
Saggitarius: A DSL for Specifying Grammatical Domains

ANDERS MILTNER, Simon Fraser University, Canada
DEVON LOEHR, Princeton University, USA
ARNOLD MONG, Princeton University, USA
KATHLEEN FISHER, Tufts University, USA
DAVID WALKER, Princeton University, USA

Common data types like dates, addresses, phone numbers and tables can have multiple textual representations,
and many heavily-used languages, such as SQL, come in several dialects. These variations can cause data
to be misinterpreted, leading to silent data corruption, failure of data processing systems, or even security
vulnerabilities. Saggitarius is a new language and system designed to help programmers reason about the
format of data, by describing grammatical domains—that is, sets of context-free grammars that describe the
many possible representations of a datatype. We describe the design of Saggitarius via example and provide a
relational semantics. We show how Saggitariusmay be used to analyze a data set: given example data, it uses
an algorithm based on semi-ring parsing and MaxSAT to infer which grammar in a given domain best matches
that data. We evaluate the effectiveness of the algorithm on a benchmark suite of 110 example problems, and
we demonstrate that our system typically returns a satisfying grammar within a few seconds with only a
small number of examples. We also delve deeper into a more extensive case study on using Saggitarius for
CSV dialect detection. Despite being general-purpose, we find that Saggitarius offers comparable results to
hand-tuned, specialized tools; in the case of CSV, it infers grammars for 84% of benchmarks within 60 seconds,
and has comparable accuracy to custom-built dialect detection tools.

ACM Reference Format:
Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker. 2023. Saggitarius: A DSL for
Specifying Grammatical Domains. 1, 1 (August 2023), 29 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Data transformation, cleaning, and processing is a tedious and difficult task that stands in the way
of getting important information out of the raw text all around us. One particularly thorny problem
is that the same information is often formatted differently when drawn from different sources.
Correctly parsing even a single data source in the face of such ambiguities can be difficult; if data
is drawn from multiple sources, the chance of formatting inconsistencies and errors skyrockets.
This lack of standardization can have real costs—if a file is incorrectly parsed, it may lead to
processing system failures, silent data corruption that pollutes critical data bases, or even security
vulnerabilities [Bratus 2020].

For example, consider processing a data file that contains a collection of dates—those dates can
assume a range of different formats, and some of those formats are ambiguous. If a data processing
system assumes a DD/MM/YY format when MM/DD/YY appear in the data, the system may crash
or corrupt back-end databases. Domain specific languages for data processing, such as PADS [Fisher
and Walker 2011], aim to help users solve such problems by providing a high-level language that
allows users to describe their data exactly. However, doing so is not without its own difficulties.
For example, the PADS Project’s standard library [Fisher 2009] provides 108 (!) different functions
just for reading dates, times, and timestamps (some due to differing data encodings such as ASCII vs
binary). Other common basic types found in the “ad hoc” data formats processed by systems like

Authors’ addresses: Anders Miltner, Simon Fraser University, Burnaby, BC, Canada, amiltner@cs.princeton.edu; Devon
Loehr, Princeton University, Princeton, NJ, USA, dloehr@princeton.edu; Arnold Mong, Princeton University, Princeton, NJ,
USA, among@alumni.princeton.edu; Kathleen Fisher, Tufts University, Medford, MA, USA, kfisher@cs.tufts.edu; David
Walker, Princeton University, Princeton, NJ, USA, dpw@cs.princeton.edu.

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

PADS include phone numbers, addresses, times, names, postal codes, and abbreviations (such as for
states or provinces). Such data also has variations, especially when that data may involve different
national conventions [Wikipedia contributors 2023a,b]. One can see why a programmer new to a
system like PADS would have difficulty selecting among options to craft a format entirely by hand.
Indeed, even experts can face problems: Fisher et al. [2008] describe an experience working with
PADS at AT&T where it took roughly three weeks to craft a description of a data format, in part
because the format was not consistent, shifting part-way through.
The problem is not limited to "ad hoc" formats like those addressed by the PADS system. For

instance, one might think it safe to assume that a “comma-separated-value” (CSV) file will be
formatted as a series of values separated by commas. For instance, one might think it safe to assume
that a “comma-separated-value” (CSV) file will be formatted as a series of values separated by
commas. One would be wrong: tabs, vertical bars, semi-colons, spaces, or carats are all sometimes
used instead of commas to separate fields. Furthermore, some files use quotes to delimit strings
and related symbols, while others use tildes or single quotes. And of course, some CSV files are
“typed,” with, for example, one column expected to contain integers, and another strings.

As a result, the appropriate way to parse a CSV file can be ambiguous [van den Burg et al. 2019b];
to avoid incorrectly interpreting it, one must determine the correct CSV grammar (or “dialect”)
to use for a given data set. In the case of CSV, there are some tools to help users. For instance,
Microsoft Excel provides a wizard that allows a user to select the kind of delimiter to use when
importing a CSV file as a spreadsheet; unfortunately, the process is a manual one. To try to deal
with such variations in format, Python has libraries that implement “sniffers” to detect CSV dialects.
However, the range of ambiguities make such tools difficult to develop. Indeed, van den Burg et al.

provide a host of examples of the kinds of ambiguities they found when analyzing CSV files in the
wild. In attempt to improve the state of the art (just for CSV), they built their own custom CSV
sniffer.
CSV is not the only domain suffering problems due to ambiguity. While the PDF format has

been standardized, different tools implement different subsets (or even supersets!) of the standard.
Moreover, some of these PDF variants, and the tools used to process them, contain vulnerabili-
ties [Carmony et al. 2016; Liu 2017]. Hence, ambiguities in how to process PDF lead not just to bugs,
but possibly to security vulnerabilities. The DARPA SafeDocs program [Bratus 2020] is currently
exploring ways to define safe subsets of PDF to limit tool vulnerabilities.
The problem of determining the format of a file (or group of files) is called grammar induction.

Historically, grammar induction has been an exceptionally difficult problem studied by countless
researchers (see [Angluin 1978, 1987; Firoiu et al. 1998; Garcia and Vidal 1990; Gold 1967; Oncina
and García 1992; Rivest and Schapire 1989; Vidal 1994] for just a few examples from the literature).
Without any prior information, the space of grammars that might describe a data set is enormous.
Consequently, modern grammar induction tools either require a large volume of examples, are
specialized to particular tasks, and/or do not scale particularly well. Indeed, even the restricted
case of regular expression inference is a challenge: Chen et al. [2020] observe that Angluin’s classic
L∗ algorithm makes 679 queries just to infer the simple regular expression [a-zA-Z]+, and Lee
et al. [2016] show that the search space for regular expressions grows at a rate of 𝑐2𝑑−1 where 𝑑
is the depth of the regular expression and 𝑐 is the number of regular expression operators (𝑐 is 7
when working with a binary alphabet). While recent research [Chen et al. 2020; Lee et al. 2016]
has taken impressive steps forward in the special case of regular languages, scaling to larger data
formats remains a challenge. For instance, AlphaRegex still classifies some regular expressions over
a binary alphabet with 10-20 symbols as “hard” [Lee et al. 2016, Table 3]. Scaling to richer classes
of grammars, such as context-free languages, is even more daunting.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 3

Syntax-Guided Grammar Induction. In this paper, we explore a new kind of grammar inference
strategy, which we term syntax-guided grammar induction. Our work was heavily inspired by
another, closely related problem: program synthesis. Progress on that problem was made recently
through the use of syntax-guided (i.e., SYGUS [Alur et al. 2013]) methods and tools. Just as SYGUS
tools constrain programs syntactically to cut down the search space and speed program synthesis,
we constrain grammars syntactically to cut down the search space and speed grammar synthesis.

Central to our strategy is a new way of thinking about the formatting options for a datatype,
centered around the idea of a grammatical domain. A grammatical domain is a set of formal
grammars that describe the many possible representations of a datatype. For instance, the date
grammatical domain would contain one grammar describing the DD/MM/YY format, another
grammar describing the MM/DD/YY format, and many other grammars describing other formats
(e.g., MM-DD-YY, YYYY.MM.DD, and so on).

To rigorously specify and manage such domains, we develop a new language, called Saggitarius.
Such a language is a first step towards developing more robust data processing tools. Roughly
speaking, Saggitarius may be viewed as an extension of a standard YACC-based parser generator.
However, whereas YACC defines a single grammar and outputs a parser, Saggitarius defines a set
of possible grammars—i.e., a grammatical domain—and outputs a single grammar. To represent a set
of grammars, Saggitarius allows grammar engineers to specify certain grammatical productions
as optional. Grammars within the domain are defined by the subset of optional productions that
they include. Saggitarius also has features that allow grammar engineers to declare constraints
that force certain combinations of productions to appear, or not appear, and hence provides fine
control over the grammars of the domain in question.
Once a grammatical domain is defined in Saggitarius, it may be applied to example data. To

apply a Saggitarius program, the user provides a set of example data files which are marked as
either positive or negative. Then, our grammar induction algorithm will attempt to find a matching
element of the grammatical domain. That is, it will select productions that allow the resulting
grammar to parse all positive examples and none of the negative ones. Because more than one
grammar from the domain may satisfy the provided examples, Saggitarius allows users to specify
preferences that rank the generated grammars. For example, a preference might state that grammars
with fewer productions should be preferred, or that certain productions are preferred over others.

We note that the ones defining the domain and those using the domain may (and frequently will)
be different. We call the person who defines the domain the grammar engineer and the one who uses
the grammar the instance engineer. These two roles are separate because we expect heavy reuse of
grammatical domains. For instance, the date domain need only be defined once by an expert. It
can then be used countless times by instance engineers developing specific data processing tools
for formats that contain dates. While grammar engineers require sophisticated knowledge of a
grammatical domain and the Saggitarius tool, instance engineers need only supply appropriate
examples from the domain in question.

A key strength of the language and system design we propose is that it allows programmers to
leverage their domain knowledge, which is often substantial. For example, if an engineer expects
their data to be formatted roughly as CSV files containing dates, they can write or re-use CSV and
date metagrammars to heavily restrict the search space. In other words, we provide a linguistic
framework that allows programmers to apply their prior knowledge about the data, and reduce the
general grammar induction problem to a more specialized and tractable one.

Furthermore, our approach leads to a simple-yet-effective algorithm for grammar induction that
nonetheless requires very few examples. We study the performance of our grammar induction
algorithm on a set of ten different induction tasks, considering the performance of the algorithm
on each task under a range of different conditions. We find that Saggitarius frequently induces

, Vol. 1, No. 1, Article . Publication date: August 2023.

4 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

grammars in under 10 seconds, and we demonstrate that Saggitarius can often learn the expected
grammar with a mere handful of examples.

