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Bidirectional transformations between different data representations occur frequently in modern software
systems. They appear as serializers and deserializers, as parsers and pretty printers, as database views and
view updaters, and as a multitude of different kinds of ad hoc data converters. Manually building bidirectional
transformations—by writing two separate functions that are intended to be inverses—is tedious and error prone.
A better approach is to use a domain-specific language in which both directions can be written as a single
expression. However, these domain-specific languages can be difficult to program in, requiring programmers
to manage fiddly details while working in a complex type system.

We present an alternative approach. Instead of coding transformations manually, we synthesize them
from declarative format descriptions and examples. Specifically, we present Optician, a tool for type-directed
synthesis of bijective string transformers. The inputs to Optician are a pair of ordinary regular expressions
representing two data formats and a few concrete examples for disambiguation. The output is a well-typed
program in Boomerang (a bidirectional language based on the theory of lenses). The main technical challenge
involves navigating the vast program search space efficiently. In particular, and unlike most prior work on
type-directed synthesis, our system operates in the context of a language with a rich equivalence relation on
types (the theory of regular expressions). Consequently, program synthesis requires search in two dimensions:
First, our synthesis algorithm must find a pair of “syntactically compatible types,” and second, using the
structure of those types, it must find a type- and example-compliant term. Our key insight is that it is possible
to reduce the size of this search space without losing any computational power by defining a new language of
lenses designed specifically for synthesis. The new language is free from arbitrary function composition and
operates only over types and terms in a new disjunctive normal form. We prove (1) our new language is just as
powerful as a more natural, compositional, and declarative language and (2) our synthesis algorithm is sound
and complete with respect to the new language. We also demonstrate empirically that our new language
changes the synthesis problem from one that admits intractable solutions to one that admits highly efficient
solutions, able to synthesize intricate lenses between complex file formats in seconds. We evaluate Optician
on a benchmark suite of 39 examples that includes both microbenchmarks and realistic examples derived
from other data management systems including Flash Fill, a tool for synthesizing string transformations in
spreadsheets, and Augeas, a tool for bidirectional processing of Linux system configuration files.
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1 INTRODUCTION

Programs that analyze consumer information, performance statistics, transaction logs, scientific
records, and many other kinds of data are essential components in many software systems. Of-
tentimes, the data analyzed comes in ad hoc formats, making tools for reliably parsing, printing,
cleaning, and transforming data increasingly important. Programmers often need to reliably trans-
form back-and-forth between formats, not only transforming source data into a target format but
also safely transforming target data back into the source format. Lenses [Foster et al. 2007] are
back-and-forth transformations that provide strong guarantees about their round-trip behavior,
guarding against data corruption while reading, editing, and writing data sources.

A lens comprises two functions, get and put. The get function translates source data into the
target format. If the target data is updated, the put function translates this edited data back into the
source format. A benefit of lens-based languages is that they use a single term to express both get
and put. Furthermore, well-typed lenses give rise to get and put functions guaranteed to satisfy
desirable invertibility properties.

Lens-based languages are present in variety of tools and have found mainstream industrial use.
Boomerang [Barbosa et al. 2010; Bohannon et al. 2008] lenses provide guarantees on transformations
between ad hoc string document formats. Augeas [Lutterkort 2007], a popular tool that reads Linux
system configuration files, uses the get part of a lens to transform configuration files into a canonical
tree representation that users can edit either manually or programmatically. It uses the lens’s put to
merge the edited results back into the original string format. Other lens-based languages and tools
include GRoundTram [Hidaka et al. 2011], BiFluX [Pacheco et al. 2014], BiYacc [Zhu et al. 2015],
Brul [Zan et al. 2016], BIGUL [Ko et al. 2016], bidirectional variants of relational algebra [Bohannon
et al. 2006], spreadsheet formulas [Macedo et al. 2014], graph query languages [Hidaka et al. 2010],
and XML transformation languages [Liu et al. 2007].

Unfortunately, these languages are difficult to program in, as they force the programmer to juggle
the multiple ways of interpreting their terms. In Boomerang, a single term encodes the allowable
inputs from the source data format, the allowable inputs from the target data format, and how to
transform the terms from each format to the other. When the two data formats contain Kleene stars
in different places, programmers must mentally transform these formats into a common “aligned”
form.

These languages impose fiddly constraints on their terms, making lens programming slow and
tedious. For example, Boomerang programmers often must rearrange the order of data items by
recursively using operators that swap adjacent fields. Furthermore, the Boomerang type checker is
very strict, disallowing many programs because they contain ambiguity about how certain data
is transformed. In short, lens languages provide their strong bidirectional guarantees by putting
additional burdens on the programmer.

To make programming with lenses faster and easier, we have developed Optician, a tool for
synthesizing lenses from simple, high-level specifications. This work continues a recent trend
toward streamlining programming tasks by synthesizing programs in a variety of domain-specific
languages [Feng et al. 2017; Gulwani 2011a; Le and Gulwani 2014; Perelman et al. 2014], many
guided by types [Feng et al. 2017; Feser et al. 2015; Frankle et al. 2015; Osera and Zdancewic 2015;
Polikarpova et al. 2016].
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Fig. 1. Schematic Diagram for Optician. Regular expressions, S and T, and examples, exs, are given as input.
First, the function || converts S and T into their respective DNF forms, DS and DT. Next, SYNTHDNFLENS
synthesizes a DNF lens, dI, from S, T, and exs. Finally, {] converts dl into I, a lens in Boomerang that is
equivalent to dl.

Specifically, Optician supports the synthesis of bijective lenses, a useful subset of Boomerang.
While Boomerang can express more complex lens theories, like asymmetric lenses [Foster et al.
2007] and quotient lenses [Foster et al. 2008], we focus on synthesizing lenses encoding bijections.
We theorize many of these more complex lenses have a bijective core, surrounded by structured
transformations. For example, assymmetric lenses can provide mappings between formats where
one format contains information the other does not. We expect that many asymmetric lenses are
merely bijections composed with projections, where the projections remove information when
operated left to right, and recover that information when operated from right to left. Quotient lenses
can provide mappings between formats containing unnecessary information, like whitespace. We
expect that many quotient lenses are merely bijections composed with functions that put the data
into a canonical form. If the appropriate projections and canonizing functions are provided (either
from the user or from another synthesis algorithm), Optician can be used as a drop-in component
for synthesizing full terms in these more expressive theories.

As inputs, Optician takes regular expressions specifying the source and target formats, plus a
collection of concrete examples of the desired transformation. Format specifications are supplied as
ordinary regular expressions. Because regular expressions are so widely understood, we anticipate
such inputs will be substantially easier for everyday programmers to work with than the unfamiliar
syntax of lenses. Moreover, these format descriptions communicate a great deal of information to
the synthesis system. Thus, requiring user input of regular expressions makes synthesis robust,
helps the system scale to large and complex data sources, and constrains the search space sufficiently
that the user typically needs to give very few, if any, examples.

While Boomerang’s types provide detailed information about the uses for the generated lenses,
they also complicate synthesis procedures. Specifically, Boomerang’s types are regular expression
pairs, and each regular expression is equivalent to an infinite number of other regular expressions.
To synthesize all Boomerang terms, a type-directed synthesizer must sometimes be able to find,
amongst all possible equivalent regular expressions, the one with the right syntactic structure to
guide the subsequent search for a well-typed, example-compatible Boomerang term.

To resolve these issues, we introduce a new language of Disjunctive Normal Form (DNF) lenses.
Just as string lenses have pairs of regular expressions as types, DNF lenses have pairs of DNF regular
expressions as types. The typing judgements for DNF lenses limit how equivalences can be used,
greatly reducing the size of the search space. Despite the restrictive syntax and type system of
DNF lenses, we prove our new language is equivalent to a natural, declarative specification of the
bijective fragment of Boomerang.

Figure 1 shows a high-level, schematic diagram for Optician. First, Optician uses the function
| to convert the input regular expressions into DNF regular expressions. Next, SYNTHDNFLENS

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 1. Publication date: January 2018.



1:4 Anders Miltner, Kathleen Fisher, Benjamin C. Pierce, David Walker, and Steve Zdancewic

performs type-directed synthesis on these DNF regular expressions and the input examples to
synthesize a DNF lens. Finally, this DNF lens is converted back into a regular lens with the function
1, and returned to the user.

Contributions. Optician makes bidirectional programming more accessible by obviating the
need for programmers to write lenses by hand. We begin by briefly reviewing some background
on regular expressions and core lens combinators (§2). After we motivate our problem with an
extended, real-world example (§3), we offer the following technical contributions:

e We introduce a new lens language (DNF Lenses) that is suitable for synthesis (§4 and §5). We
show how to convert ordinary regular expressions and lenses into the corresponding DNF
forms, and we prove that DNF lenses are sound and complete with respect to the high-level
bijective lens syntax.

e We present an efficient, type-directed synthesis algorithm for synthesizing lenses (§6). We
prove that if there is a lens that satisfies the input specification, this algorithm will return
such a lens.

e We evaluate Optician, its optimizations, and existing synthesis tools on 39 benchmarks,
including examples derived from Flash Fill [Gulwani 2011b] and the Augeas [Lutterkort 2007]
system (§7). We show that our optimizations are critical for synthesizing many of the complex
lenses in our benchmark suite and that our full algorithm succeeds on all benchmarks in
under 5 seconds.

e While we are not aware of any other systems for automatically synthesizing bijective trans-
formations, we establish a baseline for our the effectiveness of our techniques by comparing
our synthesis algorithm with the one used in Flash Fill [Gulwani 2011b], a well-known
and influential synthesis system deployed in Microsoft Excel. Flash Fill only synthesizes
transformations in one direction, but it was only able to complete synthesis of 3 out of 39 of
our benchmarks. We conjecture that the extra information we supply the synthesis system
via our regular format descriptions, allows it to scale to significantly more complex and varied
formats than is possible in current string synthesis systems that do not use this information.

