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Abstract. Combinatorial problem solving is often carried out by reduc-
ing problems to SAT or some other finite domain constraint language.
Explicitly defining reductions can be avoided by using so-called “model
and solve” systems. In this case the user writes a declarative problem
specification in a constraint modelling language, such as MiniZinc. The
specification implicitly defines a reduction, which is implemented by the
constraint solving system. Unfortunately, reductions can destroy useful
instance structure, such has having small treewidth. We show that reduc-
tions defined by certain guarded first order formulas preserve bounded
treewidth. We also show such reductions can be executed automatically
from problem specifications written in a guarded existential second order
logic (∃SO) by simple grounding or “flattening” algorithms. Many con-
straint modelling languages are essentially extensions of ∃SO, and this
result applies to natural, useful, fragments of these languages.
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1 Introduction

Application of solvers for finite-domain constraint languages, such as FlatZinc
and propositional CNF formulas, requires defining an “encoding”, which for-
mally is a reduction from the problem of interest to the target solver language.
The exact choice of reduction is important to performance in practice, and con-
siderable time is sometimes spent to find a “good” one. It is often observed that
some reductions destroy potentially useful instance structure. The formal study
of instance structure in constraint solving goes back at least to Freuder’s paper
[9] which showed that instances of constraint satisfaction problems (CSPs) hav-
ing bounded treewidth can be solved in polynomial time. More recently, Samer
and Szeider gave a detailed study [19], of conditions under which fixed parameter
tractability of CSPs follows from bounded treewidth.

Constraint modelling languages and the solving systems that support them
eliminate the need to define a reduction explicitly. Users of these “model and
solve” systems write a high level declarative description of their problem, and
send that together with a problem instance to the system. Almost all existing
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systems mapping this pair to a single expression in a “flat” language, which has
no quantifiers and limited nesting of operators. For example, the MiniZinc system
[16] has several options for this flat language including FlatZinc and propositional
CNF formulas. For any problem specification S for a problem P , this map is a
reduction (often but not always polynomial time) from problem P to the flat
language. This reduction is defined by a combination of the specification and the
“flattening” or “grounding” algorithm of the system. The user has some control
over this reduction in that they can choose among many possible ways to write
S, an activity sometimes called “modelling”.

This leads to asking under which conditions the reductions implemented by
model-and-solve systems could preserve desirable instance structure. Here we
consider the case of treewidth, a widely studied structural measure of “tree-
likeness” which has produced many tractability results. In particular, we estab-
lish sufficient conditions on S under which an instance I of our problem P is
mapped to a CNF formula Γ , such that the treewidth of Γ is bounded by the
treewidth of P .

We denote the treewidth of instance I by TW(I). We say a reduction f
between problems is bounded treewidth preserving (or just treewidth preserving)
if there is a function g, depending only on TW(I), such that, for every problem
instance I, TW(f(I)) ≤ g(TW(I)). We allow the treewidth of the image of I
to be larger than that of I, but it must not depend on the size of I. We are
interested in when the reduction implemented by a model-and-solve system is
treewidth preserving.

To study this question formally, we require a formally defined and sufficiently
simple specification. We adopt ∃SO, the existential fragment of classical second
order logic, as an abstract constraint modelling language. Many actual constraint
modelling languages are essentially extensions of ∃SO with arithmetic and other
features which are convenient for modelling or specifying problems in practice.
By Fagin’s Theorem [7] ∃SO can define exactly the problems in the complexity
class NP, which seems like a reasonable basis for an initial formal study.

1.1 Contributions

1. We define a family of guarded reductions, reductions defined by formulas of
first order logic (FO) related to the Packed Fragment of FO, and show that
guarded reductions preserve bounded treewidth.

2. We show that, from a “specification” formula Ψ in ∃SO, we can obtain a FO
reduction from the NP problem defined by Ψ to SAT.

3. We define a family of guarded ∃SO formulas, also based on the Packed Frag-
ment of FO. We show that basic grounding or flattening algorithms imple-
ment a reduction to SAT that is treewidth preserving when the specification
is guarded. More precisely, the indicence treewidth of the CNF formula pro-
duced is bounded by a polynomial of the treewidth of the problem instance.

4. We show that from a guarded ∃SO specification formula Ψ , we can algorith-
mically obtain an explicit guarded FO reduction from Mod Ψ , the class of
models of Ψ , to SAT. Proofs are sketched due to space limitations.
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Guarded specifications are very natural, and occur frequently in practice.
The essential idea behind the guardedness property is that quantification should
be relativized to an input relation. For example, for a problem in which the input
is a graph G, a constraint of the form “for every edge e in G .....” is guarded.

The point here not to solve instances of bounded treewidth, but to obtain
reductions which apply to all instances and behave well on those with small
treewidth. This behaviour is also relevant to instances which are “almost” of
small treewidth. A treewidth preserving reduction to SAT does give (in theory)
an efficient algorithm for instances of small treewidth. An efficient algorithm for
small treewidth instances, in contrast, does not automatically give us a treewidth
preserving reduction.