Use Cases. Saggitarius is a broad tool, with a variety of potential applications. For example,

• Alice maintains a large cloud service that allows clients to access a database using SQL queries.
She has found that a common source of errors is when users copy-paste code meant for a
different SQL dialect. Alice could use a metagrammar to represent the different dialects of SQL,
and use Saggitarius to produce a useful, automated error message that informs the user what
dialect they’re using, so they can easily adjust their code.
• Bob is in charge of aggregating data from a variety of sources, all represented as CSV files.
However, different sources used different tools to generate their data, so each group of files
potentially comes in its own unique variation of the CSV format. Bob can use the CSV meta-
grammar and apply it to each group of files individually to pick out the important features
(separators, delimiters, etc), which can then be passed to an automated CSV parsing tool.
• Charlie is an IT professional at a high-security government facility. They wish to integrate a new,
third-party PDF processing tool into their office’s toolchain, but are worried that vulnerabilities
in the tools may leak classified information if given certain inputs [Bratus 2020]. Charlie could
use the PDF metagrammar to create a "shield" by finding a PDF benchmark suite, determining
which benchmarks cause failures, and using Saggitarius to infer a grammar which matches
only the successful benchmarks. They could then automatically compare inputs to this grammar
before invoking the tool, ensuring it is only run on "good" inputs.

In each of these cases, Saggitarius allows users to rapidly develop a fitting tool for the domain
at hand. Rather than manually writing a dialect recognizer, or a CSV sniffer, one need only write a
metagrammar expressing their knowledge of the domain. When metagrammar components for the
task already exist (dates, phone numbers, addresses, etc) one’s task is reduced further. In the same
way that it is easier to write a YACC file than to write a parser implementation, it is easier to write
a metagrammar than a grammar induction engine from scratch.
Finally, Saggitarius works – despite its generality, it can achieve comparable performance to

specialized, hand-tuned tools. We demonstrate in our evaluation section that when Saggitarius is
used to detect the format of CSV files, it produces similar results to custom-built CSV sniffers.

To summarize, this paper makes the following contributions.

• We introduce the concept of grammatical domains and demonstrate that a variety of grammatical
domains exist in the wild.
• We design the first user-facing language, Saggitarius, for specifying grammatical domains
precisely, and supply an algorithm for inferring a candidate grammar from the domain.
• We create a benchmark suite for evaluating syntax-guided grammar induction algorithms and
evaluate the performance of Saggitarius on that suite, showing that it often returns a satisfying
grammar within a few seconds, using few examples.
• We demonstrate practical use cases of Saggitarius through a case study of the CSV metagram-
mar. We compare Saggitarius’s performance to custom-built CSV sniffers, and find it yields
comparable results. Additionally, in the full version of the paper [Miltner et al. 2023] we provide
two additional case studies on metagrammars for XML and SQL. In the first, we demonstrate
how the structure of metagrammars can be used to control the search space, speeding induction
tasks. In the second, we show how Saggitarius can be used in practice to provide helpful
feedback to users of query engines.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 5

2 MOTIVATING EXAMPLES
Grammatical domains appear in many different contexts. In this section, we show how to use
Saggitarius to define two useful domains: the domain of calendar dates and the domain of comma-
separated-value (CSV) formats.

2.1 Example 1: Calendar Dates
Dates are formatted in many different ways. Because the various formats are ambiguous (causing
confusion as to whether one is reading a MM/DD or DD/MM format, for instance), date parsers must
be specialized to a particular data set. Said another way, dates formats form a natural grammatical
domain, and different data sets adhere to different grammars within that domain.

Saggitarius programs specify a grammatical domain through the use of a metagrammar, which
is a set of candidate productions (a.k.a. candidate rules) together with (a) constraints that limit which
combinations of productions may appear, and (b) preferences that rank the grammars, for breaking
ties when multiple grammars are applicable.

The simplest Saggitarius components specify productions using a YACC-like syntax with the
form N -> RHS. Here, N is a non-terminal and RHS is a regular expression over terminals and
non-terminals. For instance, to begin construction of our date grammatical domain, we can specify
Digit and Year non-terminals as follows.

Digit -> ["0"-"9"].
Year -> Digit Digit | Digit Digit Digit Digit.

This first definition looks like a definition one might find in an ordinary grammar. It states
that Year can have either two or four digits. The denotation of such a definition is a grammatical
domain—in this case, a grammatical domain (a set) containing exactly one grammar.

Saggitarius is more interesting when one defines metagrammars that include optional produc-
tions. Optional productions are preceded by a “?” symbol. For instance, consider the following:

Digit -> ["0"-"9"].
Year -> ? Digit Digit ? Digit Digit Digit Digit.

The metagrammar above denotes a grammatical domain that includes four grammars:
• one grammar in which Year has no productions,
• two grammars in which Year has one production, and
• one grammar in which Year has two productions.

To extract a single grammar from this set of four grammars, one supplies the Saggitarius grammar
induction engine with positive and negative example data. If no grammar parses all the data as
required, the grammar induction algorithm will return “no viable grammar.”

Continuing, consider the following specification for days.
Day -> ? ["1" - "9"]

? "0" ["1" - "9"]
| ["1" - "2"] Digit | "30" | "31".

This metagrammar includes grammars for days ranging from 1 -> 31. It allows single digit days to
be prefixed with a 0. However, it is natural to desire grammars that parse either single-digit days or
0-prefixed-days, but not both. One way to specify such a constraint is as follows.

constraint(|productions(Day)| = 4).

Here, the constraint specifies that the number of production rules for Day must be exactly 4. Since
the three productions on the last row are always included, exactly one of the ? production candidates
can be in the solution. Another option is to name productions and to use the names in constraints:

, Vol. 1, No. 1, Article . Publication date: August 2023.

6 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

Day -> ? ["1" - "9"] as SingleDigitDays
? "0" ["1" - "9"] as ZeroPrefixDays
| ...

constraint(SingleDigitDays XOR ZeroPrefixDays).

Here, we have given each of the rule candidates a name, which is used as an indicator variable in
the constraint expression; each evaluates to true iff a given grammar includes that production. All
constraints must be a boolean combination of indicator variables or integer comparisons; we have
provided commonly-used operations (such as counting the number of productions) as syntactic
sugar.

1 Sep -> ? "," ? "/" ? "-".
2 constraint(|Production(Sep)| = 1)

4 Digit -> ["0"-"9"].

6 Year -> ? Digit Digit
7 ? Digit Digit Digit Digit.
8 constraint(|Productions(Year)| = 1)

10 Month -> ? Digit
11 ? "0" Digit
12 | "10" | "11" | "12".
13 constraint(|Productions(Month)| = 2)

15 Day -> ? ["1" - "9"]
16 ? "0" ["1" - "9"]
17 | ["1" - "2"] Digit | "30" | "31".
18 constraint(|Productions(Day)| = 2).

20 Date -> ? Day Sep Month Sep Year
21 ? Month Sep Day Sep Year
22 ? Year Sep Month Sep Day
23 ? Year Sep Day Sep Month.
24 constraint(|Productions(Date)| = 1).

26 start Date

Fig. 1. Calendar Dates Metagrammar

Figure 1 includes the rest of the (simplified) definition of the date format, adding definitions for
separators, months, and dates as a whole. Dates are also designated as the start symbol. The use of
constraints is common. For instance, notice the grammar engineer who designed this particular
format allowed for the possibility of several different separators, but required a single separator
to be used consistently throughout a format. Hence, while a date format may use "-" or "/" as a
separator, it never uses both.

To extract a particular grammar from the domain, an instance engineer will supply positive and/or
negative example data. For example, one could supply U.S.-style dates 12/31/72 and 01/01/72,
marking them as positive examples. Having done so, the Saggitarius grammar induction algorithm

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 7

1 Sep -> "/".

3 Digit -> ["0"-"9"].

5 Year -> Digit Digit.

7 Month -> "0" Digit | "10" | "11" | "12".

9 Day -> "0" ["1" - "9"]
10 | ["1" - "2"] Digit
11 | "30" | "31".

13 Date -> Month Sep Day Sep Year.

15 S -> Date

Fig. 2. Date Solution Grammar

might generate the example grammar presented in Figure 2. In this case, the solution presented in
Figure 2 is unique. However, in other circumstances, multiple grammars might satisfy the given
examples. To manage multiple grammars, one can rank grammars (e.g. preferring those with fewer
productions) and ask for the most preferred grammar according to the ranking. This is explained
further in Section 2.3.

While one might worry that a naive instance engineer could supply insufficient data and thereby
underconstrain the set of possible solution grammars, such problems could likely be mitigated
through a well-designed user interface that informs a user when multiple solutions are possible and
presents example data to the user, asking them to choose valid and invalid instances of the format.

2.2 Example 2: CSV
Dates, phone numbers, addresses and the like are simple data types with many textual representa-
tions. Saggitarius is also capable of specifying domains that contain larger, aggregate data types.
The domain of comma-separated-value (CSV) formats is a good example.

One challenge in specifying a CSV domain is that if we want the columns of the CSV format to be
“typed” – one column must be integers, another strings or dates, for instance – we need to consider
many, many potential grammar productions. To facilitate construction of such metagrammars
succinctly, we allow grammar engineers to define indexed collections of productions. For instance,
suppose we would like to specify a spreadsheet with three columns (numbered 0-2) where each
column contains either only numbers or only strings. We might define the ith Cell in each row as:

Cell{i : [0,2]} -> ? Number ? String.
forall (i : [0,2])
constraint(|Productions(Cell{i})| = 1)

This declaration defines three nonterminals simultaneously: Cell{0}, Cell{1}, and Cell{2} and
provides the same definition for each of them. However, since each of Cell{0}, Cell{1}, and
Cell{2} are separate non-terminals, the underlying inference engine can specialize them indepen-
dently based on the supplied data. For instance, Cell{0} could be a string and Cell{1} and Cell{2}
might both be numbers.1. Constraints can refer to specific indexed non-terminals as shown.

1Observant readers may worry that the characters “12” could be interpreted as either a number or a string if the definition
of strings includes numbers. We will explain how to create preferences to disambiguate momentarily.

, Vol. 1, No. 1, Article . Publication date: August 2023.

8 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

The domain of 3-column CSVs is likely a rare one! Fortunately, users can also declare collections
of indexed non-terminals with an arbitrary natural-number size (e.g. Cell{i:nat} -> ...).

It is possible to restrict the possible productions based on an index. Below, we define Row{i}, a
non-terminal for a row containing cells Cell{0} through Cell{i}. The use of normal context-free
definitions allows Row{i} to refer to Row{i-1}. Notice that separators (Sep) are not indexed, so
that one separator definition that is used consistently throughout the entire grammar.

Row{i : nat} ->
? if (i = 0) then Cell{i}
? if (i > 0) then Row{i-1} Sep Cell{i}.

Sep -> ? "," ? "|" ? ";".
constraint(|Productions(Sep)| = 1).

Table{i : nat} -> MyRow{i} ("\n" MyRow{i})*.

Row{i} represents a single row with i Cells, and similarly Table{i} uses the standard Kleene
star to represent a table with an arbitrary numbers of rows of length i (we could equally well have
written the usual recursive, context-free definition instead). The only difficulty that remains is the
fact that, while we expect each CSV file to have a fixed number of columns, we cannot know that
number in advance. Saggitarius allows users to represent such unknown quantities by declaring
existential variables and using them in rules. For example, we might use an existential variable to
define a CSV format by adding the following code:

exists rowlen : nat
start Table{rowlen}.

