• Type Class Usage
• Type Class Definition
• Type Class Instantiation
• Type Class Examples
What are Type Classes

- Closest Analogue — Object Interfaces?
- When you can assume a function exists for a specific type
- Haskell’s version of ad-hoc polymorphism / overloading
Motivation: OO

• Imagine you were in a world where your objects didn’t have a .toString() method, or a .Equals() method

• Must pass toString() and .Equals() functions around the full system

• Without Type Classes, that’s what Haskell is!

 • Many FP languages do not have type classes

 • Require either a different solution, or don’t have a solution
Type Class Solution

• Give a name to a bundle of interrelated functions

• Can require that this bundle of functions exists for a instantiated types on (parametrically) polymorphic functions

• If you make this requirement, then you can use those functions within the function body

• (TypeClass a) => [a] -> a -> a
Example Type Class: Show

```haskell
class Show a where
  show :: a -> String

showList :: (Show a) => [a] -> String
showList [] = "Nil"
showList (h:t) = show h ++ "::" ++ showList t
```
Example Type Class: Eq

class Eq a where
 (==) :: a -> a -> Bool

ifEqShow :: (Eq a) => (Show a) => a -> a -> String
ifEqShow x y = if x == y then show x else ""

>>> :t (==)
(Eq a) => a -> a -> Bool

>>> :t ifEqShow
(Eq a) => (Show a) => a -> a -> String
So how do we instantiate these?

```haskell
instance Eq Bool where
    (==) True True = True
    (==) False False = True
    (==) _ _ = False

instance Show Bool where
    show True = "True"
    show False = "False"
```
Eq should be reflexive, transitive, and symmetric

• Expected properties:
 • $a == a$
 • $a == b \land b == c \implies a == c$
 • $a == b \implies b == a$
• Can we guarantee this?
Not in base Haskell!

• If we included such capabilities, type checking would become undecideable

• Exists in dependent Haskell: https://gitlab.haskell.org/ghc/ghc/-/wikis/dependent-haskell

Example Type Class: Ord

```haskell
class Ord a where
  (<=) :: a -> a -> Bool

  (>=) :: (Ord a) => a -> a -> Bool
  (>=) x y = y <= x

  (==) :: (Ord a) => a -> a -> Bool
  (==) x y = x <= y && x >= y

  (<) :: (Ord a) => a -> a -> Bool
  (<) x y = x <= y && not (x == y)
```

Writing all these helper functions is a bit annoying.
1. We can require an instantiated type class

• It doesn’t make sense to have an ordering without equality!

```haskell
class Eq a => Ord a where
    (<=) :: a -> a -> Bool
```

• Now, the only instances of Ord *must* also be instances of Eq
2. We can *immediately* provide extra functions

```haskell
class Eq a => Ord a where
    (<=) :: a -> a -> Bool

{- Now I want (<), (>) , (>=) -}

(<) :: a -> a -> Bool
(>) :: a -> a -> Bool
(>=) :: a -> a -> Bool

(<) x y = x <= y && not (x == y)
(>) x y = y < x
(>=) x y = y <= x
```
Instances with Polymorphic Types

• What do we do about polymorphic types

• Say I want to instantiate List a as part of the “Eq” type class

 • This is tough, because I need to be able to compare the “a”s

• We can require the polymorphic variables to satisfy type class constraints
instance Eq a => Eq [a] where
 (==) :: [a] -> [a] -> Bool

 (==) [] [] = True
 (==) (h1:t1) (h2:t2) = h1 == h2 && t1 == t2
 (==) _ _ = False

But there's restrictions!

Must derive from smaller types (guarantees termination)
Must not have multiple ways of deriving instances (guarantees determinism)

With Haskell language extensions however, you can kind of do anything
Deriving Instances

• Some of these type classes can have very straightforward implementations
 • Ord, Eq, etc.

• We can *derive* these instances automatically

• These derived instances have default behavior, if you want different behavior you must handwrite

• You can write your “deriving” for your own type classes, but we won’t go into that in this class
Deriving for Tree

```
data Tree a =
  Leaf
  | Node (Tree a,a,Tree a)
deriving (Eq,Ord,Show)
```

```
>>> :t sort
(Ord a) => [a] -> [a] -> [a]

>>> sort [Node(Leaf,1,Leaf), Leaf]
[Leaf,Node(Leaf,1,Leaf)]
```
Deriving Guarantees

• If there’s no type variables:
 • derived (==) is syntactic equivalence
 • show will print the data structure in the same way you’d build it
 • <= will be transitive, reflexive, and total
 • Furthermore, a <= b && b <= a iff a == b
Can use to represent math objects

- A monoid is a set of values that has a binary associative operation *, and a designated element ident that is an identity element over *.
- Let's write monoid as a type class!
Monoid Class

class Monoid a where
 ident :: a
 (*) :: a -> a -> a
Monoid Use

```
combineList :: (Monoid a) => [a] -> a
combineList [] = ident
combineList (h:t) = h * (combineList t)
```

Note that having an ident is important here!
It doesn’t matter whether we combine from left or right (right now we’re doing right-to-left)
Monoid Instances

instance Monoid [a] where
 ident = ""
 (*) = (++)

instance Monoid Nat where
 ident = 0
 (*) = (+)

instance Monoid Nat where
 ident = 1
 (*) = Prelude.(*)