1.2 Organization

Section 2 defines our basic notation regarding structures, associated graphs, and
formulas. Sections 3 and 4 are largely expository, giving required background in
FO transductions and reductions. Section 5 defines our guarded reductions and
gives the proof that guarded reductions preserve bounded treewidth. Section 6
shows how to obtain FO reductions from ∃SO specifications. Section 7 defines
guarded specifications and shows that they induce treewidth preserving reduc-
tions, and in particular guarded FO reductions. Section 8 concludes with a sum-
mary, discussion of related work, etc.

2 Formal Preliminaries

Problems Are Classes of Structures. A decision problem is taken as an
isomorphism-closed class of finite relational structures. This view is standard in
descriptive complexity theory, and arguably should be used more generally: it is
usually more natural to view a graph property as a set of graphs than as a set
of strings encoding graphs.

Logic and Notation. We assume the reader is familiar with the syntax and
standard model-theoretic semantics of classical logic. In this section we set out
our notation and terminology and also give some examples that will aid our
exposition later.

A relational vocabulary is a tuple of one or more relation symbols R̄. Each
symbol R has an arity ar(R). A structure A for vocabulary τ (or τ -structure), is
a tuple (A, R̄A) consisting of a nonempty universe or domain A and a relation
RA ⊆ Aar(R) for each relation symbol R ∈ R̄. The relation RA is called the
interpretation or denotation of R in A. Many authors allow constant symbols
in relational vocabularies. Our results would apply also in this case, but we do
not include them for simplicity. The size of a structure is the cardinality of its
universe. Our structures are all finite, and by default the domain of a size-n
structure A is A = [n] = {1, . . . , n}.
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Example 1. Let τPL be the vocabulary τPL = (Form,SubF,Atom,And,Or,Not)
where Form,SubF,Atom are monadic (unary) and And,Or,Not are binary. A
τPL-structure represents a set of formulas of propositional logic: SubF(x) means
x is a subformula; Form(x) means x is a formula but is not a proper subformula of
another (so FormA is the set of formulas in A); Atom(x) means x is an atomic
formula; And(x, y) means x is a conjunction, and y is one of its conjuncts;
Or(x, y) is dual to And; Not(x, y) means x is the negation of y.

Example 2. The set {(q ∧ ¬r), (p ∨ ¬t)} of propositional formulas may be rep-
resented by τPL-structure A where we number subformulas (e.g., by a pre-order
traversal of the formula parse trees). So A = [8] and FormA = {1, 5}, SubFA =
[8]; AtomA = {2, 4, 6, 8}; AndA = {(1, 2), (1, 3)}; OrA = {(5, 6), (5, 7)}; NotA =
{(3, 4), (7, 8)};

For first order (FO) formula φ, we denote by free(φ) the set of free FO
variables in φ, and write φ(x̄) to indicate that the free variables of φ are among
those in tuple x̄. For simplicity we assume all bound variables are distinct. If A
is a τ -structure, ā ∈ Ak and φ(x̄) a τ -formula with k free variables x̄, we write
A, ā |= φ(x̄) to say that if the variables x̄ in φ denote the elements of ā ∈ Ak

then φ is true in A. We write φ(x̄)A, or just φA, for the relation defined by φ in
A. That is, if φ has k free variables, φA = φ(x̄)A = {ā ∈ Ak | A, ā |= φ(x̄)}. We
write Mod φ for the class of all finite models of a formula φ.

Let τ = (R1, . . . Rm) be a vocabulary, A = (A,RA
1 , . . . RA

m) a τ -structure, and
(S1, . . . Sn) a tuple of relation symbols not in τ . If B = (A,RA

1 , . . . RA
m, SB

1 , . . . SB
n )

is a structure for τ ′ = (R1, . . . Rm, S1, . . . Sn), then we call A the τ -reduct of B
and B an expansion of A to τ ′.

Graphs and Treewidth of Structures.

Definition 1 (Gaifman graph). The Gaifman graph of a relational structure
A is the graph G(A) = (A,E) with vertex set A and (a, b) ∈ E if and only if
there is a tuple in some relation of A containing both a and b.

Example 3. The Gaifman graph of A from Example 2 is G(A) = (A,E) where
A = {1, . . . , 8}, and E = {(1, 2), (1, 3), (3, 4), (5, 6), (5, 7), (7, 8)}. (This is exactly
the parse forest for the set of formulas).

The treewidth of a graph or structure is a measure of how “tree-like” it is.
Trees have treewidth 1, while the complete graph Kn has treewidth n − 1.

Definition 2. (Tree Decomposition; Treewidth).

1. A tree decomposition of graph G = (V,E) is a labelled tree T = (U,A,L) with
(U,A) a tree and L a function from U to 2V such that
(a) For every edge (v, w) of G, there is some u ∈ U with v, w ∈ L(u);
(b) For each vertex v of G, the sub-graph of T induced by the set of tree

vertices u with v ∈ L(u) is connected.
2. The width of T is 1 less than the maximum cardinality of L(u) for any u ∈ U .
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3. The treewidth of a graph G, denoted here TW(G), is the minimum width of
any tree decomposition of G.

4. The treewidth of a relational structure A is the treewidth of the Gaifman
Graph of A: TW(A) = TW(G(A)).

Remark 1. Treewidth is often defined as requiring ∪u∈UL(u) = V . It is conve-
nient for us to omit this condition, which has no effect on treewidth because if
v is independent in G we may have a distinct tree node u with L(u) = v.