This CSV specification represents grammars in which all rows have a single, fixed length (e.g. a
grammar of 5-column CSV files). We might want a more flexible grammar that permits any row
length up to some maximum, so long as all rows in each file are the same length. We could represent
this using a rule comprehension, as below:

exists maxlen : nat
S -> [? Row{len} for len = 0 to maxlen].
start S.

Here, the brackets [? ... for ... to ...] act similarly to a list comprehension. They define
one rule (? Row{len}) for each possible length up to maxlen.

Figure 3 presents our progress so far on defining a metagrammar for simple CSV formats. At the
top, we have “imported” a couple of useful non-terminal definitions—definitions for String and
Number. Users can write such definitions from scratch, but we have developed a modest library of
them to facilitate quick construction of parsers for ad hoc data formats.

2.3 Ranking Grammars
Consider the following example data.

0,1,15,Hello world!
1,2,23,Programming
0,3,-2,rocks!

A human would probably claim that the first three columns should contain Numbers, and the
last one contains Strings. However, if Numbers can be Strings then the column types could be
Number/String/String/String, or some other combination. Without guidance, an algorithm will
not know how to choose between potential grammars.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 9

1 import String, Number

3 exists rowlen : nat.

5 S -> Table{rowlen}.

7 Table{len : nat} -> Row{len} ("\n" Row{len})*.

9 Sep -> ? "," ? "|" ? ";".
10 constraint(|Productions(Sep)| = 1).

12 Row{len : nat} ->
13 ? if (len = 0) then Cell{len}
14 ? if (len > 0) then Row{len-1} Sep Cell{len}.

16 Cell{i : nat} -> ? Number ? String.
17 forall (i:nat) :
18 constraint(|Productions(Cell{i})| = 1)

Fig. 3. CSV Metagrammar, Version 1

1 Cell{i : nat} ->
2 ? Number as Num{i}
3 ? String as Str{i}.
4 forall (i:nat) :
5 constraint (|productions(Cell{i}| = 1).

7 forall (i:nat) : prefer 1 Num{i}.

Fig. 4. A Metagrammar with Preferences

Saggitarius allows users to steer the underlying grammar induction algorithm towards the
grammar of choice by expressing preferences for one grammar over another. Such preferences
are expressed using prefer clauses, which have a similar syntax to constraint clauses. Prefer
clauses assign integer weights to boolean formulas; the ranking of a synthesized grammar is the
sum of the weights of all satisfied boolean formulas.
Figure 4 illustrates the use of preferences to force Saggitarius to infer Number cells when

possible and String cells otherwise. For each 𝑖 , the rank of the grammar is increased by 1 if the
production Num{i} is included in the grammar. Since we have constrained each Cell{i} to have
only one production, this leads Saggitarius to choose the Number rule whenever possible.

2.4 Emitting Grammar Information
Sometimes, users will make use of the entire inferred grammar (e.g. using it to build a parser or
recognizer). In others, they may simply care about certain features of the grammar. For example,
using a built-in CSV parsing library might require the user to describe the type of each column. We
could configure Saggitarius to print such information based on boolean conditions using the emit
syntax illustrated in Figure 5. This allows Saggitarius to be used as either a grammar inducer or a
classifier (or both!) as needed.

, Vol. 1, No. 1, Article . Publication date: August 2023.

10 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

1 Cell{i : nat} ->
2 ? Number as Num{i}
3 ? String as Str{i}.
4 forall (i:nat) :
5 constraint (|productions(Cell{i}| = 1).

7 forall (i:nat) : emit "Row"+str(i)+":Num" if Num{i}.
8 forall (i:nat) : emit "Row"+str(i)+":String" if Str{i}.

Fig. 5. Example Emit Statements

3 FORMAL LANGUAGE
In this section, we formally describe the metagrammar specification language of Saggitarius, and
describe how to interpret it using a relational semantics. The formal syntax is laid out in Figure 6a.
We describe how to compile the full language introduced in §2 to this core calculus in §3.3.

Int Exp. e := nat | id | e - 1

Bool Exp. b := T | F | e = e
| e < e | b && b
| ...

Nonterminal N := id{e}

Production p := N | str | p p

Cond. Prod. c := if b then p

Rule body rb := c | c rb

Existential ex := exists id

Rule R := id{id} -> ex.rb

Start symbol S := start N

Metagrammar MG := S | ex; MG | R; MG

(a) The core grammar of Saggitarius

Production p := id | str
| p p

Productions ps := [] | p ps

Rule R := id -> ps

Start S := start id

Grammar G := S | R G

(b) Syntax of a concrete grammar

Fig. 6

Our definition contains three built-in symbols: identifiers (id), natural numbers (nat), and strings
(str). There are two types of expression: integer, on which the only allowed operation is subtracting
1, and boolean, which permit the standard boolean operations as well as integer comparisons.

Nonterminals N have the form described in §2.2: an identifier followed by a natural-number
argument. For simplicity, we require each nonterminal to have exactly one argument, but it
is straightforward to extend the system to cover any a number of arguments. Productions in
Saggitarius are simply a sequence of terminals (i.e., constant strings) and nonterminals.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 11

The body of each rule is a sequence of conditional productions, combining productions with
boolean conditions. Unlike in §2, which included both mandatory and optional productions (begin-
ning with | and ?, respectively), the core grammar only uses mandatory, conditional productions.

A rule declaration id {id’} -> exists id”.rb declares a nonterminal identifier id, which may
be referenced in the rest of the program, as well as a name id’ for its argument and a local existential
variable id”, both of which may be referenced only in the rule body. We omit the type annotations
on id’ and id” for simplicity. Finally, a metagrammar is a list of rule and global existential variable
declarations, terminating in a declaration of the start symbol.

An astute reader may notice that grammar in Figure 6a does not make reference to the constraints
or preferences mentioned in §2. We encode all constraints using a combination of local and/or
global existential variables, and guards on the conditional productions. User preferences can easily
be formalized as functions from sets of rules to metrics. We do not give such preference functions
a formal syntax and semantics in this section, but assume such functions exist in the following
section. In practice, these preference functions are easily specified through the syntax used in §2.3.

3.1 Interpreting Metagrammars
Ametagrammar represents a set of concrete (or candidate) grammars, which have the form described
in Figure 6b. Intuitively, this set contains all possible combinations of rules, generated by all possible
instantiations of each existential variable. We formally define which which grammars are denoted
by a given metagrammar in the next section, via a relational semantics. However, it is illuminating
to first consider a simple example metagrammar, and determine which grammars it corresponds to.
Consider the following stripped-down CSV grammar, which describes only a single row. Note

that the variables 𝑖 and 𝑦 are unused, and would be omitted in an actual Saggitarius program.

Cell{i} -> exists x. // i unused
| if (x = 0) then String
| if (x <> 0) then Number.

Row{j} -> exists y. // y unused
| if (j = 0) then Cell{j}
| if (j > 0) then Row{j-1} Sep Cell{j}.

exists len.
start Row{len}.

Intuitively, obtaining a grammar from a metagrammar has three steps. Each step involves several
choices, and different choices will result in different (though possibly equivalent) grammars. The
first step is straightforward: we choose a value for each global existential variable.
The second step is to remove arguments to nonterminals by duplicating each nonterminal

definition once for each possible argument. For example, we turn the definition of Row{i} into
definitions for new nonterminals Row_0, Row_1, and so on. The choice made in this step is the
number𝑚 of times we copy each definition. If we chose len = 2 and𝑚 = 3, we would transform
the above grammar into the following:

, Vol. 1, No. 1, Article . Publication date: August 2023.

12 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

Cell_0 -> exists x.
| if (x = 0) then String
| if (x <> 0) then Number.

Cell_1 -> // Same as Cell_0
Cell_2 -> // Same as Cell_0

Row_0 -> Cell_0
Row_1 -> Row_0 Sep Cell_1
Row_2 -> Row_1 Sep Cell_2

start Row_2.

Notice that𝑚 must be strictly greater than the value chosen for len, since len is used as an
argument to Row. If we chose len =𝑚 = 2, we would end up with a nonexistent start symbol Row_2.
In general,𝑚 must be strictly larger than any of the existential values chosen previously.
The final step is to choose values for each local existential variable; again, these values must

be strictly less than𝑚. In the example above, if we chose values 0, 2, 1 for the existentials inside
Cell_0, Cell_1, and Cell_2 respectively, we would end with the following concrete grammar:

Cell_0 -> String
Cell_1 -> Number
Cell_2 -> Number

Row_0 -> Cell_0
Row_1 -> Row_0 Sep Cell_1
Row_2 -> Row_1 Sep Cell_2

start Row_2.

By making every possible choice in each of these three steps, we generate every grammar that is
denoted by the metagrammar. This process is formalized in the next section.

3.2 Interpreting Metagrammars, but formally this time
Building upon the intuition from the previous section, we formally define the grammars𝐺 repre-
sented by a metagrammar𝑀𝐺 using a relation𝑀𝐺 ⇒𝑚 𝐺 . As before, the parameter𝑚 denotes the
number of times each rule is copied. We can then define the set of grammars denoted by𝑀𝐺 as

[[𝑀𝐺]] =
∞⋃

𝑚=1
{𝐺 |𝑀𝐺 ⇒𝑚 𝐺}.

The three rules of the⇒𝑚 relation follow much the same steps as the previous section; the only
difference is that we fix𝑚 in advance, and use it as an upper bound for the value of all existential
variables, global or local. We make use of an injective function ⌊·⌋ to translate the parameterized
identifiers of the meta-grammar into the non-parameterized nonterminal identifiers of the candidate
grammars. For example, one implementation of this function would yield ⌊foo{0}⌋ = foo_0. We
leave ⌊id{𝑒}⌋ undefined if 𝑒 is not an integer value, and lift the function ⌊·⌋ to productions 𝑝 by
applying it individually to each identifier within 𝑝 .

We define the relation⇒𝑚 below. In the process, we define a subordinate relation rb⇒ pswhich
relates rule bodies rb to production lists ps. We use the@ operator to denote list concatenation,
and use the notation [𝑛/id] to denote capture-avoiding substitution of 𝑛 for id. Finally, we use ≡
to denote equivalence of expressions according to normal boolean and arithmetic rules.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 13

Start
𝑒 ≡ 𝑛 id′ = ⌊id{𝑛}⌋

start id{𝑒} ⇒𝑚 start id′

Exist
𝑛 < 𝑚 𝑀𝐺 [𝑛/id] ⇒𝑚 𝐺

exists id; 𝑀𝐺 ⇒𝑚 𝐺

Unrolling
𝑛0 . . . , 𝑛𝑚−1 < 𝑚 𝑀𝐺 ⇒𝑚 𝐺

rb[0/id′] [𝑛0/id′′] ⇒ 𝑝𝑠0 · · · rb[𝑚 − 1/id′] [𝑛𝑚−1/id′′] ⇒ 𝑝𝑠𝑚−1
id0 = ⌊id{0}⌋ · · · id𝑚−1 = ⌊id{𝑚 − 1}⌋

id{id′} → exists id′′.rb;𝑀𝐺 ⇒𝑚 id0 → 𝑝𝑠0; . . . ; id𝑚−1 → 𝑝𝑠𝑚−1;𝐺

Cond-True
𝑏 ≡ True p′ = ⌊p⌋ 𝑒 ≡ 𝑛 id′ = ⌊id{𝑛}⌋

if 𝑏 then p as id{𝑒} ⇒ [p′]

Cond-False
𝑏 ≡ False

if 𝑏 then p as id{𝑒} ⇒ []

Body
rb⇒ ps c⇒ ps′

c rb⇒ ps @ ps′

The START rule is the simplest; it simply checks that 𝑒 is a value, and applies ⌊·⌋ to translate the
metagrammar nonterminal to a concrete-grammar nonterminal. The EXIST rule is almost as simple;
it chooses a particular value for an existential variable, and substitutes that value throughout the
rest of the metagrammar.