We close with related work (§8) and conclusions (§9).

2 PRELIMINARIES

Technical Report. Throughout the paper, we will state a number of theorems. We have omitted
these theorems for space, and have included these details in a longer technical report [Miltner et al.
2017a).

Regular Expressions. We use ¥ to denote the alphabet of individual characters c; strings s and ¢
are elements of ¥*. Regular expressions, abbreviated REs, are used to express languages, which are
subsets of X*. REs over X are:

S,T = S | 0 | S* | Sl . Sz | Sl | SZ
L(S) € X7, the language of S, is defined as usual.

Unambiguity. The typing derivations of lenses require regular expressions to be written in a
way that parses text unambiguously. S and T are unambiguously concatenable, written S - T if,
for all strings s1,s2 € L(S) and t;,t, € L(T), whenever s; - t; = sp - , it is the case that s; = s,
and t; = t,. Similarly, S is unambiguously iterable, written S* if, for all n,m € N and for all strings
StyeeosSuy s, tm € L(S), whenever sy - ... s, =t ... by, itisthe case thatn = mand s; = t;
for all i.
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A regular expression S is strongly unambiguous if one of the following holds: (a) S = s, or
(b) L(S)={},or(c) S=5-S, with ;' Sy, 0r (d) S= S, | S, with S; NS, =0, or (e) S = (S')* with

(S’)*!. In the recursive cases, S;, Sz, and S’ must also be strongly unambiguous.

Equivalences. S and T are equivalent, written S = T, if L(S) = £(T). There exists an equational
theory for determining whether two regular expressions are equivalent, presented by Conway
[1971], and proven complete by Krob [1991].! Conway’s axioms consist of the semiring axioms
(associativity, commutativity, identities, and distributivity for | and -) plus the following rules for
equivalences involving the Kleene star:

S|n° = -5 Sumstar
S-T) = €e|(S-(T-9"-T) Prodstar

sy = & Starstar
SID* = (SITD-TI(S-TY -9 (| (SIT)-((S-T)| ... [(S-T)")  Dicye

While this equational theory is complete, naively using it in the context of lens synthesis
presents several problems. In the context of lens synthesis, we instead use the equational theory
corresponding to the axioms of a star semiring [Droste et al. 2009]. If two regular expressions are
equivalent within this equational theory, they are star semiring equivalent, written S =° T. The star
semiring axioms consist of the semiring axioms plus the following rules for equivalences involving
the Kleene star:

S* =% €|(5S*) Unrollstarg
St =% €|(S-S) Unrollstarg
In §3, we provide intuition for why synthesis with full regular expression equivalence is problematic
and justify our choice of using star semiring equivalence instead.

Bijective Lenses. All bijections between languages are lenses. We define bijective lenses to be
bijections created from the following Boomerang lens combinators, 1.
l:=  const(s; € X%, sy € XF)
| iterate(l)
| concat(ly, )
| swap(h, )
| or(h, k)
| Lk
| ids
The denotation of a lens [ is [I]] C String X String. If (s1, sz) € [[1]l, then I maps between s; and s,.
[const(si,s2)] = {(s1,52)}
[iterate(D]] = {(s;-... spti-...-ty)|neN A Vie[L,n],(s;,t) €[]}
[concat(h, L) = {(s1-s2.t1- ) | (s1,t1) € [L]] A (s2,82) € [II}
[swap(h, L) = {(s1-s2. 82+ t1) | (s1,t1) € [L]] A (s2,22) € []I}
[or(l, ) = A{(s,0) | (s,0) € [LllV (s, 1) € [}
(L Ll = {(s1,83) [ Isals1,82) € [L]] A (s2,85) € [L]}
[idsl = {(s.9)|s€ L(S)}

The simplest lens in the combinator language is the constant lens between strings s, and t,
const(s, t). The lens const(s, t), when operated left-to-right, replaces the string s with ¢, and when
operated right-to-left, replaces string ¢ with s. The identity lens on a regular expression, ids, operates
in both directions by applying the identity function to strings in £(S). The composition combinator,

IThere are other complete axiomatizations for regular expression equivalence, such as those developed by Kozen [1994] and
Salomaa [1966]. We focus on Conway’s for the sake of specificity, but discuss alternative theories in §8.
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ll : 51 =1 T1
l2 : 52 (=4 Tz
ssEX et l:SeT S T S8, T T,
const(sy, $p) : 51 & Sy iterate(l) : S* © T* concat(l, ) : $1S, © T\ T,
ll : Sl =4 T]
lz!Sz@Tg 11151<=>T1 lz:Sz@Tg
S-S, o' L(S)NLES)=0 L(TH)NL(T,) =0
swap(ll, lz) : 5152 (=4 T2T1 or(ll, lz) : Sl | Sz (=t Tl | Tz
L:S S5 L:S o S S is strongly unambiguous
11;12251(353 ld55<:>5

1251@52 Sl = S{ Sz =° Sé

1:S5]e 8

Fig. 2. Lens Typing Rules

Iy ; L, operates by applying [, then I, when operating left to right, and applying I, then /; when
operating right to left.

Each of the other lenses manipulates structured data. For instance, concat(l;, l,) operates by
applying [; to the left portion of a string, and I, to the right, and concatenating the results. The
combinator swap(ly, I;) does the same as concat(ly, I;) but it swaps the results before concatenating.
The combinator or(l;, l;) operates by applying either [; or ; to the string. The combinator iterate(l)
operates by repeatedly applying [ to subparts of a string. For example, the lens that transforms a
last-name/first-name format (e.g. "Kleene, Stephen Cole") to a first-name/last-name format
(e.g. "Stephen Cole Kleene")may be written as follows.

swap
(Id(name) . const(",","")

, (iterate (swap (Id(wsp) , Idpame))))

Unfortunately, even such a minimal example is hard to write! Writing this program required
reasoning about which components must be swapped to make the last name appear at the end,
and how to properly place whitespace between the names. These difficulties become even more
apparent when writing the complex transformations that occur between large formats, and when
ensuring lenses are well-typed.

Lens Typing. The typing judgement for lenses has the form [ : S & T, meaning [ bijectively
maps between £(S) and L(T). Figure 2 gives the typing relation. Many of the typing derivations
require side conditions about unambiguity. These side conditions guarantee that the semantics of
the language create a bijective function. For example, if [; : $; © Tj,and L : S; & Ty, and S; is
not unambiguously concatenable with S,, then there would exist s1, 5] € L(S;), and sy, 55, € L(S2)
where s; - s, = s - 5, but s # 57, and s; # s;. The lens concat(l;, l,) would no longer necessarily act
as a function when applied from left to right, as I; could be applied to both s; and to s;. Because

ZFor nested concatenations and disjunctions, the terms concat(l}, L) and or(l, ) are syntactically heavy. Instead, these can
be written in the infix style of };.I; (for concatenations) and I |I; (for disjunctions).
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Legacy Modern
Clients Clients
Legacy Work Item Representation ~ Modern Work Item Representation
Legacy Lens Modern
< > <WorkItem>
Server API Server API <Field Td-1>Bug</Field>  {
# <Field Id=2>Return 400 on Title: Return 400 on
bad PUT request</Field bad PUT request,
> Type: Bug,
SerVer Stack <Field Id=5>Smith, J</ AssignedTo: J Smith,
Field> }
</WorkItem>
(@) (b)

Fig. 3. VSTS Architecture Using Lenses. In (a), we show the proposed architecture of VSTS using lenses. When
a legacy client requests a work item, the server retrieves the data in a modern format through the new APIs,
then the lens converts it into a legacy format to return to the client. When a legacy client updates a work
item, it provides the data in the legacy format to the server. The lens then converts this data into the modern
format for the new endpoints to process. Idealized Task representations from legacy and modern web service
endpoints are given in (b).

any ambiguous RE can be replaced by an equivalent unambiguous one, these ambiguity constraints
do not have an impact on the computational power of the language.

The typing rule for ids requires a strongly unambiguous regular expression. This unambiguity
allows the identity lens to be derivable from other lenses.? This requirement does not, however,
reduce expressiveness, as any regular expression is equivalent to a strongly unambiguous regular
expression [Book et al. 1971].

The last rule in Figure 2 is a type equivalence rule that lets the typing rules consider a lens
[:85 © S;tohave type S| © S so long as S; =° S; and S, =° ). Notice that this rule uses star
semiring equivalence as opposed to Conway equivalence. In theory, this reduces the expressiveness
of the type system; in practice, we have not found it restrictive. We explain and justify the decision
to use star semiring equivalence in the next section.

It is worthwhile at this point to notice that the problem of finding a well-typed lens [ given a pair
of regular expressions—the lens synthesis problem—would not be difficult if it were not for lens
composition and the type equivalence rules. When read bottom up, these two rules require wild
guesses at additional regular expressions to continue driving synthesis recursively in a type-directed
fashion. In contrast, in the other rules, the shape of the lens is largely determined by the given
types. The following sections elaborate on this problem and describe our solution.