3 Translation Schemes and Transductions

We use reductions defined by (tuples of) FO formulas. Our terminology approxi-
mately follows [13]. In defining translation schemes we allow formulas to contain
a finite number of “special” constant symbols not in the vocabulary at hand,
which are interpreted as themselves, and are used only for convenience in defining
a domain.

Definition 3 (FO Translation Scheme). Let τ and σ = (R1, . . . , Rm) be
two relational vocabularies and C = {c1, . . .} a finite set of “special” constant
symbols not in τ or σ. Let Φ be a tuple Φ = (φ0, φ1, . . . , φm) of |σ| + 1 FO
formulas over τ ∪ C, where the special constants ci ∈ C occur only in atoms of
the form x = ci. Further, suppose that φ0 has exactly k distinct free variables,
and for each relation symbol Ri ∈ σ, the number of distinct free variables of
the corresponding formula φi in Φ is exactly k · ar(Ri). Then Φ is a k-ary τ -σ
translation scheme.

A τ -σ translation scheme Φ defines two functions. One is a (partial) map from
τ -structures to σ-structures. This map is often called a transduction, generalising
the use of the term in formal language theory. The second is a map from σ-
formulas to τ -formulas (in model theory called an interpretation of σ in τ) that
lets us answer a query about a τ -structure by translating into a query about a
σ-structure. A detailed example of a translation scheme will be given in Sect. 4.

Example 4. In the usual interpretation of the complex numbers in the reals we
model complex number c with real pair (rc, ic), and evaluate a formula over C

by translating it into a formula over R. The related transduction maps R to C.

Definition 4 (Transduction
−→
Φ ; Translation

←−
Φ ). Let σ = (R1, . . . Rm) and

Φ = (φ0, φ1, . . . φm) be a k-ary τ -σ translation scheme. Then:

1. The transduction
−→
Φ is the partial function from τ -structures to σ-structures

defined as follows. If A is a τ -structure and φA
0 is not empty, then B =

−→
Φ (A)

is the σ-structure with
(a) universe B = {ā ∈ (A ∪ {ci})k | A, ā |= φ0};
(b) for each i ∈ [1,m], RB

i = {ā1, . . . , āi | A, ā1, . . . , āi |= φi}
2. The translation

←−
Φ is a function from σ-formulas to τ -formulas. We obtain

τ -formula
←−
Φ (ψ) from σ-formula ψ by:
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(a) Replacing each atom Ri(x1, . . . , xm) with (∧jφ0(x̄j) ∧ φi(x̄1, . . . x̄m)),
where each x̄j = (xj,1, . . . xj,k) is a k-tuple of new variables;

(b) Replacing each existentially quantified subformula ∃yψ with ∃ȳ(φ0(ȳ)∧ψ),
where ȳ is a k-tuple of new variables. Universally quantified subformulas
are relativized in the dual manner.

If k > 1, the universe of B is a set of tuples of elements of A and {ci}, so a
τ -formula that defines an r-ary relation in B has kr free variables. As an aid to
reading, we often denote the k-tuples that make up elements of B with 〈〉.

A fundamental property of translation schemes (standard in expositions of
model theory) relates their dual role defining translations and transductions.

Theorem 1 (Fundamental Property of Translation Schemes). Let Φ be
a k-ary τ -σ translation scheme. If A is a τ -structure for which

−→
Φ (A) is defined,

and θ is a σ-formula with r free variables x̄, then

A |= ←−
Φ (θ)(ȳ1, . . . ȳr) ⇔ −→

Φ (A) |= θ(x1, . . . xr)

where ȳi is the k-tuple of variables corresponding to xi in the computation of
−→
Φ .

4 FO Reductions

FO reductions are poly-time many-one reductions defined by FO transductions.
Although they are weak, every problem in NP has a FO reduction to SAT.

Definition 5. A FO reduction from a class K of τ -structures to a class L of
σ-structures is a FO τ -σ transduction Φ such that A ∈ K ⇔ −→

Φ (A) ∈ L.

Theorem 2 ([12]). SAT is complete for NP under FO reductions.

To illustrate we give a translation scheme that defines a FO reduction from
Propositional Satisfiability to SAT. This translation scheme may help the reader
in understanding the more complex schemes described in Sects. 6 and 7.

The particular reduction is a simplified version of Tseitin’s transformation
from propositional formulas to CNF [20]. To transform a formula φ into a CNF
formula of size linear in the size of φ, we introduce a new atom for each subfor-
mula of φ. Then, we write clauses over these new atoms that require the assign-
ments made to these atoms to correspond to the values of their corresponding
subformulas when φ is evaluated over a satisfying assignment.

Example 5. Applying the Tseitin transformation to the set of formulas S =
{(q ∧ ¬r), (p ∨ ¬t)}, yields the set of clauses {(x1), (¬x1 ∨ x2), (¬x1 ∨ x3), (¬x3 ∨
¬x4), (x5), (¬x5 ∨ x6 ∨ x7), (¬x7 ∨ ¬x8)}, which is satisfiable if and only if S is.
(Here, the numbering of subformulas is the same as used in Example 2).
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Let τCNF = (At,Cl,Pos,Neg) be the vocabulary with At,Cl unary and
Pos,Neg binary. τCNF -structures represent propositional CNF formulas, with
At the set of atoms, Cl the set of clauses, and Pos(a, c) (resp. Neg(a, c)) mean-
ing that atom a occurs positively (resp., negatively) in clause c.