Most of the complexity lies in the UNROLLING rule. For each argument 𝑖 from 0 to𝑚, we choose
a value 𝑛𝑖 for the local existential variable, and substitute both the the index 𝑖 and 𝑛𝑖 into the
rule body. For each substituted body, we use the⇒ relation to obtain the list of corresponding
productions ps𝑖 and add the rule ⌊id{𝑖}⌋ → ps𝑖 to the output grammar.

The⇒ relation is relatively simple: for each conditional production, we return either a singleton
list [p’] if the condition is true, or an empty list if the condition is false. For rule bodies with
multiple productions, we concatenate these lists, ultimately resulting in a list containing exactly
those productions whose conditions are true.

3.3 Syntactic Sugar by Example
As demonstrated in §2, Saggitarius includes a number of features to enable rapid development
of complex metagrammars that do not appear in the core calculus, such as optional productions,
constraints, and regular expressions. We informally illustrate here how to encode each of these
features in our core calculus.

Optional Productions. Optional productions can be represented using local existential variables.
For example, A -> ? B ? C can be represented as the following rule

A -> exists b.
| if (b = 0 || b = 1) then B
| if (b = 0 || b = 2) then C

Notice that depending on the choice of b, any combination of the two rules may be included in the
grammar.

Regular Expression Productions. We compile regular expression syntax to context-free grammar
rules in the usual way, by introducing new nonterminals and rules as appropriate. Collections
of rules generated from the right-hand side of a single meta-grammar rule can be included or

, Vol. 1, No. 1, Article . Publication date: August 2023.

14 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

excluded as a group using global existential variables. For example, A -> ? "b"* may be compiled
as follows, where g and Temp are fresh variables:
exists g.
A -> if (g = 0) then Temp.
Temp -> if (g = 0) then "".
Temp -> if (g = 0) then "b" Temp.

Constraints. The surface language of Saggitarius includes several different types of constraints,
but all of them can essentially be encoding by enumerating the possible combinations of rules. For
example, imagine we have the program

A -> ? B as r1
? C as r2

D -> ? E as r3
? F as r4
? G as r5

We could encode the constraints that A has exactly one production, and D has at least two productions
by creating local existential variables b1 and b2, and enumerating the possible instantiations:

A -> exists b1.
| if (b1 = 0) then B
| if (b1 <> 0) then C

D -> exists b2.
| if (b2 <> 0) then E
| if (b2 <> 1) then F
| if (b2 <> 2) then G

For something more complicated, consider the constraint r1 => (r3 || r5) which specifies that
either r3 or r5 must be included whenever r1 is. We can represent this cross-rule constraint using
a global existential variable 𝑏, and again simply enumerate the cases:

exists b.
A -> ? C

| if (b < 3) then B

D -> ? E ? F ? G
| if (b = 0 || b = 1) then E
| if (b = 0 || b = 2) then G

4 GRAMMAR INDUCTION ALGORITHM
The goal of Saggitarius’ grammar induction algorithm is, given a set of positive and negative
examples, a metagrammar𝑀𝐺 and a ranking function 𝑝 : [[𝑀𝐺]] → Z, to return the highest-ranked
grammar contained in [[𝑀𝐺]] which parses all the positive examples and none of the negative
examples2. We have experimented with several possible algorithms that interleave parsing and
constraint solving in different ways, and outline the most successful algorithm here.

Our grammar induction algorithm is formalized in Algorithm 1. At a high level, our strategy is
rather simple. First, we concretize the metagrammar, removing arguments to nonterminals along
with existential variables. Next, we determine all possible combinations of rules that successfully
parse each example. We use these to create a logical formula asserting either that one of these
combinations is included in the final grammar (for a positive example), or that none are included (for
a negative example). For space, we elide the formal definitions of Concretize and Constraints
and the proof of the following theorem. The interested reader can find them in the full version of
the paper [Miltner et al. 2023].

Theorem 4.1. If there is a Grammar𝐺 such that𝐺 ∈ [[𝑀𝐺]], where 𝐸𝑥+ ⊆ L(𝐺) and 𝐸𝑥− ⊆ L(𝐺),
then InduceGrammar(𝑀𝐺, 𝐸𝑥+, 𝐸𝑥−, 0) will return such a grammar.

In Saggitarius, the ranking function 𝑝 is constructed piecewise from various prefer statements
in the surface language, each consisting of an integer weight and a boolean combination of rules. The
rank of a grammar is simply the sum of all weights whose boolean combinations are satisfied. These
2If several of these grammars have the same rank, any of them may be returned.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 15

1 procedure InduceGrammar(𝑀𝐺, 𝐸𝑥+, 𝐸𝑥−, 𝑘)
2 𝐺 ← Concretize(𝑀𝐺,𝑘)
3 𝜙 ← Constraints(𝑀𝐺,𝑘)
4 𝜙+ ← ∧

𝑒𝑥 ∈𝐸𝑥+ SemiringParse(𝐺, 𝑒𝑥)
5 𝜙− ← ∧

𝑒𝑥 ∈𝐸𝑥+ ¬SemiringParse(𝐺, 𝑒𝑥)
6 𝑟𝑒𝑡 ← SMT(𝜙+ ∧ 𝜙− ∧ 𝜙)
7 match 𝑟𝑒𝑡 with
8 | Some(𝑣𝑠)→ return𝑀𝐺 [𝑣𝑠]
9 | None→ return InduceGrammar(𝑀𝐺, 𝐸𝑥+, 𝐸𝑥−, 𝑘 + 1)
Algorithm 1. Syntax-Guided Grammar Induction Algorithm. 𝑀𝐺 is the provided metagrammar, 𝐸𝑥+ is the
provided positive examples, 𝐸𝑥− is the provided negative examples, and 𝑘 is the search depth (initially 0).

preferences are translated into logical formulas, combined with the formulas for each example,
and shipped to Z3 [de Moura and Bjørner 2008], which uses its MaxSMT algorithms to find a
preference-optimal solution.

For simplicity, we assume there are no variables in our start symbol.

4.1 Concretizing Metagrammars
Before we can apply a conventional parsing algorithm to determine which combinations of rules
parse a given example, we must first eliminate Saggitarius’ unconventional constructs – namely,
nonterminals with arguments, and existential variables. This process closely mirrors the one
described in §3.1. We begin by choosing a maximum value for each global variable (corresponding
to a particular choice of 𝑚). We then copy each rule that number of times, and expand out all
possible values for each global and local existential variable.
This process generates a finite subset of [[𝑀𝐺]], obtained by taking the union only up to our

chosen value of𝑚. We then apply the concrete parsing algorithm described below; if it fails to find
a suitable grammar, we begin the process anew with a larger value of𝑚. In general, this process is
not guaranteed to terminate, but termination can be guaranteed for certain types of grammar.

Optimizations. Our construction of [[𝑀𝐺]] contains significant redundancy. For one, different
values of existential variables may not actually lead to different grammars. Similarly, we need not
copy every rule the same number of times, since this may result in rules which are unreachable
from the start symbol.
Saggitarius leverages these observations by allowing users to declare variables with a range

type instead of type nat; for example, the line exists x : [0, 4] declares an existential variable
whose value is constrained between 0 and 4, inclusive. By using these types, users can both express
their intent for variables to be restricted, and provide the compiler with hints to avoid checking
redundant grammars. Furthermore, Saggitarius copies rules only as much as necessary, ensuring
that no unreachable rules appear in the concretized metagrammar.
Notice that metagrammars in which all variables are bounded are finite, and hence permit an

exhaustive search of candidate grammars. This allows us to strengthen our termination condi-
tions: Induction for Saggitarius metagrammars is guaranteed to terminate whenever all
variables in the program are bounded.

, Vol. 1, No. 1, Article . Publication date: August 2023.

16 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

4.2 Grammar Induction Via Semiring Parsing
Once we have generated a large, ambiguous grammar from a metagrammar, we must identify a
subset of rules in that grammar that parse all positive examples, do not parse any negative examples,
and satisfy the user-provided constraints.

For example, consider the following grammar:

1 {x_1} X -> x
2 {x_2} X -> x
3 {y_1} Y -> y
4 {y_2} Y -> y
5 {z_1} Z -> z
6 {z_3} Z -> z

8 G -> XG
9 G -> YG
10 G -> Z

Consider the example string "xyz". This could be parsed using rules 𝑥1, 𝑦1, 𝑧1 or 𝑥1, 𝑦1, 𝑧2 or
𝑥1, 𝑦2, 𝑧1, and so on. A naïve algorithm could generate all combination of rules, filter out those that
do not satisfy the user-provided constraints, and iteratively test them until the it finds a set of
rules that accept the positive examples but reject the negative examples. Unfortunately such an
approach is not tractable in practice – as there are can be an exponential number of different rule
combinations for parsing the same input string. Even in this simple example there are 23 possible
combinations for only a single string.

We address this problem by representing the possible rule combinations as a logical formula. For
the example string above, the possible rule sets are represented by the formula (𝑥1 ∨ 𝑥2) ∧ (𝑦1 ∨
𝑦2) ∧ (𝑧1 ∨ 𝑧2). Rule names 𝑥1 . . . 𝑧1 are interpreted as boolean variables; satisfying assignments
correspond to collections of those rules whose variable is true. Any satisfying assignment for this
formula will yield a set of rules which suffice to parse the example.
More broadly, we encode the possible parse trees for every example as such logical formulas.

We then create a single formula as a conjunction of the formulas for each positive example, the
negation of the parse formulas for each negative examples, and the user-provided constraints.
Finally, we pass this formula to an off-the-shelf SAT solver. As with many practical problems, SAT
solvers can typically find satisfying assignments for these formulas in much less than exponential
time.

Generating The Formulas. The process of generating formulas can be implemented using semiring
parsing [Goodman 1998, 1999]. In particular, we consider logical formulas to be elements in
a conditional-table semiring [Green et al. 2007], where logical disjunctions and conjunctions
correspond to the semiring’s + and × operators.

Satisfying the Formulas. Once provided to an SMT solver, the exponential number of possible
rules does not diminish. However, this is the bread-and-butter of an SMT solver. In the past, most
DNF formulas would incur an exponential blowup when given to an SMT solver; however, modern
SMT solvers can efficiently find satisfying assignments for such formulas.