3 OVERVIEW

To highlight the difficulties in synthesizing lenses, we use an extended example inspired by the
evolution of Microsoft’s Visual Studio Team Services (VSTS). VSTS is a collection of web services
for team management — providing a unified location for source control (e.g. a Git server), task
management (i.e. providing a means to keep track of TODOs and bugs), and more. In 2014, to
increase third party developer interaction, VSTS released new web service endpoints [Harry 2014].
However, despite VSTS introducing new, modernized web APIs, they must still maintain the old,
legacy web APIs for continued support of legacy clients [Microsoft Corporation 2017]. Instead of

3In practice, we allow regular expressions that aren’t strongly unambiguous to appear in ids, provided that they are
expressed as a user defined regular expression. We elide such user-defined regular expression information from the theory
for the sake of simplicity.
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maintaining server code for each endpoint, we envision an architecture that uses a lens to convert
resources of the old form into resources of the new form and vice versa, as shown in Figure 3a.
Writing each of these converters by hand is slow and error prone. Optician expedites this process
by only requiring users to input regular expressions and input-output examples. Furthermore, the
lenses it generates are guaranteed to map between the provided regular expressions and to act
correctly on the provided examples.

Consider a “Work Item,” a resource that represents a task given to a team. Figure 3b shows an
example work item in idealized legacy and modern formats. While the two representations contain
the same information, they are presented differently — clients that expect one representation would
fail if given the other. In our proposed architecture, if an old client performs an HTTP GET request
to receive a work item, the server first retrieves that work item using the modern APJ, and then
uses the lens’s get function to convert this task into the legacy format. Similarly, if an old client
performs an HTTP PUT request to update a work item, the server first uses the lens’s put function
to convert that data into the new format, and then inputs the work item in the new representation
to the modern APIs.

For simplicity, let’s consider finding only the mapping between the “Title” field of the legacy and
modern work item formats. The legacy client accepts inputs of the form

legacy_title = "<Field Id=2>" text_charx "</Field>"
while the modern client accepts inputs of the form

modern_title = ("Title:" text_charx text_char ",")

| wn

where text_char is a user-defined data type representing what characters can be present in a text
field (like the title field). We would like to be able to synthesize I, a lens that satisfies the typing
judgement ] : legacy_title & modern_title (i.e. I maps between the legacy representation
legacy_title, and the modern representation modern_title). Because the modern API omits
the title field if it is blank, the lens must perform different actions depending on the number of
text characters present, functionality provided by or lenses. An or lens applies one of two lenses,
depending on which of the lenses’ source types matches the input string.

However, the typing rule for or does not suffice to type check lenses that map between legacy_
title and modern_title. While modern_title is a regular expression with an outermost
disjunction, legacy_title is a regular expression with an outermost concatenation, so the
rule cannot be immediately applied. We address this problem by allowing conversions between
equivalent regular expression types with the type equivalence rule. Using this rule, a type-directed
synthesis algorithm can convert legacy_title into

legacy_title' = "<Field Id=2></Field>"
| ("<Field Id=2>" text_char text_charx "</Field>")

There exist or lenses between legacy_title’and modern_title, and the two cases of an empty
and a nonempty number of text characters can be handled separately. However, the need to find
this equivalent type highlights a significant challenge in synthesizing bijective lenses.

Challenge 1: Multi-dimensional Search Space. Since regular expression equivalence is decid-
able, it is easy to check whether a given lens [ with type S; < S; also has type 5| & S;.
During synthesis, however, deciding when and how to use type conversion is difficult because
there are infinitely many regular expressions that are equivalent to the source and target reg-
ular expressions. Does the algorithm need to consider all of them? In what order? To convert
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from legacy_titleto legacy title’, the algorithm must first unroll text char« into "" |
text_char text_charx, and then it must distribute this disjunction on the left and the right.

A related challenge arises from the composition operator, I; ; l;. The typing rule for composition
requires that the target type of /; be the source type of I,. To synthesize a composition lens between
S1 and Ss, a sound synthesizer must find an intermediate type S, and lenses with types S; & S, and
S, © S;s. Searching for the correct regular expression S, is again problematic because the search
space is infinite.

Thus, naively applying type-directed synthesis techniques involves searching in three infinite
dimensions. A complete naive synthesizer must search for (1) a type consisting of two regular
expressions equivalent to the given ones but with “similar shapes” and (2) a lens expression that has
the given type and is consistent with the user’s examples. Furthermore, whenever composition is
part of the expression, naive type-directed synthesis requires a further search for (3) an intermediate
regular expression.

Our approach to this challenge is to define a new “DNF syntax” for regular languages and lenses
that reduces the synthesis search space in all dimensions. In this new language, regular expressions
are written in a disjunctive normal form, where disjunctions are fully distributed over concatenation
and where binary operators are replaced by n-ary ones, eliminating associativity rules. Using DNF
regular expressions, when presented with a synthesis problem with type (A|B)C < A’C’|B'C’,
Optician will first convert this type into ([A-C] | [B:-C]) & ([A"-C’] | [B’- C’]), where (...)
represents n-ary disjunction and [. . .] represents n-ary concatenation. Like DNF regular expressions,
DNF lenses are stratified, with disjunctions outside of concatenations, and they use n-ary operators
instead of binary ones. Furthermore, DNF lenses do not need a composition operator, eliminating
an entire dimension of search. This dual stratification and the lack of composition creates a very
tight relationship between the structure of a DNF lens term and the DNF regular expression pair
that forms its type.

Translating regular expressions into DNF form collapses many equivalent REs into the same
syntactic form. However, this translation does not fully normalize regular expressions. Nor do we
want it to: If a synthesizer normalized € | BB* to B, it would have trouble synthesizing lenses with
types like € | BBx & € | CD* where the first occurrence of B on the left needs to be transformed into
C while the rest of the Bs need to be transformed into D. Normalization to DNF eliminates many,
but not all, of the regular expression equivalences that may be needed before a simple, type-directed
structural search can be applied—i.e., DNF regular expressions are only pseudo-canonical.

Consequently, a type-directed synthesis algorithm must still search through some equivalent
regular expressions. To handle this search, SYNTHDNFLENS is structured as two communicating
synthesizers, shown in Figure 4. The first synthesizer, TyPEPROP, proposes DNF regular expressions
equivalent to the input DNF regular expressions. TYPEPROP uses the axioms of a star semiring to
unfold Kleene star operators in one or both types, to obtain equivalent (but larger) DNF regular
expression types. The second synthesizer, RIGIDSYNTH, performs a syntax-directed search based on
the structure of the provided DNF regular expressions, as well as the input examples. If the second
synthesizer finds a satisfying DNF lens, it returns that lens. If the second synthesizer fails to find
such a lens, TYPEPROP learns of that failure, and proposes new candidate DNF regular expression
pairs.

Star Semiring Equivalence and Rewriting. One could try to search the space of DNF regular expres-
sions equivalent to the input regular expressions by turning the Conway axioms into (undirected)
rewrite rules operating on DNF regular expressions and then trying all possible combinations of
rewrites. Doing so would be problematic because the Conway axiomatization itself is both highly
nondeterministic and infinitely branching (due to the choice of n in the dyclicity axiom).
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SyNTHDNFLENS
| , | x
DS > —> DS —>
TyPEPROP ‘ RIGIDSYNTH ‘
DT > — DT’ — 7y > dl
v
exs

Fig. 4. Schematic Diagram for DNF Lens Synthesis Algorithm. DNF regular expressions, DS and DT, and a
set of examples exs are given as input. The synthesizer, TYPEPROP, uses these input DNF regular expressions
to propose a pair of equivalent DNF regular expressions, DS’ and DT’. The synthesizer RIGIDSYNTH then
attempts to generate a DNF lens, dl, which goes between DS’ and DT’ and satisfies all the examples in exs. If
RIGIDSYNTH is successful, dl is returned. If RIGIDSYNTH is unsuccessful, information of the failure is returned to
TypEPROP, which continues proposing candidate DNF regular expressions until RIGIDSYNTH finds a satisfying
DNF lens.

We also want DNF lenses to be closed under composition - if it is not then we need to be able to
synthesize lenses containing composition operators. To be closed under composition, it is sufficient
for the equivalence relation used in the type equivalence rule to be the equivalence closure of a
rewrite system (—) satisfying four conditions. First, if S — 5, then £(S) = £(S). Second, if S — &’
and S is strongly unambiguous, then S’ is also strongly unambiguous. The remaining two properties
relate the rewrite rules to the typing derivations of DNF lenses, when those typing derivations do
not use type equivalence. To express these properties, we use the notation dl © DS < DT to mean
that if dl is a DNF lens that goes between DNF regular expressions DS and DT, then the typing
derivation contains no instances of the type equivalence rule. Using this notation, we can express
the confluence property, as follows:

Definition 1 (Confluence). Whenever dl; © (IS$;) © (U T1),if S; — S; and T} — T, there exist
regular expressions S, and T; and a DNF lens dls, such that:

(1) $2 — S

@ TL-T

() d*(US) e (1)

(4) [di:] = [4hL]

We call the final property bisimilarity. Bisimilarity requires two symmetric conditions.

Definition 2 (Bisimilarity). Whenever dl; 7 (| $;) © (I T;) and S; — S,, there exist a regular
expression T, and a DNF lens dl, such that

1) h->T

@) di 7 (IS2) & (IT2)

®3) L1 = [dL ]

To be bisimilar, the symmetric property must also hold for T; — T;.

Our solution for handling type equivalence is to use =°, the equivalence relation generated by the
axioms of a star semiring. This equivalence relation is compatible with our lens synthesis strategy,
as orienting these unrolling rules from left to right presents us with a rewrite relation that is both
confluent and bisimilar, and whose equivalence closure is =°. The star semiring axioms are the
coarsest subset of regular expression equivalences we could find that is generated by a rewrite
relation and is still confluent and bisimilar. We have not been able to prove that this relation is the
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coarsest such relation possible, but it is sufficient to cover all the test cases in our benchmark suite
(see §7). However, it is easy to show that Conway’s axioms (Prodstar in particular) are not bisimilar,
which is why we avoid this in our system.