Let ΦT = (φ, φAt, φCl, φPos, φNeg), be the translation scheme defined by the
following formulas, with special constants {atom,topClause,orClause, andClause,
notClause}.

(i) φ(〈s, i〉) = [(SubF(i) ∧ (s = atom)) ∨ (∃jOr(j, i) ∧ (s = orClause)) ∨
(∃jAnd(j, i)∧(s=andClause))∨(Form(i)∧(s=topClause))∨(Form(i)∧(s=
notClause))]

(ii) φAt(s, i) = [SubF(i) ∧ (s=atom)]
(iii) φCl(s, i) = [(∃xOr(i, x)∧(s=orClause))∨(∃xAnd(x, i)∧(s=andClause))∨

(∃xNot(i, x) ∧ (s=notClause)) ∨ (Form(i) ∧ (s=topClause))]
(iv) φNeg(〈s, i〉, 〈c, j〉) = ((s = atom) ∧ [(∃xOr(i, x) ∧ (c = orClause) ∧ j = i) ∨

(And(i, j)∧(c=andClause))∨(Not(j, i)∧(c=notClause))∨(∃xNot(x, i)∧j =
i ∧ (c=notClause))])

(v) φPos(〈s, i〉, 〈c, j〉) = ((s=atom) ∧ [(∃xAnd(x, i) ∧ j = i ∧ (c=andClause)) ∨
(Or(i, j) ∧ (c=orClause)) ∨ (Form(i) ∧ i=j ∧ (c=topClause))])

Then ΦT defines a FO transduction that carries out Tseitin’s transforma-
tion of propositional formulas to CNF formulas. So,

−→
ΦT is a FO reduction from

Propositional Satisfiability to SAT.
Let A be the τPL-structure representing a propositional formula φ, let B

be the structure B = ΦT (A), and Γ be the CNF formula represented by the
τCNF -structure B. The domain B of B contains an element 〈atom, i〉 for each
subformula i of φ, and these correspond exactly to the atoms in formula Γ . B
also contains an element 〈x, i〉 for each clause in Γ . In each of these elements,
the x identifies the role of the clause, and the i identifies the subformula of φ
that it corresponds to. For example, the domain element 〈orClause, 3〉 would
be associated with subformula 3 being a disjunction. The roles of clauses are:
topClause, notClause, andClause, orClause. In the reduction, we have a single
clause for each disjunction, a single clause for each negation, and two clauses
for each conjunction in φ. The correspondence we use associates the clause for a
disjunction or negation with the corresponding subformula, but we associate the
two clauses for a conjunction with the two conjuncts. There is also an element
for the top clause 〈topClause, i〉 of each formula i.

Example 6. If A is the structure of Example 2 then the structure B =
−→
ΦT (A)

is, in part, as follows. Domain B = AtB ∪ ClB; AtB = {〈atom, 1〉, 〈atom, 2〉,
. . ., 〈atom, 8〉}; ClB = {〈topClause, 1〉, 〈topClause, 5〉, 〈andClause, 2〉, 〈andClause, 3〉,
〈orClause, 5〉, 〈notClause, 3〉, 〈notClause, 7〉}; PosB = {〈〈atom, 1〉, 〈topClause, 1〉〉,
〈〈atom, 5〉, 〈topClause, 5〉〉, . . .}; . . . This represents the CNF formula: {(〈atom, 1〉),
(〈atom, 5〉), (¬〈atom, 1〉, 〈atom, 2〉), (¬〈atom, 1〉, 〈atom, 3〉), . . . }. Under the map
〈atom, i〉 �→ xi, this is the formula obtained in Example 5.
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The well-known meta-theorem tells us that many problems are fixed-
parameter tractable for treewidth. MSO is the fragment of second order logic in
which second order variables must be monadic.

Theorem 3 (Courcelle [4]). Every MSO-definable class of structures can be
recognized by an algorithm that runs in time f(w)O(n), where n is the size of
the encoding of the structure and w the treewidth of the structure, and f is a
computable function.

Example 7. It is straightforward to write an MSO formula, in the vocabulary
τCNF, defining SAT: ∃S[∀x(S(x) → At(x))∧(∀y(Cl(y) → ∃z((Pos(z, y)∧S(z))∨
(Neg(z, y) ∧ ¬S(z)))))]. Here, the monadic second order variable S is the set of
atoms made true by a satisfying assignment.

Example 8. We can define formula satisfiability with an MSO formula over
vocabulary τPL. Such a formula can be obtained from the formula of Exam-
ple 7 and the translation scheme ΦT using Theorem 1.

5 Guarded Reductions

In this section, we define a family of guarded reductions and show that these
reductions are treewidth preserving.

Definition 6 (Treewidth Preserving Reduction). We say a reduction f
from L to K is bounded treewidth preserving (or just treewidth preserving) if there
is a computable function g such that, for every A ∈ L, TW(f(A)) ≤ g(TW(A)).