Figure 7 illustrates our process on a simple example. In the upper left, we present five candidate
rules (numbered 0-4) that define nonterminals A, B and C. Rules 1 and 2 are identical in this example;
they help illustrate the ambiguity the algorithm must handle. In the upper right, Figure 7 presents
two example parse trees, one for the example “abbb”, and one for “abbc”. Each edge of the parse

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 17

a

b

b

b

B

B

A

B

0: A -> "a" B
1: B -> "b" B
2: B -> "b" B
3: B -> "b"
4: C -> "c"

productions parse edges parse tree for “abbb” parse tree for “abbc”

a

b

c

b

B

B

A

B

a

b

b

b

3

(1 + 2)·3

0·(1·3 + 1·2·3 + 2·3)

(1 + 2)·(1·3 + 2·3)

semiring construction for “abbb”

1·3 + 1·2·3 + 2·3 ≡

≡ 0·1·3 + 0·1·2·3 + 0·2·3

provenance formula

(0 Λ 1 Λ 3) ν
(0 Λ 1 Λ 2 Λ 3) ν

(0 Λ 2 Λ 3)

(0 Λ 1 Λ 4) ν
(0 Λ 1 Λ 2 Λ 4) ν

(0 Λ 2 Λ 4)
¬

Λ

a solution

{0, 1, 3}

1·3 + 2·3 ≡

Fig. 7. Semiring parsing and provenance formula construction

tree is associated with a particular rule; for instance, rule 1 is denoted by a dashed edge and rule 2
is denoted by a solid edge.

On the lower left-hand side, Figure 7 presents the strategy that the parser implements to compute a
semiring expression for the example "abbb" (the computation for "abbc" is similar). These expressions
represent the possible sets of rules that can parse each example. To begin, the final "b" of "abbb" can
only be obtained via rule 3, which corresponds to the algebraic expression 3. The second-to-last
"b" character could be obtained either with rule 1 or rule 2, represented as the expression 1 + 2.
Hence, to produce a string ending in "bb", we must have either rule 1 or 2, and also rule 3. We can
represent this by conjoining our two expressions to get (1 + 2) · 3, or equivalently 1 · 2 + 1 · 3.

Continuing on, the third-to-last "b" could also be obtained via rule 1 or rule 2, so we once again
conjoin the expression 1 + 2 with our accumulator expression to get (1 + 2) · (1 · 3 + 2 · 3). Since the
conditional table semiring is commutative and idempotent3, this is equivalent to 1 · 3+ 1 · 2 · 3+ 1 · 2.
Finally, the first "a" character could only be obtained from the start symbol A using rule 0, so we
end up with a final expression of 0 · (1 · 3+ 1 · 2 · 3+ 2 · 3), or equivalently 0 · 1 · 3+ 0 · 1 · 2 · 3+ 0 · 2 · 3.

To finish the process, we must translate our example semiring expressions into logical formulas.
Fortunately, this is easy—our intuition for the semiring expressions already told us that + cor-
responds to disjunction and · to conjunction. Simply replacing the connectives transforms our
semiring expression into a logical one.

If we take "abbb" to be a positive example and "abbc" to be a negative example, we can obtain an
overall provenance formula by translating both examples into semiring expressions, then to logical
formulas, and conjoining them. Since "abbc" is negative, we negate the corresponding conjunct,
indicating that none of the sets of rules that can parse "abbc" should be included. We then pass
the provenance formula to an SMT solver (specifically, Z3), to obtain a solution; in this case, one
possible solution is the set of rules {0, 1, 3}. If we had included preferences in our example, we
would use Z3’s MaxSMT algorithms to obtain the solution with the highest rank.

3Intuitively, the expression 1 · 1 · 3 represents the set containing rule 1, rule 1, and rule 3; this is of course equal to the set
containing rule 1 and rule 3, represented by 1 · 3. For similar reasons, 1 · 2 · 3 ≡ 2 · 1 · 3.

, Vol. 1, No. 1, Article . Publication date: August 2023.

18 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

SGI Benchmark Suite
Name Nonterms. Prods. AST Nodes Description
States 6 9 371 US State identifiers. Permits acronyms, full names, and

abbreviations.
Phone #s 11 44 260 Phone numbers. Permits local and international phone

numbers.
Times 12 21 204 Time of day in a variety of formats.
Floats 12 18 113 Floating-point numbers. Includes grammars for different

scientific notations and standard decimal form.
Emails 15 105 493 Email addresses. Includes grammars that accept emails

from specific or arbitrary domains.
Names 11 32 142 Human identifiers. Includes grammars specifying saluta-

tions, post-nominal titles, and acronyms.
Streets 14 40 167 US street identifiers. Includes grammars that demand

specific suffixes and directions.
Dates 18 37 314 Calendar dates. Includes month-first, day-first, and year-

first formats.
Addresses 28 58 597 US street addresses. Uses the States and Streets meta-

grammars to identify those portions of the address.
XML 21 91 523 XML Files. Permits 10 classes of XML elements. It discov-

ers the identifiers for element classes and the recursive
schemes. In effect, it imputes the structural component
of a schema definition.

SQL 25 31 357 SQL: SQL SELECT statements. Supports nested joins and
extra keyword clauses like WHERE and LIMIT.

IdealCSV 38 61 506 CSV: Idealized version of CSV. Based on RFC 4180 [Net-
work Working Group 2005], but also admits common
kinds of separators including tab and semi-colon. Auto-
matically infers cell type.

Fig. 8. Information on metagrammars for the SGI benchmark suite. For each, we include the number of
nonterminal definitions, the total number of productions, the total number of AST nodes.

5 EXPERIMENTAL RESULTS
To illustrate Saggitarius ’s practicality, we evaluate the following properties:

• Expressiveness Can Saggitarius specify real-world grammatical domains?
• Time Efficiency How much time does Saggitarius take to induce a grammar?
• Sample Efficiency How many examples does Saggitarius take to induce a specific grammar?
• Comparisons How does Saggitarius compare to prior work?

Experimental setup. All experiments in this section were performed on a 2.5 GHz Intel Core i7
processor with 16 GB of 1600 MHz DDR3 RAM running macOS Catalina. We ran each benchmark
10 times, with a timeout of 60 seconds, and report the average time. If any of the 10 runs times out
then we consider the benchmark as a whole to have timed out.

5.1 Expressiveness
We began our evaluation by identifying 12 grammatical domains to use in our experiments. We
intentionally chose domains that range from simple (dates, times) to complex (XML, CSV). For each
domain, we manually searched the internet to identify various formats that were used in practice.
Our sources included actual data files, as well as documents containing descriptions of formats.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 19

0 10 20 30 40 50 60

Time (s)

0
10
20
30
40
50
60
70
80
90
100
110

B
en
ch
m
ar
ks

C
om

pl
et
ed

Saggitarius ProSynth++ ProSynth

Fig. 9. Number of benchmarks that terminate in a given time in different modes. The ProSynth line represents
using the ProSynth algorithm, originally built for learning logic programs, for grammar induction. The
ProSynth++ line represents using the ProSynth algorithm, but with an optimization that minimizes duplicate
parsing calls.

We then manually constructed a corpus of example files adhering to each format. As a result,
our examples are somewhat artificial—we wrote them ourselves—but nonetheless represent a broad
range of real-world formats.
Once we had conducted our survey of real-world data formats, we used that experience to

write metagrammars for each domain. Figure 8 (in the body of the paper) describes these domains
briefly, as well as the complexity of each. Qualitatively, we did not find these grammars particularly
hard to write—the domains do not require many productions and most of the insight was in what
preferences and constraints were necessary. On occasion, our initial domain definitions were
erroneous, in the sense that they did not return the “best" grammar for certain examples. However,
we found such errors were relatively easy to fix by adjusting preferences. Since we were able to
successfully write metagrammars for each domain, we conclude that Saggitarius is capable of
representing real-world domains.

5.2 Time Efficiency
Benchmarks. To evaluate the efficiency of Saggitarius, we developed a benchmark suite of 10

induction tasks, each of which ask Saggitarius to induce a grammar given a certain number of
positive examples (PEs) and negative examples (NEs). Each benchmark varies the number of PEs
and NEs, as well as whether or not a suitable grammar exists in the metagrammar. Specifically, our
benchmarks are to induce a grammar given:

(1) 1 PE.
(2) 1 NE.
(3) 1 PE and 1 NE.
(4) 10 PEs.
(5) 5 PEs and 5 NEs.
(6) 1 PE and 20 NEs.
(7) 20 PEs and 20 NEs.

(8) 1 PE and 1 NE, when no appropriate grammar
exists.

(9) 10 PEs and 10 NEs, when no appropriate
grammar exists.

(10) 20 PEs and 1 NE, when no appropriate gram-
mar exists.

In this experiment, we are are not asking Saggitarius to return a particular grammar; rather,
we are evaluating how long it takes to return some grammar (or "no grammar exists", for the latter
three tasks). We evaluate Saggitarius’s ability to return specific grammars in the next section.

, Vol. 1, No. 1, Article . Publication date: August 2023.

20 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

0 2 4 6 8 10

Parse Time (s)

0

2

4

6

M
ax
SM

T
Ti
m
e
(s
)

Time Spent Parsing vs Time Spent in MaxSMT Calls

Fig. 10. The time spent during the parsing phase of the benchmark suite compared to the time spent during
the MaxSMT solving phase of the benchmark suite. Aside from a few outliers, the majority of the time is
spent during parsing.

For each task and each grammatical domain in Figure 8 except SQL (due to time constraints),
we selected a set of examples from our corpus to create a total of 110 benchmarks. We evaluated
Saggitarius by running it on these 110 benchmarks using three different algorithms, meant to
simulate the performance of related tools. We recorded how long each benchmark took to finish,
and summarize the results in Figure 9. This figure is also used later in Section 5.4. We find that
Saggitarius solves 102 of our 110 benchmarks in under a minute, and typically does so in under
10 seconds.

Figure 10 shows how much time was spent for each benchmark in the two main phases of our
algorithm: parsing and performing MaxSMT calls. In a majority of these benchmarks, parsing
dominates the runtime, and all but one of the failing benchmarks hang during parsing. Saggitarius
uses an Earley parser [Earley 1970; Vaillant 2020] modified to operate over semirings, though
other general context-free parsing algorithms, such as a GLR algorithm [Nozohoor-Farshi 1991],
would also have been suitable. We believe that further developments in semiring parsing could
substantially increase the efficiency of Saggitarius on many benchmarks. For example, recent
work has found that semirings with rich sets of equivalences (like the idempotence of + and × in
the conditional table semiring) provide additional opportunities for memoization in the parsing
algorithm [Herman 2020]. Furthermore, in some simpler domains like Dates and Phone Numbers,
every grammar in the domain falls into smaller complexity classes than merely context-free, like
LL(*). By integrating the faster parsing algorithms known to work on these simpler domains,
induction could likely happen dramatically faster.

However, in one domain MaxSMT, rather than Early parsing, dominates the runtime – XML. For
each example in the XML domain, a majority of the time is spent during the MaxSMT call, and one
XML benchmark fails to complete the MaxSMT call in the allotted timeframe. This is because the
MaxSMT algorithm has a difficult time proving a given model is optimal in the XML domain. If
we replace the MaxSMT call by a simple SMT call (equivalent to removing preferences from our
source file), these benchmarks finish near instantly. We perform a more involved case study on
the XML domain in the full version of the paper. We believe that developments into more efficient
MaxSMT algorithms could increase the efficiency of Saggitarius without sacrificing optimality.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 21

0 10 20 30 40

Examples Provided

0
5

10
15
20
25
30
35
40
45
50
55

B
en
ch
m
ar
ks

C
or
re
ct

Human Random

(a) # Correct benchmarks vs. # examples used.

