
T L  C S C


Y G

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

A SAT S P

David G. Mitchell∗

Abstract

In not much more than a decade the practice of implementing programs
for testing satisfiability of propositional formulas has progressed from be-
ing practically a curiosity to an active and competitive endeavor. Impressive
performance improvements have made SAT solvers useful in some indus-
trial applications, most notably in formal verification of hardware and soft-
ware systems as the engine for bounded model checking (BMC) tools. Here
we describe the main design and implementation features of the family of
SAT solvers which represent the state of the art for solving of industrial in-
stances, and includes the solvers Chaff, BerkMin and siege. We attempt to
give a self-contained presentation in a uniform style, and in doing so hope to
encourage readers to ask interesting questions, as well to tackle some prob-
lems we mention. It should also be possible to produce a creditable solver
with little more at hand than this paper and a penchant for highly efficient
implementation.

∗Supported by NSERC. Address: Simon Fraser University, Burnaby, BC V5A 1S6, CANADA

http://research.microsoft.com/
gurevich@microsoft.com

Contents

1 I

2 B, R  DPLL

3 CDCL: A  B  L
3.1 The CDCL algorithm .
3.2 Deriving the Conflict Clause .
3.3 Backjumping .
3.4 Clause Deletion .

4 U P (... BCP)
4.1 Watched Literals .
4.2 Cache-aware implementation .
4.3 Handling Short Clauses .
4.4 Resolution Strategy .

5 D H

6 R: R vsC

7 P-P

8 P

1 Introduction

The implementation of programs for deciding satisfiability of formulas of propo-
sitional logic (SAT), once a bit of a novelty, is now a competitive activity, with
widespread interest in academia and an important and growing base of industrial
users. The 2004 SAT Solver Competition [26], held in association with the Sev-
enth Annual Conference on Theory and Applications of Satisfiability Testing in
May of 2004 [20], involved 55 solvers produced by 27 groups with authors in a
dozen countries. The solvers were tested on a collection of 685 benchmark in-
stances grouped in 77 source domains [1].

The method of representing an instance of a search problem as a propositional
formula so that a satisfying assignment represents a solution, and then running
a SAT solver to find such an assignment if there is one, has been found to be a
practical and effective method for solving a number of problems. It has been used
successfully in the electronic design automation (EDA) industry for a variety of

tasks including microprocessor verification [43] and automated test generation
[42] among many others [34]. Perhaps most notably, SAT-based bounded model
checking [8] has become a widely used verification method, and these methods
are being extended to un-bounded model checking [35]. SAT-based verification
has been applied to software as well as hardware [10], and SAT solvers are used as
computational engines in a variety of model checking tools such as NuSMV [11]
and the analyzer for the Alloy software modeling language [22]. The AI planning
tool BlackBOX [25], won the optimal plan category of the 2004 planning compe-
tition [21] powered by the SAT solver siege [40]. SAT solvers, or modifications of
them, are used as the engines for tools using more expressive logics, including for
problems that we expect are not in NP, such as answer set programming [28, 29],
causal logics [16], quantified boolean formulas and modal logics [15], and even
Presburger formulas [41] and restricted first order theorem proving [18].

This is in marked contrast with the situation a decade and a half ago, when
the fact that every problem in NP can be reduced to SAT in polynomial time
was widely regarded as being of only theoretical interest. Conventional wisdom
was that a general purpose algorithm could not be expected to perform well on
NP-hard search or decision problems: Such problems presumably require expo-
nential time in the worst case, so any algorithm that would be effective in practice
would have to take advantage of the particular structural properties of instances
at hand, and thus would have to be carefully tailored by someone intimately fa-
miliar with the application and instances. The other side of this coin is that in
the abstract framework good general heuristics can be more easily found, clarified
and efficiently implemented. The best possible performance on a distribution of
instances will certainly be obtained by an algorithm tuned to that distribution, and
indeed the solvers we discuss have been tuned for their most significant applica-
tion. Still, they generally work well on a wide variety of application instances,
and their performance as general purpose solvers is often impressive. (This claim
must be tempered by the observation that there are families of formulas for which
they are not well suited, for example they are not the best for random formulas, or
for other formulas constructed to require long resolution proofs [26].)

