(g App(n) = \lambda x.\lambda y.y \).

3 Full Variable Replacements

Find the expression \(e' \), and show the full derivation, for \((\lambda x.z (\lambda z.z) x)(\lambda w.w/z) = e' \).

4 Non-Typeability

Prove that there does not exist a \(\tau \) such that \(\lambda(x:\tau).x x \) is well typed.

5 Weakening in STLC

Let \(\Gamma \) and \(\Gamma' \) be partial functions from \(Vars \rightarrow T \). We define \(\Gamma \subseteq \Gamma' \) as \(\forall v \in Vars \) where \(\Gamma \) is defined on \(v \), then \(\Gamma' \) is defined on \(v \) and \(\Gamma(v) = \Gamma'(v) \).

Prove that if \(\Gamma \vdash e : \tau \) and \(\Gamma \subseteq \Gamma' \) then \(\Gamma' \vdash e : \tau \).

6 Full Typing Derivation

Find a type \(\tau \), and show the full derivation for \(\vdash \lambda(x:\text{Bool}).\lambda(y:\text{Int} \rightarrow \text{Bool}).\text{if } x \text{ then } y(S\;O) \text{ else } y\;O : \tau \).