Challenge 2: Large Types. DNF lenses are equivalent in expressivity to lenses and the algorithm
SYNTHDNFLENS is quite fast. Unfortunately, the conversion to DNF incurs an exponential blowup.
In practical examples, the regular expressions describing complex ad hoc data formats may be
very large, causing the exponential blowup to have a significant impact on synthesis time. The
key to addressing this issue is to observe that users naturally construct large types incrementally,
introducing named abbreviations for major subcomponents. For example, in the specification of
legacy_title and modern_title, the variable text_char describes which characters can be
present in a title. To include a large disjunction representing all valid title characters instead of the
concise variable text_char in the definitions of legacy_title and modern_title would be
unmaintainable and difficult to read.

Unfortunately, leaving these variables opaque introduces a new dimension of search. In addition
to searching through the rewrites on regular expressions, the algorithm must also search through
possible substitutions, replacements of variables with their definitions. We designate these two
types of equivalences expansions, using “rewrites” to denote expansions that arise from traversing
rewrite rules on the regular expressions, and using “substitutions” to denote expansions that arise
from replacing a variable with its definition.

Interestingly, Optician can exploit the structure inherent in these named abbreviations to speed
up the search dramatically. For example, if text_char appears just once in both the source and
the target types, the system hypothesizes that the identity lens can be used to convert between
occurrences of text_char. On the other hand, if text_char appears in the source but not in the
target, the system recognizes that, to find a lens, text_char must be replaced by its definition. In
this way, the positions of names can serve as a guide for applying substitutions and rewrites in the
synthesis algorithm. By using these named abbreviations, TYPEPROP guides the transformation of
regular expression types during search by deducing when certain expansions must be taken, or
when one of a class of expansions must be taken.

4 DNF REGULAR EXPRESSIONS

The first important step in Optician is to convert regular expression types into disjunctive normal
form (DNF). A DNF regular expression, abbreviated DNF RE, is an n-ary disjunction of sequences,
where a sequence alternates between concrete strings and atoms, and an atom is an iteration of
DNF regular expressions. The grammar below describes the syntax of DNF regular expressions
(DS,DT), sequences (SQ,TQ), and atoms (A, B) formally.

AB == DS*
SO, TQ == [so-Ar-... Ay~ syl
DS,DT == (SQ, | ... | O,)

Notice that it is straightforward to convert an arbitrary series of atoms and strings into a sequence:
if there are multiple concrete strings between atoms, the strings may be concatenated into a single
string. If there are multiple atoms between concrete strings, the atoms may be separated by empty
strings, which will sometimes be omitted for readability. Notice also that a simple string with no
atoms may be represented as a sequence containing just one concrete string. In our implementation,
names of user-defined regular expressions are also atoms. However, we elide such definitions from
our theoretical analysis.

Intuitions about DNF regular expressions may be confirmed by their semantics, which we give
by defining the language (set of strings) that each DNF regular expression denotes:
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Osp : Sequence — Sequence — Sequence

[so-A1-...-Ap-sp] Osolto-Bi-...-Bm-tm] =[s0-A1-...-An-Sp-to-Bi-... By tm]
© : DNF — DNF — DNF

(SO, | ... 150,) @ (TQ, | ... | TQ,) =

(5Q, 050 TQy | -+ | SQy ©sg TQp, | -+ | SQ, Oso TQy | -+ [ SQp, Osg TQp,)

@ : DNF — DNF — DNF

(SQ; 1+ [5Q) @(TQy | .. [TQp) =(SQy [ -+ [SQn | TO1 | ... | TOp)

D :Atom — DNF

D(A) = ([e-A-€])

Fig. 5. DNF Regular Expression Functions

L(DS*) ={s;-... s, |Vis; € L(DS)}
Llso-Ar-...-An-spl) ={so-t1-tn-sn | ti € L(A)}
LSO | ... 180,)) ={s|se L(SQ;)and i € [1,n]}

A sequence of strings and atoms is sequence unambiguously concatenable, written Mo Avs. .23 A sn),
if, when s}, t] € L(A;) for all i, then sys] ...s;s, = sot; ...t,s, implies s; = ¢/ for all i. A DNF
regular expression S is unambiguously iterable, written S*' if, for all n,m € N and for all strings
StyevesSnobiyevnstm € L(S),ifs;-...-sy =4 ... - t,thenn=mand s; = t; for all i.

Expressivity of DNF Regular Expressions. Any regular expression may be converted into an
equivalent DNF regular expression. To define the conversion function, we rely on several auxiliary
functions defined in Figure 5. Intuitively, DS ® DS concatenates two DNF regular expressions,
producing a well-formed DNF regular expression as a result. Similarly, DS & DS generates a new
DNF regular expression representing the union of two DNF regular expressions. Finally, D(A)
converts a naked atom into a well-formed DNF regular expression. The conversion algorithm itself,
written |} S, is defined below.

Us = (sD
o = 0
sy = DS
USi-8%) = USols
USi1S) = Usels
Using |} , the definition of legacy_title’ gets converted into the DNF regular expression:
dnf_legacy_title =

( ["<Field Id=2></Field>"]

| ["<Field Id=2>"-text_char-""-([text_char])* - "<Field Id=2>"] )
and the definition of modern_title gets converted into the DNF regular expression:

dnf_modern_title =
( ["Title:" -text_char-""-([text_char])*-", "]

L")

Theorem 1 (|| Soundness). For all regular expressions S, L(|S) = L(S).

DNF Regular Expression Rewrites. There are many fewer equivalences on DNF regular expressions
than there are on regular expressions, but there still remain pairs of DNF regular expressions that,
while syntactically different, are semantically identical. Figure 6 defines a collection of rewrite rules
on DNF regular expressions designed to search the space of equivalent DNF REs. This directed

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 1. Publication date: January 2018.



Synthesizing Bijective Lenses 1:13

AToM UNROLLSTARL, Atom UNROLLSTARR

DS* — 4 ([€]) ® (DS © D(DS")) DS* —4 ([e]) ® (D(DS*) © DS)

ATOM STRUCTURAL REWRITE
DS — DS’

DS* — 4 ([DS”*])

DNF STRUCTURAL REWRITE

(SO, | .- 15Q; 1) @[50 Ar+oov55-1]) @ D(A) O[5+ A 5m]) © (SQsy | ... [5Q,) —
SOy | ... 150,y @ ([s0-Ar-... 5, 1]) ODSO[sj-...- Am-Sm] ® (SQsy | --. | SQ,)

Fig. 6. DNF Regular Expression Rewrite Rules

rewrite system helps limit the search space more than the non-directional equivalence =° relation.
Because the rewrite rules are confluent, it is just as powerful as the =° relation.

Because disjunctive normal form flattens a series of unions or concatenations into an n-ary
sum-of-products, there is no need for rewriting rules that manage associativity or distributivity.
Moreover, the lens term language and synthesis algorithm itself manages out-of-order summands,
so we also have no need of rewriting rules to handle commutativity of unions. Hence, the rewriting
system need only focus on rewrites that involve Kleene star. The rule ATom UNROLLSTARY, is
a directed rewrite rule designed to mirror Unrollstary. Intuitively, it unfolds any atom DS* into
€ | (DS - DS*). However, € | (DS - DS*) is not a DNF regular expression. Hence, the rule uses DNF
concatenation (®) and union (&) in place of regular expression concatenation and union to ensure
a DNF regular expression is constructed. The rule ATom UNROLLSTARR mirrors the rule Unrollstarg
in a similar way.

The rules ATom STRUCTURAL REWRITE and DNF STRUCTURAL REWRITE make it possible to
rewrite terms involving Kleene star that are nested deep within a DNF regular expression, while
ensuring that the resulting term remains in DNF form.

5 DNF LENSES

The syntax of DNF lenses (dl), sequence lenses (sql) and atom lenses (al) is defined below. DNF
lenses and sequence lenses both contain permutations (o) that describe how these lenses transform
their subcomponents.

al ::= iterate(dl)
sql == ([(s0, o) - aly - ...~ aly - (s, ty)], 0)
dl == ((sqly | ... |sql,),0)

A DNF lens consists of a list of sequence lenses and a permutation. Much like a DNF regular
expression is a list of disjuncted sequences, a DNF lens contains a list of ored sequence lenses.
DNF lenses also contain a permutation that provides information about which sequences are
mapped to which by the internal sequence lenses. As an example, consider a DNF lens that maps
between data with type dnf_legacy_title and data with type dnf_modern_title. In such
a lens, the permutation ¢ indicates whether data matching ["<Field Id=2></Field>"] will
be translated to data matching ["Title:"-text_char-""- {[text_char])*-", "] or [""], and
likewise for the other sequence in dnf_legacy_title.In this case, we would use the permutation
that swaps the order, as the first sequence in dnf_legacy_title gets mapped to the second in
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dliDS< DT  DS* DT*
iterate(dl) * DS* & DT*

all?A1<=>B1 aln?An(:}Bn
oc€eS, H(s0;Ar;. .3 Anisn) -!(tO;B(,(l);...;Bg(n);t,,)

([(S(), t())'all ‘...~aln'(sn,tn)],6) H [So'A1 '...'An‘Sn] =4 [tO'BO'(l)'-”'BO'(n)‘tn]

sql; T SQ, © TO, e sql,, 7 SQ, & TQ,
o €Sy i#j= L(5Q;) N L(SQ;)=0 i#j= L(TQ;) N L(TQ;) =0
(Csqly |- 15qL,),0) T (SQu | .. 15Q,) @ (TQpy | -+ | TQo(n))

DS’—*DS DT'—*DT dl DS & DT
dl: DS’ & DT’

Fig. 7. DNF Lens Typing

dnf_modern_title, and vice-versa. As we will see in a moment, these permutations make it
possible to construct a well-typed lens between two DNF regular expressions regardless of the
order in which clauses in a DNF regular expression appear, thereby eliminating the need to consider
equivalence modulo commutativity of these clauses.