5.1 Treewidth of CNF Formulas

Treewidth of CNF formulas is usually defined in terms of on one of two graphs
associated CNF formula. The primal graph has a vertex for each atom, and an
edge (u, v) iff u and v occur together in a clause (regardless of polarity). The
incidence graph has a vertex for each atom and for each clause, and an edge (a, c)
if atom a occurs in clause c (with either polarity). These induce two notions of
treewidth for CNF formulas, the primal treewidth and incidence treewidth. Since
the indcidence treewidth is at most one more than the primal treewidth (and
sometimes much smaller), it is the more interesting measure.

For every propositional CNF formula Γ , the Gaifman graph of the τCNF -
structure for Γ is the incidence graph of Γ . Therefore, in this paper the treewidth
of a CNF formula means its incidence treewidth. (In some work the primal graph
is called the Gaifman graph. This results from a different association of structures
with CNF formulas).

An example of a treewidth preserving reduction to SAT is the usual reduction
from 3-Colouring. Each vertex is mapped to 3 atoms (one for each colour). For
each vertex there is a clause saying it must be coloured, and for each edge three
clauses say the ends have distinct colours. A graph of treewidth w is mapped to
a CNF formula of treewidth 3w.
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If P �= NP there are problems in NP which do not have treewidth preserving
reductions to SAT. SAT is FPT for treewidth, so any problem with a treewidth
preserving reduction to SAT must also be FPT for treewidth. However, there are
problems that are NP-complete on trees (e.g. Call Scheduling [6] and Common
Embedded Subtree [10]) or on bounded treewidth graphs (e.g. Edge Disjoint
Paths [17], and Weighted Colouring [15]), and thus not FPT for treewidth.

5.2 Guarded FO Reductions

The primitive positive formulas are the smallest set of FO formulas containing
all atoms, including those of the form x = y, and closed under conjunction and
existential quantification.

Definition 7. Let φ(x̄) be a FO formula. A FO formula γ is a packed guard
for φ if it is a primitive positive formula of the form γ1 ∧ . . . ∧ γm, where each
γi is either an atom or an existentially quantified atom, such that:

1. free(γ) = free(φ) = x̄;
2. Each pair y, z of distinct variables from x̄ appears among the free variables

of some γi in γ.

The name is taken from the Packed Fragment of FO, introduced in [14], in which
guards are of this form.

Definition 8 (Guarded Translation Scheme, Guarded Reduction). A
FO τ -σ translation scheme Φ is guarded if every formula in the scheme, except
possibly the domain-defining formula φ0, is a disjunction of formulas of the form
(γ(x̄)∧ψ(x̄)), where γ is a packed guard for ψ. A guarded reduction is a reduction
defined by a guarded translation scheme.

The guards relativize quantification to the contents of instance relations.
They ensure that, if Φ is a guarded translation scheme, every edge of the Gaifman
graph of B =

−→
Φ (A) has a corresponding edge in the Gaifman graph of A. To see

this, consider a tuple b̄ in a relation of B. If b̄ contributes an edge to the Gaifman
graph, it contains at least two elements. These elements are constructed from
tuples of elements from A. Any two of these elements had to co-occur in the
relation defined by one of the atoms of a guard formula, and therefore has a
corresponding edge in the Gaifman graph of A.

5.3 Guarded Reductions Preserve Bounded Treewidth

To show guarded reductions preserve bounded treewidth we construct a small-
width tree decomposition of

−→
Φ (A) from a small-width decomposition of A.

Theorem 4. Let Φ be a guarded k-ary τ -σ translation scheme. If A is a τ -
structure with TW(A) ≤ w and B =

−→
Φ (A) then TW(B) ≤ (w + 1)k.
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Proof. Let B =
−→
Φ (A), and let TA = (U,F, LA) be a width w tree decomposi-

tion of A. We will construct a tree decomposition TB = (U,F, LB) of B that is
isomorphic to TA, but with a different labelling function (a.k.a. “bag” contents).
Let B be the set of all tuples occurring in some relation of B. Construct a total
function f : B → U as follows. Let b̄ = (b1, . . . , br) be a tuple in a relation
of B. Then b̄ is of the form (〈a1,1, . . . a1,k〉, . . . 〈ar,1, . . . ar,k〉). By construction
of the guards of Φ, each pair (ai,j , ai′,j′) in b̄ has a corresponding edge in the
Gaifman graph of A. Therefore, there is a clique in G(A) containing all of the
elements ai,j in b̄. It follows that there must be a vertex u ∈ U of TA such that
{ a | a occurs in b̄} ⊂ LA(u). Let f(b̄) be such a u. Now define LB in terms of
f by LB(u) = ∪{ b̄ | b̄ ∈ B and f(b̄) = u}. The first condition for TB to be a
tree decomposition of B is now satisfied. We establish the second condition by
modifying TB as follows: If for some b ∈ B and for two distinct tree nodes u,v
we have that b ∈ LB(u) and b ∈ LB(v) but b �∈ LB(w), we add b to LB(w). It
remains to establish an upper bound on the size of bags (the sets LB(u)). Each
element of b ∈ B is a tuple b = 〈a1, . . . ak〉 of k elements from A. By construction
of TB, if b ∈ LB(u) then for each ai ∈ b, we have that ai ∈ LA(u). The bound
is established by the number of elements in LA(u) and the number of elements
b ∈ B that could be constructed from these. This number is at most (w + 1)k,
since an element of B is a k-tuple of elements from LA(u). ��

Preservation of bounded treewidth, follows immediately.