Name Human Random
States 2 6.5

Phone #s 3 10.3
Times 4.5 12.4
Floats 1.8 6.2
Emails 2 5.9
Names 6.5 12.5
Dates 4 10.6

Addresses 8 13.9
IdealCSV 1 3

(b) Average # examples needed per do-
main

Fig. 11. Sample efficiency of Saggitarius. Human examples were chosen to be as helpful as possible, in the
human’s judgement.

5.3 Sample Efficiency
One of the advantages of Saggitarius is its ability to successfully induce useful grammars from
very few example. To demonstrate this, we designed an experiment to measure how many examples
it takes to induce a particular grammar, or correctly claim that no suitable grammar exists.
Our setup is as follows: for each terminating benchmark that involves at least 5 examples, run

Saggitarius on a single example. If the output is not the desired one, select another example, and
run Saggitarius on both. Continue adding examples until the output matches our expectation.
Figure 11 summarizes our results using two different selection strategies. In the first, we have

a human operator select examples they think will be the most useful. In the second, we select
each example at random. We can clearly see from Figure 11a that nearly all benchmarks can be
completed with fewer than 10 well-chosen examples. Even when examples are chosen at random,
Saggitarius almost never needs the entire set of examples, settling on the desired grammar with
between 10 and 20 inputs.
Figure 11b breaks down the data according to grammatical domain. Intuitively, grammatical

domains where the grammars have a lot of “overlap” are generally harder to specify. For example, a
state can be represented as with its full name, the two-letter abbreviation, a historic acronym, or
some combination of the three. From a single example, it will not be clear if only one representation
is acceptable, or if multiple types are allowed.
When domains are combined, the ambiguity of the components compounds. For example, ad-

dresses must determine not only which state representations are allowed, but whether street names
are written fully (e.g. “Street”), abbreviated (“St.”), or omitted entirely. The decisions for states,
streets, and other components such as names must be made separately, and it is difficult to constrain
all of them in a single example, particularly when your desired address format allows several
possibilities for each.

We omitted the XML domain from this experiment because the XML meta-grammar can generate
several syntactically different, but semantically equivalent grammars. As a consequence, determin-
ing whether the tool generates the correct grammar automatically is much more difficult than just
running diff. Rather than attempting to implement equivalence checking, we opted to skip the
XML domain for this experiment.

, Vol. 1, No. 1, Article . Publication date: August 2023.

22 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

5.4 Comparisons
Saggitarius is relatively unique in the problem it solves; there are few existing tools which do the
same thing. The closest analogue we know of is the inductive logic programming engine ProSynth.
Since parsing via context-free grammar is a refinement of logic programming, the ProSynth
algorithm may be effective. Unfortunately, the process of transforming a Saggitarius program
into a ProSynth program proved impractical. Instead, we compare strategies by implementing two
additional induction algorithms for Saggitarius, which simulate ProSynth’s process. We can then
compare the performance of these algorithms directly.

The three stratgies we evaluate are:
• Saggitarius: The algorithm described in §4.
• ProSynth: In this mode, Saggitarius iteratively guesses subsets the candidate rules, and checks
to see whether the subset parses the positive but not the negative examples. If it fails, it uses
a counter-example-guided algorithm to generate a new set of candidate rules and repeats the
process. If it is able to guess an appropriate set early, it may avoid the heavy cost of parsing all
data with a large ambiguous grammar.
• ProSynth++: In this mode, Saggitarius parses all the example data, and constructs a full
provenance tree as in Saggitarius. However, instead of building a single large MaxSMT formula,
it considers candidate rule sets in a counter-example-guided loop, as in ProSynth. This mode
may avoid constructing a large SAT formula, at the cost of making many SAT calls.

Results. We can see from Figure 9 that our primary algorithm (Saggitarius) completed 101 out of
110 benchmarks in under 20 seconds. In 6 of the 9 instances the system timed out, it did so because
no grammar matched the example data (by experiment design) and Saggitarius looped, forever
trying larger and larger values of its existential variables. A useful improvement to the system
would be to implement heuristics that can detect when no grammar in an infinite metagrammar will
satisfy a data set. The remaining 3 of the 110 experiments ran long due to particularly slowMaxSMT
calls. Removing all preferences drastically speeds up these tasks, allowing them to complete in
under a minute (though the returned grammars are not the desired ones).
In comparison to the ProSynth modes, we found that Saggitarius solved every benchmark

but one faster than both ProSynth and ProSynth++. The exception was one of the benchmarks
on which Saggitarius timed out on an SMT call. Although the multiple smaller SMT calls of
ProSynth++ usually take longer in aggregate, in this one case they avoided generating a particular
challenging SMT formula.
More broadly, the cost of all of the algorithms grows substantially with the number of rules in

the metagrammar. The ProSynth-inspired algorithms, in particular, suffer significantly as rule sets
increase because it takes them more iterations to build up a sufficiently constrained SAT call to
find a solution. Saggitarius is also negatively impacted by having more rules, but in a different
(and less substantial) way: more rules results in slower parsing, which is the typical bottleneck for
Saggitarius (complex MaxSMT calls are most costly, but much rarer).
Across all the algorithms, we found that the number of examples did not affect system perfor-

mance substantially. However, the length of an example can have a significant impact when the
metagrammar is highly ambiguous. Earley parsing with large numbers of ambiguous rules is a
costly enterprise that can grow cubically with the length of the input in the worst case. This parsing
cost tends to dominate as examples grow in length.

5.5 Case Study: CSV Dialect Detection
As part of our comparisons, we describe our case study which compares Saggitarius to a domain-
specific tool on an individual grammatical domain: CSV. We have performed additional case studies

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 23

on the XML and SQL grammatical domains, but have elided them for space, the interested reader
can find them in the full version of the paper. RFC 4180 provides the standardized definition of
CSV, but there are many real-world data files that do not conform to the standard. Such data files
may contain irregular “table-like” data in which rows have differing numbers of columns, cells are
malformed (containing dangling delimiters), and the entire table is surrounded by unstructured
text.
To handle such messy CSV-like data, Van den Burg et al. [van den Burg et al. 2019b] designed

CSV Wrangler, a tool for inferring the dialect of messy, possibly erroneous CSV documents 4.
Unfortunately, CSV files are inherently ambiguous. To handle this ambiguity, Van den Burg et al.
use a custom algorithm that scores potential dialects based on how consistent the resulting rows
are (the pattern score) and how well-typed the cells are (the type score) [van den Burg et al. 2019b],
attempting to mimic the human process of recognizing the data in a messy CSV file.

To experiment with CSV dialect detection using Saggitarius, we developed two additional CSV
metagrammars, named Strict and Lax. The former is more restrictive, hewing closer to the RFC,
while the latter attempts to mimic the same human priors as Van den Burg’s tool.5 As a result, Lax
is much costlier to execute. Fortunately, because Lax is more lenient than Strict, the two processes
can be pipelined — we try Strict first, and fall back to Lax only if it fails. We call this pipelined
system StrictLax.

Benchmarks. We measured the performance of Saggitarius on 100 ASCII-128 CSVs with human
labels drawn from Van den Burg et al.’s GitHub repo [van den Burg et al. 2019a]. More than half
of the benchmark suite (59/100) does not obey the CSV RFC. In such situations, it is difficult for
humans to unambiguously identify the dialect of files, as we discuss below.

Experiments. We attempted dialect detection using 5 different tools: (1) RFC (the Saggitarius
specification of the CSV RFC), (2) Strict, (3) StrictLax (Strict followed by Lax), (4) CSV Wrangler
(Van den Burg’s tool), and (5) the Python Sniffer [Python Software Foundation 2020]. We found
that Earley parsing was the primary bottleneck for Saggitarius system on large CSV benchmarks,
so we truncated the CSV files to 20 lines prior to processing them with Strict or RFC, and to 5 lines
prior to processing them with Lax6.

Figure 12 presents the results from our tool as well as corresponding results we retrieved fromVan
den Burg et al.’s GitHub repository [van den Burg et al. 2019a] for CSVWrangler and Python Sniffer.
We find that Saggitarius performs only slightly worse than dedicated CSV sniffers – in particular,
the number of incorrectly classified files is nearly identical across all the tools. Furthermore, we
believe that all but 2 of our misclassifications represent reasonable behavior by Saggitarius, even
if the human classifier chose a different dialect. The misclassifications are described in Figure 13.
Unlike dedicated sniffers, Saggitarius must contend with the possibility of timing out, either

due to infinite metagrammars or simply slow analysis. Although we see Saggitarius timing out
on a noticeable fraction of examples, profiling indicates that much of this time is spent performing
Earley parsing. It is likely that we could significantly improve our performance by adopting an
industrial-strength, optimized parser in place of our current, unoptimized one.

Takeaways. First, we have shown that it is possible to develop more than one specification for
an ambiguous grammatical domain. Multiple generated tools can then be arranged in a pipeline

4A CSV dialect is a triple of a cell delimiter, a quote character (for strings), and an escape character.
5Specifically, Strict requires that (1) nested quote characters do not appear in any cell and (2) delimiters (commas, semicolons,
tabs and vertical bars) internal to a cell must be quoted. Lax contains neither restriction.
6While this may seem extreme, one would expect all lines of a CSV file to obey the same format. Hence a very small number
of lines is still likely sufficient to infer the dialect.

, Vol. 1, No. 1, Article . Publication date: August 2023.

24 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

Detector Yes No No Dialect Timeout
RFC 41 14 44 0
Strict 67 12 8 13

StrictLax 70 14 0 16
CSV Wrangler 86 13 1 N/A
Python Sniffer 81 14 5 N/A

Fig. 12. CSV Analysis. We report the number of files on which the tool: aligns with the human label (Yes);
does not align with the human label (No); reports that no dialect exists (No Dialect); or times out (Timeout).

Id Saggitarius behavior Frequency

1**
CSV preferences allowed algorithm
to return no delimiter character 4

2*
chose different delimiter than

hand-label but file was ambiguous. 2

3*
did not find any characters because

of leading metadata 2

4
did not find quote or escape character

because of truncation 2

5*
did not accept space
as a valid delimiter 1

6**
did not identify quote in

ill-quoted file 1

7**
unquoted “,” character lead to

false “,” delimiter 1

8*
did not find improperly
used escape character 1

Fig. 13. Reasons for StrictLax misclassification. In our analysis, cases marked * are inherently ambiguous
or mislabelled by the human. Cases marked ** also represent reasonable behavior by our system in our
judgement.

and take advantage of time/accuracy tradeoffs. Second, real-world data is often messy. Hand-tuned,
custom tools such as Python’s CSV sniffer or the CSV Wrangler can make mistakes; even humans
often disagree with each other. Nevertheless, Saggitarius performs comparably to these custom-
built tools. The CSV sniffer and the CSV Wrangler align with outside human labeller a few more
times than our tool, but the authors of this paper actually disagree with the outside labels in almost
all such cases. Perhaps the labeller and tool authors know of some criteria for disambiguating CSV
data that we do not; if so, we can likely add this criteria to our own specifications. When it comes
to the unambiguous formats where humans agree, Saggitarius is very effective.