A sequence lens consists of a list of atom lenses separated by pairs of strings, and a permutation.
Intuitively, much like a sequence is a list of concatenated atoms and strings, a sequence lens is a list
of concatenated atom lenses and string pairs. Sequence lenses also contain a permutation that makes
get and put reorder data, allowing sequence lenses to take the job of both concat and swap. If there are
n elements in the series then the DNF sequence lens divides an input string up into n substrings. The
i'" such substring is transformed by the i element of the series. More precisely, if that i*" element
is an atom lens, then the i*”* substring is transformed according to that atom lens. If the i*" element is
a pair of strings (s1, s2) then that pair of strings acts like a constant lens: when used from left-to-right,
such a lens translates string s; into sy; when used from right-to-left, such a lens translates string s,
into s1. After all of the substrings have been transformed, the permutation describes how to rearrange
the substrings transformed by the atom lenses to obtain the final output. As an example, consider a
sequence lens that maps between data with type ["Title:"-text_char-""-([text_char])*-", "]
and data with type ["<Field Id=2>"-text_char-""-([text_char])*-"<Field Id=2>"]. We
desire no reorderings between the atoms text_char and ([text_char])”, so the permutation
associated with this lens would be the identity permutation.

An atom lens is an iteration of a DNF lens; its semantics is similar to the semantics of ordinary
iteration lenses. In our implementation, identity transformations between user-defined regular
expressions are also atom lenses. However, we elide such definitions from our theoretical analysis.

The semantics of DNF Lenses, sequence lenses and atom lenses are defined formally below.

[iterate(dD] =:=={(s1 ... sp,t1 ... ty) | n €N A (s;,8) € [dI]|}
[([(s0, t0) - aly - ...~ aly - (sp, ta)], )] == {(S05] - . . 7, 5n, l‘ol‘;(l) e t;(n)tn) | (s;, t]) € [al; ]}
[((sqly | ... | sql,), o)) =={(s,t) | (s, t) € sql, for some i}

Type Checking. Figure 7 presents the type checking rules for DNF lenses. In order to control where
regular expression rewriting may be used (and thereby reduce search complexity), the figure defines
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two separate typing judgements. The first judgement has the form dl © DS & DT.1f dl * DS & DT,
then not only is [dI]] a bijective mapping between £L(DS) and L(DT), but the terms and types are
all well aligned — if dI ¥ DS < DT then there must be the same number of sequence lenses in d!
as there are sequences in each of DS and DT (and similarly for their subcomponents). The second
judgement has the form di : DS & DT.If dl : DS < DT, then [[d]] is a bijective mapping between
DS and DT. However, because this judgement allows for rewriting in its derivation, the terms and
types may not be aligned.

One of the key differences between these typing judgements and the judgements for ordinary
lenses are the permutations. For example, in the rule for typing DNF lenses, the permutation ¢
indicates how to match sequence types in the domain (SQ; . . . SQ,,) and the range (TQ(y) - - - TQ(s))-
Permutations are used in a similar way in the typing rule for sequence lenses.

Properties. While DNF lenses have a restrictive syntax, they remain as powerful as ordinary
bijective lenses. The following theorems characterize the relationship between the two languages.

Theorem 2 (DNF Lens Soundness). If there exists a derivation of dI : DS & DT, then there exist a
lens, N dl, and regular expressions, S and T, such that ffdl: S & T and ||S = DSand T = DT and

[fralll = [aL].

Theorem 3 (DNF Lens Completeness). If there exists a derivation for [ : S & T, then there exists
a DNF lens dl such that di : (JS) © (U T) and [{] = [dI].

Discussion. DNF lenses are significantly better suited to synthesis than regular bijective lenses.
First, they contain no composition operator. Second, the use of equivalence (rewriting) is highly
constrained: Rewriting may only be used once at the top-most level as opposed to interleaved
between uses of the other rules. Consequently, a type-directed synthesis algorithm may be factored
into two discrete steps: one step that searches for an effective pair of regular expressions and a
second step that is directed by the syntax of the regular expression types that were discovered in
the first step.

6 ALGORITHM

Synthesis Overview. Algorithm 1 presents the synthesis procedure. SYNTHLENS takes the source
and target regular expressions S and T, and a list of examples exs, as input. First, SYNTHLENS
validates the unambiguity of the input regular expressions, S and T, and confirms that they parse
the input/output examples, exs. Next, the algorithm converts S and T into DNF regular expressions
DS and DT using the || operator. It then calls SYNTHDNFLENS on DS, DT, and the examples to
create a DNF lens dl. Finally, it uses ] to convert dI to a Boomerang lens.

SYNTHDNFLENS starts by creating a priority queue Q to manage the search for a DNF lens.
Each element ge in the queue is a tuple of the source DNF regular expression DS’, the target DNF
regular expression DT’, and a count e of the number of expansions needed to produce this pair
of DNF regular expressions from the originals DS and DT. (Recall that an expansion is a use of
a rewrite rule or the substitution of a user-defined definition for its name.) The priority of each
queue element is e; DNF regular expressions that have undergone fewer expansions will get priority.
The algorithm initializes the queue with DS and DT, which have an expansion count of zero. The
algorithm then proceeds by iteratively examining the highest priority element from the queue
(this examination corresponds to TYPEPRoOP in Figure 4), and using the function RIGIDSYNTH to
try to find a rewriteless DNF lens between the popped source and target DNF regular expressions
that satisfy the examples exs. If successful, the algorithm returns the DNF lens dI. Otherwise, the
function ExpAND produces a new set of candidate DNF regular expression pairs that can be obtained
from DS and DT by applying various expansions to the source and target DNF regular expressions.
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Algorithm 1 SYNTHLENS

1: function SYNTHDNFLENS(DS, DT, exs)
2 Q « CreaTePQuEeUE((DS, DT), 0)
3 while frue do

4 (ge, Q) < Por(Q)

5; (DS’,DT’, e) « qe

6 dlo « RiGIDSYNTH(DS’, DT’, exs)

7 match dlo with

8 | Somedl — return dl

9: | None —

10: ges «— ExpaND(DS, DT, e)
11: Q « ENQUEUEMANY(ges, Q)

12: function SYNTHLENS(S, T, exs)

13: VALIDATE(S, T, exs)

4 (DS,DT) « (IS, T)

15: dl < SyNTHDNFLENS(DS, DT, exs)
16: return {|dl

Algorithm 2 ExpAND

1: function ExPANDREQUIRED(DS, DT,e)

2 CSps «— GETCURRENTSET(DS)

3 CSpr < GETCURRENTSET(DT)

4 TSps < GETTRANSITIVESET(DS)

5: TSpr < GETTRANSITIVESET(DT)

6 r « false

7 foreach (U, i) € CSps \ TSpr

8 r « true

9: (DS, e) « ForceExpaND(DS, U, i, e)
10: foreach (U, i) € CSpr \ TSps

11: r < true

12: (DT, e) « ForcEExpAND(DT, U, i, e)
13: if  then

14: return ExpPANDREQUIRED(DS, DT, e)

15: return (DS, DT, )

16: function FIxXPRoOBLEMELTS(DS, DT ,e)

17: CSps < GETCURRENTSET(DS)

18: CSpr < GETCURRENTSET(DT)

19: qes «— []

20: foreach (U,i) € CSpr \ CSps

21: ges «— qes 4 REVEAL(DS, U, i, e, DT)
22: foreach (U, i) (S CSDS \ CSDT

23: ges < qes + ReEVEAL(DT, U, i, e, DS)
24: return ges

25: function ExpAND(DS, DT,e)
26: (DS, DT, e) < ExPANDREQUIRED(DS, DT, )

27: qes < FixPrRoBLEMELTS(DS, DT, e)

28: match ges with

29: | [] = return ExpANDONCE(DS, DT, ¢)
30: | _— return ges

ExpanD. Intelligent expansion inference is key to the efficiency of Optician. ExpAND, shown in
Algorithm 2, codifies this inference. It makes critical use of the locations of user-defined data types,
measured by their star depth, which is the number of nested *’s the data type occurs beneath. Star
depth locations are useful because we can quickly compute the current star depths of user-defined
data types (with GETCURRENTSET) and the star depths of user-defined data types reachable via
expansions (with GETTRANSITIVESET). Furthermore, the star depths of user-defined data types

have the following useful property:
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Property 1. If U is present at star depth i in DS and there exists a rewriteless DNF lens dI such
that di * DS & DT, then U is also present at star depth i in DT. The symmetric property is true if
U is present at star depth i in DT.

Property 1 means that if there is a rewriteless DNF lens between two DNF regular expressions,
then the same user-defined data types must be present at the same locations in both of the DNF
regular expressions. We use this property to determine when certain rules must be applied and to
direct the search to rules that make progress towards this required alignment.

ExpAND has three major components: EXPANDREQUIRED, FIXPROBLEMELTS, and EXPANDONCE,
which we discuss in turn. EXPANDREQUIRED performs expansions that must be taken. In partic-
ular, if a user-defined data type U at star depth i is impossible to reach through any number of
expansions on the opposite side, then that user-defined data type must be replaced by its defini-
tion at that depth. For example, consider trying to find a lens between ([legacy_title]) and
([modern_title]). No matter how many expansions are performed on modern_title, the user-
defined type legacy_title will not be exposed because the set of possible reachable pairs of data
types and star depths inmodern_titleis{(modern_ title,0),(text_char,0),(text_char,1)}.
Because no number of expansions will reveal legacy_title on the right, the algorithm must
replace legacy_title with its definition on the left in order to find a lens. EXPANDREQUIRED
continues until it finds all forced expansions.