Theorem 5. Let Γ be a guarded reduction from K to L. Then there is a com-
putable function f such that, for every A ∈ K

TW(Γ (A)) ≤ f(TW(A))

6 Automatically Generating Reductions

We now consider how specifications induce reductions. We consider a problem
specification to be a formula Ψ of the form ∃R̄ψ, where R̄ is a tuple of second
order variables, and ψ is a FO sentence. If the problem defined is a class of
τ -structures, then Ψ is a τ -formula, and ψ is a formula with vocabulary (τ, R̄).
The decision problem is: given a τ -structure A, decide if A |= Ψ . The associated
search problem is to find a witness for the existential SO variables, or, equiva-
lently, to find a τ ∪ R̄-structure B = (A, R̄B) that is an expansion of A to the
vocabulary of ψ, and such that B |= ψ.

We may regard Ψ = ∃R̄ψ as implicitly defining a reduction to SAT, based
on the following four-step construction:

1. Given A, construct a quantifier-free formula from ψ by rewriting each quan-
tified subformula as a large conjunction or disjunction over elements of A;

2. Transform the resulting ground formula to CNF by Tseitin’s method;
3. Evaluate any atoms over the vocabulary τ of A, deleting any clauses that

evaluate to true;
4. Replace each distinct ground FO atom with a distinct propositional atom.
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For Step 1, we must introduce new constant symbols to denote elements of A
in the ground formula. For Step 2, we must introduce new atoms corresponding
to subformulas, to be used in the Tseitin construction. For the purpose of asso-
ciating tree decompositions of the final propositional CNF formula with tree
decompositions of A, we will construct these “Tseitin” atoms as ground FO
atoms using new relation symbols. Roughly speaking, the result is a ground for-
mula Γ such that models of Γ correspond to the expansions of A that witness
the SO existentials in Ψ .

We write Ã for the set of (new) constant symbols Ã = {ã|a ∈ A}. Then,
the first step of our construction is defined by the following recursive function
Γ (φ, ν,A). Here φ is a FO formula, ν is a partial map from variables to domain
elements, ν〈x�a〉 is the valuation just like ν except that it maps x to a, and A
is the domain.

Γ (φ, ν,A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(ν(x̄)) if φ is an atom φ(x̄)
(Γ (ψ1, ν, A) ∨ Γ (ψ2, ν, A)) if φ is (ψ1 ∨ ψ2)
(Γ (ψ1, ν, A) ∧ Γ (ψ2, ν, A)) if φ is (ψ1 ∧ ψ2)
¬Γ (ψ, ν,A) if φ is ¬ψ

(
∧

a∈A Γ (ψ, ν〈x� ã〉, A)) if φ is ∀xψ

(
∨

a∈A Γ (ψ, ν〈x� ã〉, A)) if φ is ∃xψ

For step 2, associate with each non-atomic subformula η of ψ a new relation
symbol Pη, with arity |free(η)|. Associate with each non-atomic subformula β
of Γ (ψ,A) = Γ (ψ, ∅, A) a ground atom P ā, where P is a relation symbol asso-
ciated to the corresponding subformula of ψ, and ā = ν(free(ψ)) with ν the
substitution used in evaluating Γ (ψ, ν,A) in constructing Γ (ψ,A). Now, apply
Tseitin’s reduction to CNF to the formula Γ (ψ,A), using the atoms just defined
as the Tseitin atoms corresponding to the non-atomic subformulas. Denote the
resulting formula β = CNF(Γ (ψ,A)).

β is a ground FO formula in CNF form, over atoms with constant symbols
from Ã, with each relation symbol either a vocabulary symbol of Ψ , a second
order variable symbol of Ψ , or a Tseitin symbol as just introduced. Step 3 is to
eliminate atoms over τ by replacing them with their truth values determined by
A. More precisely, we delete each clause that contains a true atom and delete
all false atoms from remaining clauses.

Definition 9 (Grounding). Let Ψ be a ∃SO τ -formula ∃R̄ψ where ψ is a FO
sentence. Let A be a τ -structure. We call a formula Γ a grounding of Ψ over A
if it satisfies the following properties:

1. Γ is a ground formula for a vocabulary σ that includes τ, R̄, Ã;
2. If A |= Ψ then there is an expansion B of Ã to σ such that B |= Γ ;
3. If B is a σ-structure that is an expansion of (A, Ã) and B |= Γ and C is the

τ -reduct of B, then C |= Ψ .

So Γ = CNF(Γ (ψ,A)) is a grounding. Of particular interest are certain
proper subsets of CNF(Γ (ψ,A)) that also are groundings.
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Definition 10 (Direct Grounding). We call a formula Ψ a direct grounding
of ψ over A if it satisfies the following:

1. Ψ is a grounding of ψ over A
2. For every clause C of Ψ , there is a clause C ′ of CNF(Γ (ψ,A)) with C ⊆ C ′.