6 RELATEDWORK
Grammar induction. Grammar induction traces back to at least the 60s when Gold [1967] began

studying models for language learning and their properties. Later, Angluin [1978, 1987] developed
her famous L∗ algorithm for learning regular languages. As mentioned earlier, however, such
algorithms often require large numbers of examples even for simple regular expressions. More
recently, FlashProfile [Padhi et al. 2018] has shown that regular-expression-like patterns can be
learned from positive examples, by first clustering by syntactic similarity, and then inducing
programs for given clusters.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Saggitarius 25

Inference of context-free grammars is considerably more difficult, and results are limited. It has
been tackled, for instance, by Stolcke and Omohundro [1994], who use probabilistic techniques
to infer grammars. Fisher et al. [2008] explored inference of grammars for “ad hoc” data, such
as system logs, in the context of the PADS project [Fisher and Walker 2011]. Lee et al. [2016]
developed more efficient search strategies for regular languages in the context of a tool for teaching
automata theory. Both these latter tools tackled restricted kinds of grammars, however; scaling to
complex formats using few examples remains a challenge. A more recent approach can be seen in
the Glade [Bastani et al. 2017] tool. Similarly to L∗, Glade uses an active learning algorithm, but
generalizes to full context-free grammars, rather than merely regular expressions, while requiring
relatively fewer membership queries.

We believe that the key contributions of this paper are largely orthogonal to these advances. In
particular, we introduce the idea of using grammatical domains, specified via metagrammars, to
restrict the set of grammars under consideration during the induction process. Doing so has the
potential to improve the performance of almost any grammar induction algorithm.
Grammatical inference becomes more tractable when one can introduce bias or constraints—

metagrammars are one way to introduce such bias but there are others. For instance, Chen et al.
[2020] use a combination of examples and natural language to speed inference of a constrained set
of regular expressions. Internally, their system generates an “h-sketch” as an intermediate result.
These h-sketches are partially-defined regular expressions that may include holes for unknown
regular expressions. Such h-sketches play a similar role to our metagrammars: they denote sets of
possible regular expressions and constrain the search space for grammatical inference. However,
our language is an extension of YACC and is designed for humans, rather than being an intermedi-
ate language. Furthermore, our metagrammars may be reused, like libraries, across data sets. In
constrast, each h-sketch is generated and used only once inside a compiler pipeline.
Related to the notion of grammatical inference is that of expression repair. RFixer [Pan et al.

2019] uses positive and negative examples to fix erroneous regular expressions. Both RFixer and
Saggitarius use similar algorithms to ensure positive examples are in the generated language,
and negative examples are not. Both of these tools encode these constraints as MaxSMT formulas
to ensure the generated grammars are optimal. Because RFixer does not have a metagrammar to
orient the search, their constraints can only help find character sets that distinguish between the
grammars. Saggitarius permits any constraints that expressible in propositional logic, and the
constraints can be over arbitrary productions, not merely character sets. One could see the RFixer
algorithm as an instance of our algorithm, where the meta-grammar constrains sets of allowed
characters.

Syntax-guided Program Synthesis. Our work was inspired by the progress on syntax-guided
program synthesis over the past decade or so [Alur et al. 2013, 2018; Solar-Lezama et al. 2005,
2006]. Much of that work has focused on data transformations, including spreadsheet manipu-
lation [Barowy et al. 2015; Gulwani 2011; Wang et al. 2017b], string transformations [Miltner
et al. 2017, 2019; Wang et al. 2017a], and information extraction [Le and Gulwani 2014; Raza and
Gulwani 2017]. Such problems have much in common with our work, but they have typically been
set up as searches over a space of program transformation operations rather than searches over
collections of context-free grammar rules. Particularly inspiring for our work was the development
of FlashMeta [Polozov and Gulwani 2015]. FlashMeta is a “meta” program synthesis engine—it
helps engineers design program synthesis tools for different domain-specific languages. Similarly,
Saggitarius is a “meta” framework for syntax-guided grammar induction, helping users perform
grammar induction in domain-specific contexts. Of course, Saggitarius and FlashMeta differ

, Vol. 1, No. 1, Article . Publication date: August 2023.

26 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

greatly when it comes to specifics of the language/system designs and the underlying search
algorithms implemented.

Logic Program Synthesis. Wewere also inspired bywork on Inductive Logic Programming [De Raedt
2008], and Logic Program Synthesis [Raghothaman et al. 2019; Si et al. 2019]. Parsing with context-
free grammars is a special case of logic programming so it was natural to investigate whether
inductive logic programming algorithms would work well here. ProSynth [Raghothaman et al. 2019]
is a state-of-the-art algorithm in this field so we experimented with it as a tool for grammatical
inference. However, we found our custom algorithm almost always outperformed ProSynth on
grammatical inference tasks.

7 CONCLUSION
Grammatical domains are sets of related grammars. Such domains appear naturally whenever a
common datatype like a date or a phone number has multiple textual representations. They also
appear frequently when data sets are communicated via ASCII text files, as is the case for CSV files.
In this paper, we introduce the concept of grammatical domains, provide a variety of examples of
such domains in the wild, and design a language, called Saggitarius, for defining grammatical
domains through the specification of metagrammars.
Saggitarius includes features for defining sets of candidate productions, for constraining the

conditions under which candidate productions may and may not appear, and for ranking the
generated grammars. We illustrate the use of Saggitarius on a variety of examples and develop
a grammar induction algorithm for the system that uses semiring parsing to generate MaxSMT
formulas that can be solved via an off-the-shelf theorem prover.

In the future, we look forward to developing a complete parser generator system using the ideas
developed in Saggitarius. One way forward would be to add semantic actions to Saggitarius,
making it much more like YACC. Another direction would involve integrating Saggitarius into a
parser combinator library such as Parsec [Leijen et al. 2023].

ACKNOWLEDGMENTS
Thank you to our reviewers for their helpful comments. This research was developed with funding
from the Defense Advanced Research Projects Agency (DARPA) under the SafeDocs program
(2019-020, PRIME DARPA BAA HR001118S0054). The views, opinions and/or findings expressed
are those of the authors and should not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government.

REFERENCES
Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In 2013 Formal Methods in

Computer-Aided Design. 1–8. https://doi.org/10.1109/FMCAD.2013.6679385
Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama. 2018. Search-Based Program Synthesis. Commun.

ACM 61, 12 (nov 2018), 84–93. https://doi.org/10.1145/3208071
Dana Angluin. 1978. On the complexity of minimum inference of regular sets. Information and Control 39, 3 (1978), 337–350.

https://doi.org/10.1016/S0019-9958(78)90683-6
Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples. Inf. Comput. 75, 2 (nov 1987), 87–106.

https://doi.org/10.1016/0890-5401(87)90052-6
Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. 2015. FlashRelate: Extracting Relational Data from

Semi-Structured Spreadsheets Using Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 218–228.
https://doi.org/10.1145/2737924.2737952

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1145/3208071
https://doi.org/10.1016/S0019-9958(78)90683-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/2737924.2737952

Saggitarius 27

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing Program Input Grammars. In Proceedings of

the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). Association for
Computing Machinery, New York, NY, USA, 95–110. https://doi.org/10.1145/3062341.3062349

Sergey Bratus. 2020. https://www.darpa.mil/program/safe-documents.
Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht Bhaskar, and Mu Zhang. 2016. Extract Me If You Can: Abusing

PDF Parsers in Malware Detectors. In 23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San

Diego, California, USA, February 21-24, 2016. The Internet Society. https://doi.org/10.14722/ndss.2016.23483
Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-Modal Synthesis of Regular Expressions. In

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 487–502. https://doi.org/10.1145/3385412.3385988

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and

Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340.
https://doi.org/10.1007/978-3-540-78800-3_24

Luc De Raedt. 2008. Logical and Relational Learning. In Advances in Artificial Intelligence - SBIA 2008, Gerson Zaverucha
and Augusto Loureiro da Costa (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–1. https://doi.org/10.1007/978-
3-540-88190-2_1

Jay Earley. 1970. An Efficient Context-Free Parsing Algorithm. Commun. ACM 13, 2 (Feb. 1970), 94–102. https://doi.org/10.
1145/362007.362035

Laura Firoiu, Tim Oates, and Paul R. Cohen. 1998. Learning Regular Languages from Positive Evidence. In Twentieth Annual

Conference of the Cognitive Science Society. 350–355.
Kathleen Fisher. 2009. Pads Manual: Appendix B All Pads Base Types. https://web.archive.org/web/20230801220918/https:

//pads.cs.tufts.edu/doc/base_types_appendix.html
Kathleen Fisher and David Walker. 2011. The PADS Project: An Overview. In Proceedings of the 14th International Conference

on Database Theory (ICDT ’11). Association for Computing Machinery, New York, NY, USA, 11–17. https://doi.org/10.
1145/1938551.1938556

Kathleen Fisher, David Walker, Kenny Q. Zhu, and Peter White. 2008. From Dirt to Shovels: Fully Automatic Tool
Generation from Ad Hoc Data. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL ’08). Association for Computing Machinery, New York, NY, USA, 421–434. https:
//doi.org/10.1145/1328438.1328488

P. Garcia and E. Vidal. 1990. Inference of k-testable languages in the strict sense and application to syntactic pattern
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 9 (1990), 920–925. https://doi.org/10.
1109/34.57687

E Mark Gold. 1967. Language identification in the limit. Information and Control 10, 5 (1967), 447–474. https://doi.org/10.
1016/S0019-9958(67)91165-5

Joshua Goodman. 1998. Parsing Inside-Out. , 19–28 pages. https://dash.harvard.edu/bitstream/handle/1/24829603/tr-07-
98.pdf?sequence=1

Joshua Goodman. 1999. Semiring Parsing. Comput. Linguist. 25, 4 (Dec. 1999), 573–605.
Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance Semirings. In Proceedings of the Twenty-Sixth

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS ’07). Association for Computing
Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/1265530.1265535

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. In Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). Association for
Computing Machinery, New York, NY, USA, 317–330. https://doi.org/10.1145/1926385.1926423

Grzegorz Herman. 2020. Faster General Parsing through Context-Free Memoization. In Proceedings of the 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI 2020). Association for Computing Machinery,
New York, NY, USA, 1022–1035. https://doi.org/10.1145/3385412.3386032

Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data Extraction by Examples. In Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14). Association for Computing
Machinery, New York, NY, USA, 542–553. https://doi.org/10.1145/2594291.2594333

Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Synthesizing Regular Expressions from Examples for Introductory Automata
Assignments. In Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts

and Experiences (GPCE 2016). Association for Computing Machinery, New York, NY, USA, 70–80. https://doi.org/10.
1145/2993236.2993244

Daan Leijen, Paolo Martini, and Antoine Latter. 2023. parsec: Monadic parser combinators. https://web.archive.org/web/
20230825034450/https://hackage.haskell.org/package/parsec.