This change in status is primarily the result dramatically increased perfor-
mance. In 1989, the first year in which this writer implemented a SAT solver,
we were impressed at being able to solve formulas of a few hundred clauses on a
research workstation. Today, a generic home PC running software down-loadable
for free from the web can easily solve many industrial instances with hundreds
of thousands of clauses. Certainly work on how to effectively represent prob-
lems as formulas was essential, but without the raw speed gains would not have
paid off. Arguably the performance increase is due to three factors; improved
algorithms, improved implementation techniques, and increased machine capac-
ity. Each of these has individually contributed multiple orders of magnitude in

speedup. Increases in memory size and speed allowed the introduction of so-
called “clause learning” techniques which require storage of tens or hundreds of
megabytes which must be accessed very efficiently. Increases in processor speed
allow much larger searches, which in turn makes more computationally expensive
heuristics pay off in terms of reduced search time.

Here we give an account of the elements that go into making the best current
publicly known SAT solvers. We do not attempt a survey of SAT solver technolo-
gies, but rather try to give a reasonably detailed and self-contained description of
a particular family of solvers, which includes Chaff [36, 46] BerkMin [14] and
siege [40] among others. In taking this narrow approach, we necessarily ignore
a great deal of interesting and important work in design and development of SAT
solvers and their applications, including all complete methods that do not fit into
our narrow mold and all randomized local search methods.

The paper is organized as follows. In Section 2 we introduce backtracking, its
relation to resolution proofs, and the DPLL procedure, and in section 3 we cover
so-called clause learning and conflict-directed backjumping. Section 4 addresses
unit propagation in detail. We present decision heuristics in Section 5, restarts in
Section 6 and pre-processing briefly in Section 7. Finally, Section 8 mentions a
few problems.

2 Backtracking, Resolution and DPLL

Most solvers take their input in conjunctive normal form (CNF), and henceforth
by “formula” we mean one in this form: a conjunction of disjunctions of literals,
or equivalently a set of clauses each of which is a set of literals, a literal being
a propositional atomp or its negation¬p. We assume the literals in a clause all
involve distinct variables. We useφ to denote a formula, andα an assignment –
possibly partial – to the variables ofφ. We takeα to be a sequence of literals,
containing just those literals which are mapped totrue, in chronological order as
the values were assigned by the algorithm at hand. For literall and assignmentα,
we denote the extention ofα by l asαl. For formulaφ and (partial) assignment
α, we denote byφ|α the formula obtained by deleting fromφ every clause that is
satisfied byα, and deleting from each clause ofφ every literal thatα makes false.
We call this a “restricted” formula.

Most modern solvers aimed at industrial instance solving are based on the
basic backtracking algorithm – albeit with important improvements.

procedureBT(φ, α)
(SAT) if φ|α is emptyreturn SATISFIABLE
(Conflict) if φ|α contains an empty clausereturn UNSATISFIABLE

(Branch) Otherwise, letp be a literal ofφ|α
if BT(φ, αp) returns SATISFIABLE

return SATISFIABLE
else

return BT(φ, α¬p)

To check ifφ is satisfiable, we execute BT(φ,∅). The procedure tries to extend
α to a satisfying assignment, terminating if one is found and backtracking if a
conflict condition is reached. When a conflict occurs, corresponding to the empty
clause inφ|α is a clauseC of φ such thatα makes every literal ofC false. We call
C a conflicting clause.

The search tree for execution of BT(φ,∅) has a node for each call to BT and
edges from each node to the two nodes representing the recursive calls. The root
corresponds to BT(φ,∅) and leaves correspond to calls which return without recur-
sion. Each internal node has an associated “branching variable”x, and the edges
to its children are labeled withx and¬x, so the sequence of labels on the path
from the root to nodev is exactly the assignmentα passed to the invocation of BT
corresponding tov.

The backtracking algorithm and refinements of it used in the solvers we con-
sider can be viewed as constructing resolution proofs. The propositional resolu-
tion rule allows us to derive the clause (C ∨ D) from two clauses (x ∨ C) and
(¬x ∨ D). We say we resolve them onx, and that (C ∨ D) is the resolvent. A
resolution derivation ofC from φ is a sequence of clauses{C1, . . . ,Cs = C} in
which eachCi is either a clause ofφ or is the resolvent of someC j andCk with
j, k < i. A derivation of the empty clause () fromφ is called a refutation ofφ, and
φ is unsatisfiable if and only if it has a refutation.

The graph of derivationπ of C from φ is a directed acyclic graph with clauses
of π as nodes. Each internal node is a derived clause and has edges to the two
clauses from which it was derived.C is a source, and sinks are clauses ofφ. A
derivation is called tree-like if its graph is a tree, or equivalently if any derived
clause is used at most once to derive further clauses. It is called regular if on any
path fromC to a leaf no variable is resolved on more than once.