Any subformula of ψ that contains no symbols from R̄ can be directly eval-
uated over A. This can be used to reduce the number of clauses included in
a grounding of Ψ over A. In particular, consider subformula ψ(x̄) of ψ of the
form ψ1(x̄) ∧ ψ2(x̄), and suppose that ψ2 contains symbols from R̄ but ψ1 does
not. Then, for each substitution ν for which ψ1(ν(x̄)) evaluates to false, the
clauses corresponding to Γ (ψ2, ν, A) may be left out of Γ , and it will still be a
direct grounding. A dual property holds for disjunctive subformulas. We say that
a grounding that leaves out such clauses satisfies the lazy generation property.
Practical grounding software has this property. In a direct recursive implemen-
tation of Γ (φ, ν,A), lazy generation amounts to little more than lazy evaluation.

6.1 Direct CNF Grounding as a FO Transduction

We wish to show that, from a ∃SO problem specification Ψ = ∃R̄ψ, we can (algo-
rithmically) construct a FO reduction Δ from the class of models of Ψ to SAT.
The image of A under Δ is a structure for vocabulary τCNF = (At,Cl,Pos,Neg).
So, the formulas of Δ will have certain elements in common with those of our
transduction ΦT from Sect. 4.

As before, the domain B of B = Δ(A) has elements corresponding to atoms
and clauses of the resultant CNF formula. It needs an element identified with
each ground atom P ā, where P is an element of R̄ or a Tseitin relation symbol
corresponding to a subformula of Ψ , and ā is a tuple of elements of A. Let r be
the maximum number of free variables in a subformula of Ψ . Then our domain
elements will be k = r +2-tuples 〈P, ā, C〉, where P is a special constant symbol
denoting a relation symbol, C is a special constant symbol denoting an atom or
clause-type from {atom,topClause, orClause,andClause,notClause}, and ā is a
tuple from (A ∪ { })w. The special constant is a place-holder letting us model
a tuple ā of arity less than w with a w-tuple.

For each subformula of ψ that is a disjunction, our ground CNF formula has
one ternary clause for every instantiation of the free variables. For example, the
disjunction φ(x̄) = (φ1(x̄)∨φ2(x̄)) contributes a clause of the form (¬Pφā∨Pφ1 ā∨
Pφ2 ā) for each instantiation ā of its free variables. Such a clause contributes three
pairs to relations of B: one in NegB and two in PosB, as in the propositional
case. Supposing x̄ to be of size 2, the two in Pos, for all instantiations, can be
defined by a formula

α(〈p, x1, . . . , xk, c1〉, 〈p, x1, . . . , xk, c2〉) =
(p = Pφ ∧ (x1 = x1) ∧ (x2 = x2) ∧ (x3 = ) ∧ . . . ∧ (xk = )

∧ (c1 = atom) ∧ (c2 = orClause)) (1)
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Similarly, for each subformula of the form ∃xφ, we have |A| + 1 pairs in B, one
in NegB and the rest in PosB. We proceed similarly for all connectives and for
the atoms. The formula φP of Δ, that defines the relation PosB is defined by
the disjunction of all formulas defining particular subsets of PosB, and similarly
for NegB. From the complete construction, we obtain the following.

Theorem 6. For every ∃SO formula Ψ , there is a FO transduction Δ that is a
reduction from Mod Ψ to SAT. In particular, Δ(A) is a direct grounding of Ψ
over A.

7 Guarded Existential SO Specifications

As in other guarded logics, we assume FO quantifiers apply to blocks of variables,
and that every formula of the form ∃x∃yφ has been re-written as ∃xy φ, and
similarly for ∀.

Definition 11 (Guarded ∃SO). Call an ∃SO formula Ψ = ∃R̄ψ guarded if

1. In every subformula that is of the form ∃x̄φ and that contains a non-monadic
symbol from R̄, φ is of the form (γ(ȳ) ∧ φ′(ȳ)), where γ is a packed guard for
φ′, and ȳ ⊃ x̄.

2. In every subformula that is of the form ∀x̄φ and that contains a non-monadic
symbol from R̄, φ is of the form (γ(ȳ) → φ′(ȳ)), where γ is a packed guard
for φ′, and ȳ ⊃ x̄.

In practice, guarded specifications are very natural. For example, consider
the Vertex Cover problem, in which we are given a graph G = (V,E) and must
find a set S (normally with some size bound) containing at least one end point
of each edge. This property is naturally described with the guarded formula

∀u, v(Euv → (Su ∨ Sv)).

However, for the Domatic Partition problem, which calls for a partition of ver-
tices into sets P1, . . . , Pk, it does not seem that there is a guarded version (the
only possible guard being E) of the property:

∀v∃i(Pvi ∧ ∀j(Pvj → j = i)).

Theorem 7. Let Ψ be a guarded ∃SO formula with vocabulary τ , and Δ a reduc-
tion that implements a direct grounding of Ψ over A that satisfies the lazy eval-
uation property. Then for any τ -structure A, we have that

TW (Δ(A)) ≤ f(TW (A))

where f(x) = O((x + 1)r), with r determined by Ψ .