Ke Liu. 2017. Dig Into the Attack Surface of PDF and Gain 100+ CVEs in 1 Year. https://web.archive.org/web/20230825034743/
https://www.blackhat.com/docs/asia-17/materials/asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://doi.org/10.1145/3062341.3062349
https://www.darpa.mil/program/safe-documents
https://doi.org/10.14722/ndss.2016.23483
https://doi.org/10.1145/3385412.3385988
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-88190-2_1
https://doi.org/10.1007/978-3-540-88190-2_1
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://web.archive.org/web/20230801220918/https://pads.cs.tufts.edu/doc/base_types_appendix.html
https://web.archive.org/web/20230801220918/https://pads.cs.tufts.edu/doc/base_types_appendix.html
https://doi.org/10.1145/1938551.1938556
https://doi.org/10.1145/1938551.1938556
https://doi.org/10.1145/1328438.1328488
https://doi.org/10.1145/1328438.1328488
https://doi.org/10.1109/34.57687
https://doi.org/10.1109/34.57687
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1016/S0019-9958(67)91165-5
https://dash.harvard.edu/bitstream/handle/1/24829603/tr-07-98.pdf?sequence=1
https://dash.harvard.edu/bitstream/handle/1/24829603/tr-07-98.pdf?sequence=1
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/3385412.3386032
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2993236.2993244
https://doi.org/10.1145/2993236.2993244
https://web.archive.org/web/20230825034450/https://hackage.haskell.org/package/parsec
https://web.archive.org/web/20230825034450/https://hackage.haskell.org/package/parsec
https://web.archive.org/web/20230825034743/https://www.blackhat.com/docs/asia-17/materials/asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-CVEs-In-1-Year-wp.pdf
https://web.archive.org/web/20230825034743/https://www.blackhat.com/docs/asia-17/materials/asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-CVEs-In-1-Year-wp.pdf
https://web.archive.org/web/20230825034743/https://www.blackhat.com/docs/asia-17/materials/asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-CVEs-In-1-Year-wp.pdf

28 Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker

CVEs-In-1-Year-wp.pdf.
Anders Miltner, Kathleen Fisher, Benjamin C. Pierce, David Walker, and Steve Zdancewic. 2017. Synthesizing Bijective

Lenses. Proc. ACM Program. Lang. 2, POPL, Article 1 (dec 2017), 30 pages. https://doi.org/10.1145/3158089
Anders Miltner, Devon Loehr, Arnold Mong, Kathleen Fisher, and David Walker. 2023. Saggitarius: A DSL for Specifying

Grammatical Domains. arXiv:cs.PL/2308.12329
Anders Miltner, SolomonMaina, Kathleen Fisher, Benjamin C. Pierce, DavidWalker, and Steve Zdancewic. 2019. Synthesizing

Symmetric Lenses. Proc. ACM Program. Lang. 3, ICFP, Article 95 (jul 2019), 28 pages. https://doi.org/10.1145/3341699
Network Working Group. 2005. Common Format and MIME Type for Comma-Separated Values (CSV) Files. https:

//web.archive.org/web/20230825033805/https://datatracker.ietf.org/doc/html/rfc4180. Request for Comments 4180.
Rahman Nozohoor-Farshi. 1991. GLR Parsing for 𝜖-Grammers. Springer US, Boston, MA, 61–75. https://doi.org/10.1007/978-

1-4615-4034-2_5
Jose Oncina and Pedro García. 1992. Identifying Regular Languages In Polynomial Updated Time. In Pattern Recognition and

Image Analysis, N Perez de la Blanca, A. Sanfeliu, and E Vidal (Eds.). World Scientific, 49–61. https://doi.org/10.1142/
9789812797902_0004

Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani, and Todd Millstein. 2018. FlashProfile:
A Framework for Synthesizing Data Profiles. Proc. ACM Program. Lang. 2, OOPSLA, Article 150 (Oct. 2018), 28 pages.
https://doi.org/10.1145/3276520

Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni. 2019. Automatic Repair of Regular Expressions. Proc. ACM
Program. Lang. 3, OOPSLA, Article 139 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360565

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 107–126. https://doi.org/10.1145/2814270.
2814310

Python Software Foundation. 2020. CSV File Reading and Writing. https://web.archive.org/web/20230825040257/https:
//docs.python.org/3/library/csv.html#csv.Sniffer.

Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, and Bernhard Scholz. 2019. Provenance-Guided
Synthesis of Datalog Programs. Proc. ACM Program. Lang. 4, POPL, Article 62 (dec 2019), 27 pages. https://doi.org/10.
1145/3371130

Mohammad Raza and Sumit Gulwani. 2017. Automated Data Extraction Using Predictive Program Synthesis. In Proceedings

of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI’17). AAAI Press, 882–890.
R. L. Rivest and R. E. Schapire. 1989. Inference of Finite Automata Using Homing Sequences. In Proceedings of the Twenty-First

Annual ACM Symposium on Theory of Computing (STOC ’89). Association for Computing Machinery, New York, NY,
USA, 411–420. https://doi.org/10.1145/73007.73047

Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. 2019. Synthesizing Datalog Programs using Numerical Relax-
ation. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19. International
Joint Conferences on Artificial Intelligence Organization, 6117–6124. https://doi.org/10.24963/ijcai.2019/847

Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal Ebcioğlu. 2005. Programming by Sketching for
Bit-Streaming Programs. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI ’05). Association for Computing Machinery, New York, NY, USA, 281–294. https://doi.org/10.
1145/1065010.1065045

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketching
for Finite Programs. In Proceedings of the 12th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS XII). Association for Computing Machinery, New York, NY, USA, 404–415.
https://doi.org/10.1145/1168857.1168907

Andreas Stolcke and Stephen Omohundro. 1994. Inducing probabilistic grammars by Bayesian model merging. In Grammat-

ical Inference and Applications, Rafael C. Carrasco and Jose Oncina (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
106–118. https://doi.org/10.1007/3-540-58473-0_141

Loup Vaillant. 2020. Earley Parsing Explained. https://web.archive.org/web/20230825041600/https://loup-vaillant.fr/
tutorials/earley-parsing/

Gerrit J. J. van den Burg, Alfredo Nazábal, and Charles Sutton. 2019a. CSV_Wrangling. https://web.archive.org/web/
20230825042110/https://github.com/alan-turing-institute/CSV_Wrangling.

Gerrit J. J. van den Burg, Alfredo Nazábal, and Charles Sutton. 2019b. Wrangling Messy CSV Files by Detecting Row and
Type Patterns. Data Min. Knowl. Discov. 33, 6 (nov 2019), 1799–1820. https://doi.org/10.1007/s10618-019-00646-y

Enrique Vidal. 1994. Grammatical inference: An introductory survey. In Grammatical Inference and Applications, Rafael C.
Carrasco and Jose Oncina (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–4. https://doi.org/10.1007/3-540-
58473-0_131

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://web.archive.org/web/20230825034743/https://www.blackhat.com/docs/asia-17/materials/asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-CVEs-In-1-Year-wp.pdf
https://web.archive.org/web/20230825034743/https://www.blackhat.com/docs/asia-17/materials/asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-CVEs-In-1-Year-wp.pdf
https://web.archive.org/web/20230825034743/https://www.blackhat.com/docs/asia-17/materials/asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-CVEs-In-1-Year-wp.pdf
https://doi.org/10.1145/3158089
https://arxiv.org/abs/cs.PL/2308.12329
https://doi.org/10.1145/3341699
https://web.archive.org/web/20230825033805/https://datatracker.ietf.org/doc/html/rfc4180
https://web.archive.org/web/20230825033805/https://datatracker.ietf.org/doc/html/rfc4180
https://doi.org/10.1007/978-1-4615-4034-2_5
https://doi.org/10.1007/978-1-4615-4034-2_5
https://doi.org/10.1142/9789812797902_0004
https://doi.org/10.1142/9789812797902_0004
https://doi.org/10.1145/3276520
https://doi.org/10.1145/3360565
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
https://web.archive.org/web/20230825040257/https://docs.python.org/3/library/csv.html#csv.Sniffer
https://web.archive.org/web/20230825040257/https://docs.python.org/3/library/csv.html#csv.Sniffer
https://doi.org/10.1145/3371130
https://doi.org/10.1145/3371130
https://doi.org/10.1145/73007.73047
https://doi.org/10.24963/ijcai.2019/847
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1007/3-540-58473-0_141
https://web.archive.org/web/20230825041600/https://loup-vaillant.fr/tutorials/earley-parsing/
https://web.archive.org/web/20230825041600/https://loup-vaillant.fr/tutorials/earley-parsing/
https://web.archive.org/web/20230825042110/https://github.com/alan-turing-institute/CSV_Wrangling
https://web.archive.org/web/20230825042110/https://github.com/alan-turing-institute/CSV_Wrangling
https://doi.org/10.1007/s10618-019-00646-y
https://doi.org/10.1007/3-540-58473-0_131
https://doi.org/10.1007/3-540-58473-0_131

Saggitarius 29

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017a. Program Synthesis Using Abstraction Refinement. Proc. ACM Program.

Lang. 2, POPL, Article 63 (dec 2017), 30 pages. https://doi.org/10.1145/3158151
Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017b. Synthesis of Data Completion Scripts Using Finite Tree Automata. Proc.

ACM Program. Lang. 1, OOPSLA, Article 62 (oct 2017), 26 pages. https://doi.org/10.1145/3133886
Wikipedia contributors. 2023a. List of postal codes — Wikipedia, The Free Encyclopedia. http://web.archive.org/web/

20230801230749/https://en.wikipedia.org/wiki/List_of_postal_codes
Wikipedia contributors. 2023b. National conventions for writing telephone numbers — Wikipedia, The Free Encyclope-

dia. https://web.archive.org/web/20230801230922/https://en.wikipedia.org/wiki/National_conventions_for_writing_
telephone_numbers

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://doi.org/10.1145/3158151
https://doi.org/10.1145/3133886
http://web.archive.org/web/20230801230749/https://en.wikipedia.org/wiki/List_of_postal_codes
http://web.archive.org/web/20230801230749/https://en.wikipedia.org/wiki/List_of_postal_codes
https://web.archive.org/web/20230801230922/https://en.wikipedia.org/wiki/National_conventions_for_writing_telephone_numbers
https://web.archive.org/web/20230801230922/https://en.wikipedia.org/wiki/National_conventions_for_writing_telephone_numbers

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Example 1: Calendar Dates
	2.2 Example 2: CSV
	2.3 Ranking Grammars
	2.4 Emitting Grammar Information

	3 Formal Language
	3.1 Interpreting Metagrammars
	3.2 Interpreting Metagrammars, but formally this time
	3.3 Syntactic Sugar by Example

	4 Grammar Induction Algorithm
	4.1 Concretizing Metagrammars
	4.2 Grammar Induction Via Semiring Parsing

	5 Experimental Results
	5.1 Expressiveness
	5.2 Time Efficiency
	5.3 Sample Efficiency
	5.4 Comparisons
	5.5 Case Study: CSV Dialect Detection

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