We may label the search tree for the execution of BT on an unsatisfiable for-
mulaφ with clauses as follows. (Ifφ is satisfiable, the tree can be so labeled with
the exception of the last branch.) Each leaf is labeled with a clause that is made
false by the assignment on the path to that leaf. For an internal nodev, let C and
D be the two clauses labeling its children, andx the branching variable. IfC and
D both mention the variablex, then one containsx and the other¬x, and we label
v with the resolvent ofC andD. Otherwise, we labelv with one ofC or D which
does not mentionx. In this scheme, the clause labeling each node is made false by

the the partial assignment on the path to that node, and in particular the root node
is labeled with the empty clause. It is easy to check that the clauses labeling this
tree form a regular tree-like resolution refutation ofφ. Moreover, any regular tree-
like refutation which is minimal, in that its graph is connected, can be constructed
by executing BT with suitable choices of branching variables.

Davis, Putnam, Logemann and Loveland [13, 12] proposed a refined version
of backtracking with a few simple but effective heuristics. A unit clause is a clause
of size one, and a literalp is pure inφ if there is no occurrence of its negation¬p
in φ. The algorithm is:

procedureDPLL(φ, α)
(SAT) if φ|α is emptyreturn SATISFIABLE
(Conflict) if φ|α contains an empty clausereturn UNSATISFIABLE
(Unit Clause) if φ|α contains a unit clause{p}, return DPLL(φ,αp)
(Pure Literal) if φ|α has a pure literalp return DPLL(φ,αp)
(Branch) Let p be a literal from a minimum size clause ofφ|α

if DPLL(φ, αp) returns SATISFIABLE
return SATISFIABLE

else
return DPLL(φ, α¬p)

Some authors use the term DPLL only for this exact algorithm, while others
use it to refer to any refinement of the backtracking algorithm. This algorithm is
also often called the Davis-Putnam algorithm, which ignores the contribution of
two authors of [12] where it was presented.

The Pure Literal rule is omitted in most solvers, being considered too com-
putationally expensive for the benefit obtained, especially since the combination
of backjumping and decision heuristics in current algorithms is likely to simply
ignore pure literals. The branching heuristic of selecting a variable from a short
clause was influential, and branching heuristics in DPLL-based solvers continued
to be refinements of this strategy until a very different approach was found more
useful in clause learning solvers, as discussed in Section 5.

The Unit Clause rule is logically equivalent to always choosing a branching
variable in a unit clause if there is one, since one of the recursive calls on such
a variable will always return immediately without further recursion, but efficient
execution of the rule is so important to good performance that implementers never
think of it this way. It may also be seen as an operation that takes pair (φ,α) to
(φ,αp) when there is a clauseC ∈ φ for whichC|α = (p). Unit Propagation (UP)1

1 We prefer “unit propagation” to the other terms sometimes used, "unit resolution" and
"boolean constraint propagation" (BCP), as the former is a misnomer, and the latter is sometimes
used in a more general setting.

is the repeated application of this operation until either a conflict is reached (α
makes some clause ofφ false) or a fixed point is reached without conflict. Notice
that conflicts areonly reached during unit propagation. Section 4 addresses the
importance and implementation of UP.

3 CDCL: Adding Backjumping and Learning

The first SAT solver competition of which the author is aware was held in 1992
at the University of Paderborn [9]. One of the conclusions of that competition
was that the best solvers were DPLL solvers. This algorithm remained domi-
nant among complete methods until the introduction of so-called clause learning
solvers in 1996 [6, 33]. This new method is a variation on DPLL suggested two
observations about the backtracking algorithm and corresponding refutation. The
first is that, if we actually derive the clauses labeling the search tree, we can add
some of them to the formula. If later in the execution the assignment at some node
falsifies one of these clauses, the search below that node is avoided with possible
time savings. This technique is variously called “clause learning” and “clause
recording” or just “learning”.

The second observation is that at a nodev with branching variablex, we first
make one recursive call during which we derive a clauseC and then make a second
recursive call during which a clauseD is derived.C andD are resolved to produce
the clause to labelv. However, if the clauseC does not mention the variablex,
there is no need to make the second recursive call, since the clauseC suffices to
labelv. In some cases this may save a great deal of work. This is the propositional
version of the method called “conflict directed back-jumping” (CBJ) in the con-
straint satisfaction literature [39], from where the idea came. The version used in
most SAT solvers is a bit smarter than this, as described below.