The proof is quite similar to that of Theorem 4.
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Proof (Sketch). Let T be TA = (U,F, LA) be a width w tree decomposition
of A, and Γ be the formula Γ = CNF (Γ (Ψ,A)). We will construct a tree
decomposition TB for Γ that is isomorphic to TA, but has different bags. Consider
any existentially quantified subformula ψ′(ȳ) of Ψ that has a symbol from R̄.
This formula is of the form ∃x(γ(ȳ, x) ∧ ψ(ȳ, x)), where γ is a packed guard
for ψ. By the lazy generation property, no clauses corresponding to γ(ν(ȳ, x))
are included in Γ , and for each tuple ā = ν(ȳ, x), clauses corresponding to
ψ(ν(ȳ, x)) are only included in Γ if Γ (ν(ȳ, x)) evaluates to true. Consider the
formula ψ(ν(ȳ, x)). If it is quantifier-free, then all atoms in corresponding clauses
of Γ are of the form P ā where P is either in R̄ or a Tseitin symbol corresponding
to a subformula of ψ. Since ā was “sanctioned” by the guard, we know that there
is a bag in TA containing all elements of ā. We put all the atoms from all the
clauses into the corresponding bag in TB. If ψ has quantified subformulas, then
we include as part of the current step the Tseitin atoms corresponding to those
subformulas, but not the clauses corresponding to them. Following this, we have
that the first of the tree decomposition properties is satisfied by TB. As in the
proof of Theorem 4, we add to each bag the minimum collection of atoms to
satisfy the second property. It then remains to bound the size of the bags. As
in the proof of Theorem 4, it is sufficient to bound the number of elements in a
bag of TB in terms of the number in a related bag of TA. From w + 1 elements
of A, in a bag LA(u) we can construct

(
w+1

r

)
tuples. The number of relation

symbols is bounded by |Ψ |, and there are 5 special constants (which were used
to distinguish the syntactic types of subformulas) for the last element, so the
number of elements in a LB(u) is at most

5|Ψ |
(

w + 1
r

)

= O((w + 1)r)

which is polynomial in w because the constant 5, |Ψ | and r are all fixed by Ψ . ��

7.1 Guarded FO Reductions from Guarded Specifications

To obtain a guarded FO reduction from a guarded ∃SO specification, we first
construct an FO reduction according to the process in Sect. 6.1. We then modify
it by conjoining a suitable guard to each disjunct of each formula defining the
reduction. The appropriate guard for the formula defining elements of NB or
PB corresponding to a subformula φ of the specification, is the guard for the
least subformula of the specification ψ that is quantified and that contains φ as
a subformula. Consider the formula 1 of Sect. 6.1. Suppose that the subformula
of Ψ it addresses, (φ1(x1, x2) ∨ φ2(x1, x2)), appears in a subformula of the form

∃x1((γ(x1, x2) ∧ (φ3(x1) ∧ ((φ1(x1, x2) ∨ φ2(x1, x2)))).

Then we add the guard γ(x1, x2), to obtain the guarded formula

α(〈p, x1, . . . , xk, c1〉, 〈p, x1, . . . , xk, c2〉) = [γ(x1, x2) ∧
(p = Pφ ∧ (x1 = x1) ∧ (x2 = x2) ∧ (x3 = ) ∧ . . . ∧ (xk = )

∧ (c1 = atom) ∧ (c2 = orClause))] (2)
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From the complete construction, we obtain the following.

Theorem 8. For every guarded ∃SO formula Ψ , there is a guarded FO reduction
Δ from Mod Ψ to SAT.

8 Discussion

When writing specifications in constraint modelling or knowledge representation
languages, it is common practice to write constraints in guarded form when this
is easy. Our results demonstrate one possible benefit of this, and also suggest
that making an effort to write guarded specifications might improve solving time.
The potential speedup does not depend on instances being of bounded treewidth,
since guarded reductions will preserve related sparseness properties for instance
families that are somehowe “close to” having small treewidth. More importantly,
our work takes a step toward understanding when reductions obtained from
declarative problem specifications may preserve interesting structural instance
properties.

We would like to also obtain necessary conditions for existence of treewidth
preserving reductions. We conjecture that the class of problems with treewidth
preserving reductions to SAT is strictly larger than the class of problems with
guarded FO reductions to SAT. We also conjecture that guarded reductions
preserve structural sparseness properties more general than bounded treewidth.

Related Work. Bliem et al. [2] demonstrated treewidth affecting ASP solver
run-time, and introduced connection guarded ASP programs. These preserve
bounded treewidth in grounding, but only if degree is also bounded. Bliem [1]
defined guarded ASP programs and showed that grounding for these preserves
bounded treewidth regardless of degree. The definition is quite restrictive, and we
conjecture there are problems with no guarded ASP formulas but with guarded
∃SO definitions and guarded reductions to SAT. However, it is possible that
with a carefully formulated use of defined predicates in guards this could be
remedied. The paper [3] illustrates extending the features of the IDP system by
using the system itself to compute transductions. Results in [8,18] indicate that
there should be very efficient algorithms for grounding guarded specifications.
The MSO transductions in [4] preserve treewidth but are restricted in a way
that makes them too weak for our application.

Acknowledgements. Phokion Kolaitis suggested studying “good” reductions by via
special classes such as FO reductions [11]. Marc Denecker suggested that guarded for-
mulas should produce groundings with bounded treewidth [5]. This work was supported
in part by an NSERC Discovery Grant.
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