ExPANDREQUIRED finds all the expansions that must be performed, but it does not perform any
other expansions. However, there are many situations where it is possible to infer that one of a set
of expansions must be performed without forcing any individual expansion. In particular, for any
pair of types that have a rewriteless lens between them, for each (user-defined type, star depth)
pair (U, i) on one side, that same pair must be present on the other side. FIxPROBLEMELTS identifies
when there is a (U, i) pair present on only one side. After identifying these problem elements, it calls
REVEAL to find the expansions that will reveal this element. For example, after ([1egacy_title])
has been expanded to

{(["<Field Id=2>"-{[text_char])*-"</Field>"])
and ([modern_title]) has been expanded to
{(["Title:"-text_char-""-{[text_char])*-","]|[""])

we can see that the modern expansion has an instance of text char at depth 0, where the legacy
one does not. For a lens to exist between the two types, text_char must be revealed at star depth
0 in the legacy expansion. Revealing text_char at depth zero will give back two candidate DNF
regular expressions, one from an application of ATom UNROLLSTAR},, and one from an application
of AToM UNROLLSTARR.

Together ExpPANDREQUIRED and FIxPROBLEMELTS apply many expansions, but by themselves
they are not sufficient. Typically, when FixPrRoBLEMELTS and EXPANDREQUIRED do not find all
the necessary expansions, the input data formats expect large amounts of similar information.
For example, in trying to synthesize the identity transformation between "" | U | UU(U«) and
"" | U(Ux), EXPANDREQUIRED and FIxXPROBLEMELTS find no forced expansions. An expansion is
necessary, but the set of pairs ({(U, 0), (U, 1)}) is the same for both sides. When this situation arises,
the algorithm uses the ExpPANDONCE function to conduct a purely enumerative search, implemented
by performing all single-step expansions.

RiGipSynTH. The function RIGIDSYNTH, shown in Algorithm 3, implements the portion of SYNTH-
LENs that generates a lens from the types and examples without using any equivalences. Intuitively,
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it aligns the structures of the source and target regular expressions by finding appropriate permu-
tations of nested sequences and nested atoms, taking into account the information contained in the
examples. Once it finds an alignment, it generates the corresponding lens.

Algorithm 3 RiGIDSYNTH

1: function RIGIDSYNTHATOM(A, B, exs)

2 match (A, B) with

3 | (U,V)—

4 ifU<G  VAVE  Uthen
5: return Some idy
6 else

7 return None

8 | (DS*,DT*) —

9: match RiGipSYNTH(DS, DT, exs) with
10: | Some dl — return iterate(dl)

11: | None — return None
12: | _ — return None

13: function RIGIDSYNTHSEQ(SQ, TQ, exs)
14: [so-Ar-...-Ap-sp] « SO
15: [to'Bl'...'Bm'tm](—TQ

16: if n # m then

17: return None

18: o1 « sorting(<§3  [Ar-.. .- Anl)

19: 0oy « sorting(<Gy . [B1-... Byl)

20: o — 01_1 0 0y

21: ABs « Z1p([A; - ...  Apl, [Bot) - - - - * Bom)])

22: alos <« Mapr(RiGIDSYNTHATOM(exs), ABs)

23: match ALLSoME(alos) with

24: | Somel[al;-...-al,] — return Some ([(so, o) - aly-...-aly - (sp, tn)],070)
25: | None — return None

26: function RiGIDSYNTH(DS, DT, exs)

27: (SO; | ... |SQ,) « DS

28: (TQ, | ... | 1TQ,,) « DT

29: if n # m then

30: return None

31: o1 «— sorl‘img(sg’qu,[SQ1 [ ... 150,]

32: 0y — sorting(sg’fq, [TO, | ... | TO,])

33: c—o;loo,

34: STQs « Z1p([SQ; | ... | SO, L[TQsry | -+ | TQu(m])
35: sqlos «— MaP(R1GIDSYNTHSEQ(exs), STQs)

36: match ArLSoME(sqlos) with

37: | Some(sql, | ... |sql,] - returnSome((sql, | ... | sql,),c7")
38: | None — return None
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Searching for aligning permutations requires care, as naively considering all permutations
between two DNF regular expressions (SQ, | ... | SQ,) and (TQ, | ... | TQ,,) would require time
proportional to n!. A better approach is to identify elements of the source and target DNF regular
expressions that match and to leverage that information to create candidate permutations.

R1GIDSYNTH performs this identification via orderings on sequences (<s¢q), and atoms (<asom)-
To determine if one expression is less than the other, the algorithm converts each expression into a
sorted list of its subterms and returns whether the lexicographic ordering determines the first list
less than the second. These orderings are carefully constructed so that equivalent terms have lenses
between them. For example, between two sequences, SQ and TQ, there is a lens sql © SQ & TQ
if, and only if, SQ <s¢q TQ and TQ <s.q SQ. Through these orderings, aligning the components
reduces to merely sorting and zipping lists. Furthermore, through composing the permutations
required to sort the lists, the algorithm discovers the permutation used in the lens.

As an example, consider trying to find a DNF lens between

( ["<Field Id=2></Field>"]
| ["<Field Id=2>"-text_char-""-([text_char])* - "</Field>"] )

and

( ["Title:" -text_char -""-([text_char])*-", "]
|

[n"] >

AsRIGIDSYNTH considers the legacy DNF regular expression, it orders its two sequences by maintain-
ing the existing order: first ["<Field Id=2></Field>"], then["<Field Id=2>"-text_char-
"n . ([text_char])* - "<Field Id=2>"]. In contrast, RIGIDSYNTH reorders the two sequences
of the modern DNF regular expression, making [""] first, and ["Title:" - text_char-"" -
([text_char])* - ", "] second; the overall permutation is a swap. As a result, the two string
sequences become aligned, as do the two complex sequences.

Then, the algorithm calls RIGIDSYNTHSEQ on the two aligned sequence pairs. There are no atoms
in both ["<Field Id=2></Field>"]and [""], trivially creating the sequence lens:

([("<FieldId=2></Field>","")],id)

Next, the sequences ["<Field Id=2>"-text_char-""-{[text_char])’ - "<Field Id=2>"]
and ["Title="-text_char--""-{[text_char])*-", "] would be sent to RIGIDSYNTHSEQ. In
RIGIDSYNTHSEQ, the atoms would not be reordered, aligning text char with text_char, and
([text_char])* with ([text_char])”*. Immediately, RiGiDSynTHATOM finds the identity transfor-
mation on text_char, and will recurse to find the identity transformation for ([text_char])™

iterate(((([(" ", " ") - idcexe_cnar - ("",""),id])), id))

These generated atom lenses are then combined into a sequence lens. Lastly, the two sequence
lenses are combined with the swapping permutation to create the final DNF lens.

By incorporating information about how examples are parsed in the orderings, SYNTHLENS
guarantees not only that there will be a lens between the regular expressions, but also that the lens
will satisfy the examples. For example if SQ Sg’fq TQand TQ <& . SQ (where <% q is the ordering
incorporating example information) then there is not only a sequence lens between SQ and TQ, but
there is one that also satisfies the examples. Incorporating parse tree information lets the synthesis
algorithm differentiate between previously indistinguishable subcomponents; a text_char that
parsed only "a" would become less than a text_char that parsed only "b". The details of these
orderings are formalized in the extended version of this paper [Miltner et al. 2017a].
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Correctness. We have proven two theorems demonstrating the correctness of our algorithm.

Theorem 4 (Algorithm Soundness). For all lenses [, regular expressions S and T, and examples
exs, if | = SYNTHLENS(S, T, exs), then [ : S < T and for all (s, t) in exs, (s, t) € [].

Theorem 5 (Algorithm Completeness). Given regular expressions S and T, and a set of exam-
ples exs, if there exists a lens [ such that [ : S © T and for all (s, ¢) in exs, (s,t) € [[[]], then
SYNTHLENS(S, T, exs) will return a lens.

Theorem 4 states that when we return a lens, that lens will match the specifications. Theorem 5
states that if there is a DNF lens that satisfies the specification, then we will return a lens, but
not necessarily the same one. However, from Theorem 4, we know that this lens will match the
specifications.

Simplification of Generated Lenses. While our system takes in only partial specifications, there
can be multiple lenses that satisfy the specifications. To help users determine if the synthesized
lens is correct, Optician transforms the generated code to make it easily readable. Optician (1)
maximally factors the concats and ors, (2) turns lenses that perform identity transformations into
identity lenses, and (3) simplifies the regular expressions the identity lenses take as an argument.
Performing these transformations and pretty printing the generated lenses make the synthesized
lenses much easier to understand. For example, without minimization, the title field transformation
is:

const ("<Field Id=2></Field>","")
| (const ("<Field Id=2>","Title: ")
Id(text_char)

COnSt (" ", " ll)
iterate (const ("","") . Id(text_char) . const("",""))
const (" ", " ")

const ("</Field>",", "))
where with minimization, the title field transformation is:

const ("<Field Id=2>","")
(Ia("")
| (Id(text_char) . iterate(Id(text_char)) . const("", ",")))
const ("</Field>",""))

Compositional Synthesis. Most synthesis problems can be divided into subproblems. For example,
if the format S; - S, must be converted into T; - T,, one might first work onthe $; © Ty and S, © T,
subproblems. After those subproblems have been solved, the lenses they generate can be combined
into a solutionfor S; - S, © T; - Ts.