3.1 The CDCL algorithm

The algorithm used in GRASP, Chaff, BerkMin, siege and many other recent
solvers is sometimes called “conflict driven clause learning” (CDCL). It is pos-
sible to describe recursively, but the following iterative version is clearer, and
better reflects how it is implemented.

We categorize assigned variables as decision variables or propagation vari-
ables. The decision level of variablex is the number of decision variables in the
assignmentα that were assigned no later thanx (i.e., do not come afterx in the se-
quenceα). Assignments made by unit propagation before any decision variable is
assigned are at level zero. We call the level at which a conflict occurs the conflict
level. The algorithm is:

procedureCDCL(φ)
Γ = φ, α = ∅, level= 0
repeat:

execute UP on (Γ,α)
if a conflict was reached

if level= 0 return UNSATISFIABLE
C = the derived conflict clause
p = the sole literal ofC set at the conflict level
level= max{ level(x) : x ∈ C − p}
α = α less all assignments made at levels greater thanlevel
(Γ, α) = (Γ ∪ {C}, αp)

else
if α is totalreturn SATISFIABLE
choose a decision literalp occurring inΓ|α
α = αp
incrementlevel

end if

Assuming that the initial unit propagation does not reach a conflict, the al-
gorithm repeats the steps of choosing a decision literal to set and then executing
unit propagation, until either the assignment is total and satisfiesφ, or a conflict is
reached. When a conflict is reached, a “conflict clause” is derived and is added to
the formula. This clause must be made false byα, must be logically implied by
φ and must be a so-called “asserting clause”, which means that it contains exactly
one literalp whose value was assigned at the conflict level. Backtracking is car-
ried out by deleting fromα all literals assigned at levels greater than the greatest
level of a literal inC\p. Further details are given in the next subsection. This al-
gorithm is also sometimes described as the “failure driven assertion” (FDA) loop,
the failure being our conflict, and the assertion being the literalp.

Correctness of CDCL is less obvious than that of BT and DPLL. Certainly if
CDCL returns SATISFIABLE,α satisfiesφ. If CDCL returns UNSATISFIABLE,
there was a conflict at level zero. Since every variable set at level zero was the
result of unit propagation fromφ or deriving a unit conflict clause, these values are
logically implied byφ, soφmust be unsatisfiable. It remains to prove termination,
which we do along the lines used in [48]. Letα[i] denote the number of variables
in assignmentα that were set at leveli. Let≺ be an ordering on partial assignments
for φ, such thatα ≺ β if and only if for somei, α[i] ≺ β[i] and for all j < i,
α[j] = β[j]. The minimum assignment is∅, every assignment satisfies

∑
i α[i] ≤ n,

and the maximum assignment hasα[0] = n. Initially α = ∅, so it is enough
to verify that the assignments at the top of the CDCL loop are monotonically

increasing according to this order. Clearlyα ≺ αp, so UP and the else condition
satisfy this. For the if condition, we remove values fromα and then immediately
extend it withp at the new last level, which increasesα on the ordering.

3.2 Deriving the Conflict Clause

We begin by describing a particular choice of conflict clause (called the First UIP
clause), and then discuss some variations. To help in constructing the clause we
extend the information stored in the assignmentα to include, for each assigned
literal, a “reason” for the assignment. This reason is either the fact that it was
a decision literal or is the index of the clause which became unit and forced the
literal to be assigned true during unit propagation. Now suppose UP reaches a
conflict with partial assignmentα and conflicting clauseC. The clauseC must be
of the form{p∨ q∨ C′}, where¬p and¬q were added toα at the conflict level,
since otherwiseC would have been a unit clause at the previous decision level.
Assumep was assigned afterq. We derive a sequence of resolventsCi as follows.
The reason forp must be a clauseB1 = {¬p ∨ r ∨ B′1} (wherer could possibly
be the same asq). We resolveC and B1 to obtainC1 = {q ∨ r ∨ C′ ∨ B′1}. If
Ci contains only one literal whose value was set at the conflict decision level, we
stop and letCi be our conflict clause. Otherwise we select the literall ∈ Ci whose
value was set last, letBi+1 be the reason for the assignment tol, and resolveCi

with Bi+1 to obtainCi+1. The process must terminate, as eventually all literals of
the current level will be resolved out except for the decision literal. It is often the
case, though, that the one conflict level literal remaining was set by UP.