Our tool allows users to specify multiple synthesis problems in a single file, and allows the
later, more complex problems to use the results generated by earlier problems. This tactic allows
Optician to scale to problems of just about any size and complexity with just a bit more user input.
This compositional interface also provides users greater control over the synthesized lenses and
allows reuse of intermediate synthesized abstractions. The compositional synthesis engine allows
lenses previously defined manually by the user, and lenses in the Boomerang standard library to be
included in synthesis.
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7 EVALUATION

We have implemented Optician in 3713 lines of OCaml code. We have integrated our synthesis
algorithm into Boomerang, so users can input synthesis tasks in place of lenses. We have published
our implementation in a public GitHub repo [Miltner et al. 2017b].

We evaluate our synthesis algorithm by applying it to 39 benchmark programs. All evaluations
were performed on a 2.5 GHz Intel Core i7 processor with 16 GB of 1600 MHz DDR3 running
macOS Sierra.

Benchmark Suite Construction. We constructed our benchmarks by adapting examples from
Augeas [Lutterkort 2007] and Flash Fill [Gulwani 2011b] and by handcrafting specific examples to
test various features of the algorithm.

Both Augeas and Flash Fill permit non-bijective transformations. In adopting these benchmarks,
we had to modify the formats to address two forms of non-bijectivity: (1) whitespace was present
in one format but not the other, and (2) useful information was projected away when going from
one format to the other. The first form of non-bijectivity was by far the most common, applying to
many Augeas examples. To address this form of non-bijectivity, we added whitespace in the format
where typically whitespace is unnecessary. The second form of non-bijectivity was less prevalent,
but occurred, typically in the FlashFill examples. To address this form of non-bijectivity, we added
projected information to the end of the format missing that information.

Augeas is a configuration editing system for Linux that uses lens combinators similar to those in
Boomerang. However, it transforms strings on the left to structured trees on the right rather than
transforming strings to strings. We adapted these Augeas lenses to our setting by converting the
right-hand sides to strings that correspond to serialized versions of the tree formats. We derived 29
of the benchmark tests by adapting the first 27 lenses in alphabetical order, as well as the lenses
aug/xml-firstlevel and aug/xml that were referenced by the ‘A’ lenses. Furthermore, the 12
last synthesis problems derived from Augeas were tested after Optician was finalized, demonstrating
that the optimizations were not overtuned to perform well on the testing data.

Flash Fill is a system that allows users to specify common string transformations by exam-
ple [Gulwani 2011b]. We derived three benchmarks from the first few examples in the paper and
one from the running example on extracting phone numbers.

Finally, we added custom examples to highlight weaknesses of our algorithm (cap-prob and
2-cap-prob) and to test situations for which we thought the tool would be particularly useful
(workitem-probs,date-probs,bib-prob, and addr-probs). These examples convert between
work item formats, date formats, bibliography formats, and address formats, respectively.

Figure 8 shows the complexity of our regular specifications as well as our example counts. An
average benchmark has a regular specification written in 310 AST nodes, and uses 1.1 input/output
examples. Our benchmarks vary from simple problems, like changing how dates are represented
(with a specification size of 85, and a generated lens size of 79), to complex tasks, like transforming
configuration files for server monitoring software into dictionary form (with a specification size of
670 and a generated lens size of 651). On average, the size of the generated lens is 89% the size of
its type specifications.

Impact of Optimizations. We developed a series of optimizations that improve the performance of
the synthesis algorithm dramatically. To determine the relative importance of these optimizations,
we developed the 5 different modes that run the synthesis algorithm with various optimizations
enabled. These modes are:
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Fig. 8. Sizes of Specifications. In (a), we show how many benchmarks are defined in our suite using a given
number of AST nodes or fewer. In (b), we show how many benchmarks are defined in our suite using a given
number of examples or fewer.
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Fig. 9. Number of benchmarks that can be solved by a given algorithm in a given amount of time. Full is
the full synthesis algorithm. NoCS is the synthesis algorithm using all optimizations but without using a
library of existing lenses. NoFPE is the core DNF synthesis algorithm augmented with user-defined data
types with forced expansions performed. NoER is the core synthesis augmented with user-defined data
types. NoUD is the core synthesis algorithm. FlashExtract is the existing FlashExtract system. Flash Fill is
the existing Flash Fill system. Naive is naive type-directed synthesis on the bijective lens combinators. Our
synthesis algorithm performs better than the naive approach and other string transformation systems, and
our optimizations speed up the algorithm enough that all tasks become solvable.
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Number of Benchmarks with Uninferred Expansions
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Fig. 10. Number of expansions found using enumerative search for tasks requiring a given number of
expansions. NoCS is using the full inference algorithm. NoFPE only counts forced inferences as found by
the ExPANDREQUIRED function. Both systems are able to infer the vast majority of expansions. Full inference
only rarely requires enumerative search.

Full: All optimizations are enabled, and compositional synthesis is used.
NoCS: Like Full, but compositional synthesis is not used.
NoFPE: Like NoCS, but FIxPROBLEMELTs is never called, expansions are only forced through
ExPANDREQUIRED or processed enumeratively through ExpANDONCE.
NoER: Like NoFPE, but all the expansions taken are generated through enumerative search
from ExPANDONCE.
NoUD: User-defined data types are no longer kept abstract until needed. All user-defined
regular expressions get replaced by their definition at the start of synthesis.

We ran Optician in each mode over our benchmark suite. Figure 9 summarizes the results of these
tests. Full synthesized all 39 benchmarks, NoCS synthesized 48 benchmarks, NoFPE synthesized
36 benchmarks, NoER synthesized 6 benchmarks, NoUD synthesized 8 benchmarks, and Naive
synthesized 0 benchmarks. Optician’s optimizations make synthesis effective against a wide range
of complex data formats.

Interestingly, NoER performs worse than NoUD. Adding in user defined data types introduces
the additional search through substitutions. The cost of this additional search outweighs the savings
that these data type abstractions provide. In particular, because of the large fan-out of possible
expansions, NoER can only synthesize lenses which require 5 or fewer expansions. However, some
lenses require over 50 expansions. Without a way to intelligently traverse expansions, the need to
search through substitutions makes synthesis unbearably slow.

In NoFPE, we can determine that many expansions are forced, so an enumerative search is
often unnecessary. Figure 10 shows that in a majority of examples, all the expansions can be
identified as required, minimizing the impact of the large fan-out. While unable to infer every
expansion for all the benchmarks, the full algorithm is able to infer quite a bit. In our benchmark
suite, ExPANDREQUIRED infers a median of 13 and a maximum of 75 expansions.

Merely inferring the forced expansions makes almost all the synthesis tasks solvable. In many
cases, NoFPE infers all the expansions. In 22 of the 38 examples solvable by NoCS, all expansions
were forced. However, the remaining 16 still require some enumerative search. This enumerative
search causes the NoFPE version of the algorithm to struggle with some of the more complex
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Fig. 11. Number of subtasks specified during compositional synthesis. Splitting the task into just a few
subtasks provides huge performance benefits at the cost of a small amount of additional user work.

benchmarks. Incorporating FIXPROBLEMELTS speeds up these slow benchmarks. When using full
inference (FIxPROBLEMELTS and EXPANDREQUIRED), the synthesis algorithm can recognize that
one of a few expansions must be performed. Adding in these types of inferred expansions directs
the remaining search even more, both speeding up existing problems and solving previously
unmanageable benchmarks.

When combined, these optimizations implement an efficient synthesis algorithm, which can
synthesize lenses between a wide range of data formats. However, some of the tasks are still slow,
and one remains unsolved. Using compositional synthesis lets the system scale to the most complex
synthesis tasks, synthesizing all lenses in under 5 seconds. Additional user interaction is required
for compositional synthesis, but the amount of interaction is minimal, as shown in Figure 11. The
number of subtasks used was in no way the minimal number of subtasks needed for synthesis
under 5 seconds, but rather subtasks were introduced where they naturally arose.

The benchmark that only completes with compositional synthesis is also the slowest benchmark
in Full, aug/xm1*. Optician can only synthesize a lens for this example when compositional
synthesis is used because it is a complex data format, it requires a large number of expansions, and
relatively few expansions are forced. When not using compositional synthesis, the algorithm must
perform a total of 398 expansions, of which only 105 are forced. The synthesis algorithm is able
to force so few expansions because of the highly repetitive nature of the aug/xml specification.
XML tags occur at many different levels, and they all use the same user-defined data types. This
repetitive nature causes our expansion inference to find only a few of the large number of required
expansions. The large fan-out of expansions, combined with the large number of expansions that
must be performed, creates a search space too large for our algorithm to effectively search. However,
the synthesis algorithm is able to succeed on the easier task of finding the desired transformation
when provided with two additional subtasks: synthesis on XML of depth one, and synthesis of XML
of depth up to two.

Importance of Examples. To evaluate how many user-supplied examples the algorithm requires
in practice, we randomly generated appropriate source/target pairs, mimicking what a naive user
might do. We did not write the examples by hand out of concern that our knowledge of the synthesis

4Since xml syntax is context-free, the source and target regular expressions describe only xml expressions up to depth 3.
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Examples Required for Benchmarks
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Fig. 12. Average number of random examples required to synthesize benchmark programs. Experimental
Average is the average number of randomly generated examples needed to correctly synthesize the lens.
Determinize Permutations is the theoretical number of examples required to determinize the choice all
the permutations in RIGIDSYNTH. In practice, far fewer examples are needed to synthesize the correct lens
than would be predicted by the number required to determinize permutations.

algorithm might bias the selection. Figure 12 shows the number of randomly generated examples it
takes to synthesize the correct lens averaged over ten runs. The synthesis algorithm almost never
needs any examples: only 5 benchmarks need a nonzero number of examples to synthesize the
correct lens and only one, cust /workitem-probs required over 10 randomly generated examples.
A clever user may be able to reduce the number of examples further by selecting examples carefully;
we synthesized cust/workitem-probs with only 8 examples.

These numbers are low because there are relatively few well-typed bijective lenses between any
two source and target regular expressions. As one would expect, the benchmarks where there are
multiple ways to map source data to the target (and vice versa) require the most examples. For
example, the benchmark cust/workitem-probs requires a large number of examples because
it must differentiate between data in different text fields in both the source and target and map
between them appropriately. As these text fields are heavily permuted (the legacy format ordered
fields by a numeric ID, where the modern format ordered fields alphabetically) and fields can be
omitted, a number of examples are needed to correctly identify the mapping between fields.

The average number of examples to infer the correct lens does not tell the whole story. The
system will stop as soon as it finds a well typed lens that satisfies the supplied examples. This
inferred lens may or may not correctly handle unseen examples that correspond to unexercised
portions of the source and target regular expressions. Figure 12 lists the number of examples that
are required to determinize the generation of permutations in RIGIDSYNTH. Intuitively, this number
represents the maximum number of examples that a user must supply to guide the synthesis engine
if it always guesses the wrong permutation when multiple permutations can be used to satisfy the
specification.

The average number of examples is so much lower than the maximum number of required
examples because of correspondences in how we wrote the regular expressions for the source and
target data formats. Specifically, when we had corresponding disjunctions in both the source and
the target, we ordered them the same way. The algorithm uses the supplied ordering to guide its
search, and so the system requires fewer examples. We did not write the examples in this style to
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facilitate synthesis, but rather because maintaining similar subparts in similar orderings makes the
types much easier to read. We expect that most users would do the same.

Comparison Against Other Tools. We are the first tool to synthesize bidirectional transformations
between data formats, so there is no tool to which we can make an apple-to-apples comparison.
Instead, we compare against tools for generating unidirectional transformations instead. Figure 9
includes a comparison against two other well-known tools that synthesize text transformation and
extraction functions from examples — Flash Fill and FlashExtract. For this evaluation, we used the
version of these tools distributed through the PROSE project [PROSE 2017].

To generate specifications for Flash Fill, we generated input/output specifications by generating
random elements of the source language, and running the lens on those elements to generate
elements of the target language. These were then fed to Flash Fill.

To generate specifications for FlashExtract, we extracted portions of strings mapped in the
generated lens either through an identity transformation or through a previously synthesized lens,
whereas strings that were mapped through use of const were considered boilerplate and so not
extracted.

As these tools were designed for a broader audience, they put less of a burden on the user. These
tools only use input/output examples (for Flash Fill), or marked text regions (for FlashExtract), as
opposed to Optician’s use of regular expressions to constrain the format of the input and output. By
using regular expressions, Optician is able to synthesize significantly more programs than either
existing tool.

Flash Fill and FlashExtract have two tasks: to determine how the data is transformed, they must
also infer the structure of the data, a difficult job for complex formats. In particular, neither Flash Fill
nor FlashExtract was able to synthesize transformations or extractions present under two iterations,
a type of format that is notoriously hard to infer. These types of dual iterations are pervasive in
Linux configuration files, making Flash Fill and FlashExtract ill suited for many of the synthesis
tasks present in our test suite.

Furthermore, as unidirectional transformations, Flash Fill and FlashExtract have a more expressive
calculus. To guarantee bidirectionality, our syntax must be highly restrictive, providing a smaller
search space to traverse.

8 RELATED WORK

In searching for equivalent regular expressions, we focused on Conway’s equational theory rather
than alternative axiomatizations such as Kozen’s [Kozen 1994] and Salomaa’s [Salomaa 1966].
Kozen and Salomaa’s axiomatizations are not equational theories: applying certain inference rules
requires that side conditions must be satisfied. Consequently, using these axiomatizations does not
permit a simple search strategy — our algorithm could no longer merely apply rewrite rules because
it would need to confirm that the side conditions are satisfied. To avoid these complications, we
focused on Conway’s equational theory.

The literature on bidirectional programming languages and on lens-like structures is extensive.
We discussed highlights in the introduction; readers can also consult a (slightly dated) survey [Czar-
necki et al. 2009] and recent theoretical perspectives [Abou-Saleh et al. 2016; Fischer et al. 2015].

Recently, symbolic transducers have been used to infer program inverses [Hu and D’Antoni
2017], providing invertibility guarantees for functions expressible in extended symbolic finite
transducers. This task differs from the one we tackle in that a programmer must supply a program
that performs a transformation in one direction and they get back a program that performs the
transformation in the inverse direction, whereas we specify data formats, and obtain programs
in both directions at once. Furthermore, this tool does not work on many of the programs we are
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interested in: swap cannot be expressed in full generality using these transducers. As extended
symbolic finite transducers have only finite lookahead, they cannot rearrange data of arbitrary
length, making them unable to express lenses like the name-swapping lens shown in §2.

While we do not know of any previous efforts to synthesize both directions of bidirectional
transformations, there is a good deal of other recent research on synthesizing unidirectional string
transformations [Gulwani 2011b; Le and Gulwani 2014; Perelman et al. 2014; Singh 2016; Singh
and Gulwani 2012]. We compared our system to two of these unidirectional string transformers,
Flash Fill [Gulwani 2011b] and FlashExtract [Le and Gulwani 2014]. We found that these tools
were unsuccessful in synthesizing the complex transformations we are performing — both these
tools synthesized under 5 of our 39 examples. Furthermore, neither of these tools were able to
infer transformations which occurred under two iterations — for efficiency reasons Flash Fill does
not synthesize programs with nested loops [Gulwani 2011b]. Much of this work assumes, like us,
that the synthesis engine is provided with a collection of examples. Our work differs in that we
assume the programmer supplies both examples and format descriptions in the form of regular
expressions. There is a trade-off here. On the one hand, a user must have some programming
expertise to write regular expression specifications and it requires some work. On the other hand,
such specifications provide a great deal of information to the synthesis system, which decreases the
number of examples needed (often to zero), makes the system scale well, and allows it to handle
large, complex formats, as shown in §7. By providing these format specifications, the synthesis
engine does not have to both infer the format of the data as well as the transformations on it,
obviating the need to infer tricky formats like those involving nested iterations. Furthermore, by
focusing on bidirectional transformations, we limit the space of synthesized functions to bijective
ones, reducing the search space, and the expressiveness of the search space.

There are many other recent results showing how to synthesize functions from type-based
specifications [Augustsson 2004; Feser et al. 2015; Frankle et al. 2015; Osera and Zdancewic 2015;
Polikarpova et al. 2016; Scherer and Rémy 2015]. These systems enumerate programs of their target
language, orienting their search procedures to process only terms that are well-typed. Our system
is distinctive in that it synthesizes terms in a language with many type equivalences. Perhaps the
most similar is InSynth [Gvero et al. 2013], a system for synthesizing terms in the simply-typed
lambda calculus that addresses equivalences on types. Instead of trying to directly synthesize terms
of the simply-typed lambda calculus, InSynth synthesizes a well-typed term in the succinct calculus,
a language with types that are equivalent “modulo isomorphisms of products and currying” [Gvero
et al. 2013]. Our type structure is significantly more complex. In particular, because our types do not
have full canonical forms, we use a pseudo-canonical form, which captures part of the equivalence
relation over types. To preserve completeness, we push some of the remaining parts of the type
equivalence relation into a set of rewriting rules and other parts into the RiGIpDSyNTH algorithm
itself.

Morpheus [Feng et al. 2017] is another synthesis system that uses two communicating synthe-
sizers to generate programs. In both Morpheus and Optician, one synthesizer provides an outline
for the program, and the other fills in that outline with program details that satisfy the user’s
specifications. This approach works well in large search spaces, which require some enumerative
search. Our systems differ in that an outline for Morpheus is a sketch—an expression containing
holes—whereas an outline for Optician is a pair of DNF regular expressions, i.e., a type. Moreover,
in order to implement an efficient search procedure, we had to create both a new type language and
a new term language for lenses. Once we did so, we proved our new, more constrained language
designed for synthesis was just as expressive as the original, more flexible and compositional
language designed for human programmers.
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Many synthesis algorithms work on domain-specific languages custom built for synthesis [Gul-
wani 2011a; Le and Gulwani 2014; Solar-Lezama 2008; Yaghmazadeh et al. 2016]. We too built a
custom domain-specific language for synthesis - DNF lenses. We provide the capabilities to convert
specifications in an existing language, Boomerang, to specifications as DNF regular expressions,
and provide the capabilities to convert our generated DNF lenses to Boomerang lenses. But we go
further than merely providing a converter to Boomerang, we also provide completeness results
stating exactly which terms of Boomerang we are able to synthesize.

9 CONCLUSION

Data processing systems often need to convert data back-and-forth between different formats.
Domain-specific languages for generating bidirectional programs help prevent data corruption in
such contexts, but are unfamiliar and hard to use. To simplify the development of bidirectional
applications, we have created the first synthesizer of a bidirectional language, generating lenses
from data format specifications and input/output examples. To reduce the size of the synthesis
search space, our system introduces a new language of DNF lenses, which are typed by DNF regular
expressions. We have proven our new language sound and complete with respect to a declarative
specification. We also describe effective optimizations for efficiently searching through the refined
space of lenses.

We evaluated our system on a range of practical examples drawn from other systems in the
literature including Flash Fill and Augeas. In general, we found our system to be robust, to re-
quire few examples, and to finish in seconds, even on complex data formats. We found that our
type-directed synthesis algorithm is able to generate data transformations too complex for both
existing example-directed systems and for a naive type-directed algorithm, succeeding on 35 more
benchmarks than the tested existing alternatives. We attribute its success to a combination of (1) the
information provided by format specifications, (2) the structure induced by user-specified names,
and (3) the inferences used to guide search. The approaches we used are generalizable both to
other bidirectional languages, as well as to other domain-specific languages with large numbers of
equivalences on the types.
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