Conflict clause construction is often described in terms of the implication
graph [32] in which nodes are literals ofα, and there is a directed edge fromu
to v if ¬u occurs in the reason clause forv. Decision literals have in-degree zero.
If q was the last literal set false in the conflicting clauseC, we includeq as well
as¬q in the graph, and we considerC to be the reason forq. We callq and¬q
conflict literals. Now consider a cut in this graph which has the conflict literals on
one side, called the conflict side, and all decision literals on the other side, called
the reason side, and such that every node on the conflict side has a path to a con-
flict literal. If we take the set of literals on the reason side which have at least one
edge to the conflict side, we obtain a clause which can be derived by the process
described above – though possibly choosing literals to resolve out in a different
order, and possibly using a different termination condition. The implication graph
and its relationship to resolution derivations is most clearly described in [7].

Suppose thatp is the conflict level decision literal. A vertexu through which
every path fromp to the conflict literals passes is called a unique implication point
(UIP). The UIP nearest to the conflict literals is called the First UIP. The cut which
has the First UIP on the reason side and all literals assigned after it on the conflict

side gives the conflict clause called the First UIP conflict clause. This is also the
clause produced by the resolution process described above, and is the one used by
siege and by early versions of Chaff. Other choices of conflict clause that have
been tried include, for example:

RelSAT schemeUse the derivation process described, but continue until the only
remaining conflict level literal is the decision literal (i.e., derive the clause
corresponding to the last UIP).

Decision SchemeDerive the RelSAT clause, and then continue the process of
resolving out literals by resolving out all literals set at other levels until
only decision literals remain.

All-UIP Scheme Proceed as in the Decision Scheme, but for each level stop
resolving out literals at that level the first time there is only one literal from
the level remaining.

Zhang et al [46] investigated the performance of these and other schemes in the
Chaff solver, and found that the FirstUIP clause is the most useful single clause to
record. GRASP and recent versions of Chaff record more than one conflict clause,
although it is probably too early so say which combinations are best.

This conflict derivation process makes it clear that in implementation of UP,
not only speed but the exact order of propagation steps may matter, since this
affects which conflict clauses are derived and stored. We remark further on this in
Section 4.

3.3 Backjumping

Having derived our asserting clauseC, we implement backjumping as follows.
AssumingC has at least two literals, letp be the unique literal inC assigned at the
conflict level,q be the last literal assigned other thanp, andl the level at whichq
was assigned. SinceC is our conflict clause we add it to our clause set. We revise
our assignmentα by removing all assignments made at decision levels greater
thanl. Notice that this new assignment makes all literals inC false except forp.
Thus, we can simply pick-up unit propagation where it finished off after the level
l decision, immediately settingp as a propagation step, and possibly continuing
with further propagation. IfC = {p} has only one literal, then backjumping is to
just before the start of level one, so the valuep is set at level zero and can never
be changed again.

3.4 Clause Deletion

The number of clauses derived and cached by the procedure just described is, on
large hard formulas, far too large to keep them all indefinitely. Even if sufficient
memory is available for storage, the time to manage the clauses – in particular the
time to execute unit propagation – becomes impractical, and ultimately reduces
performance. All effective solvers that implement clause learning also imple-
ment a clause “forgetting” strategy, to keep the size of the clause store reasonable.
Generally speaking, the strategy is to periodically delete all those learned clauses
which are very large and which have not been used recently or frequently in deriv-
ing new clauses. Siege periodically deletes a random selection of clauses that are
larger than some threshold size. In Chaff and siege very large clauses are deleted
when backtracking leaves them with many (say 100 or 200) literals unassigned, at
which point it seems likely they will never get used.

4 Unit Propagation (a.k.a. BCP)

In competitive solvers approximately 80 to 95 per cent of execution time is spend
performing unit propagation (UP), so it is essential that it be very efficiently im-
plemented. The main work is to identify clauses which have effectively become
unit clauses, because all but one of their literals have been set false. Under any
scheme designed so far this requires visiting many clauses each time a variable is
set.

To implement unit propagation, we keep a queue of variable assignments
which have been set, but which have not yet been propagated. At each stage, we
take an assignmentp off of the queue, and check whether extending the current
assignment withp produces any additional unit clauses. In the very first execution
of unit propagation, at level zero, the queue initially contains all unit clauses of
the input formula. At the start of each decision level, the queue is initialized with
the decision literal for that level. After each backjump the queue is initialized with
the assertion literal.

4.1 Watched Literals

Early designs typically had two counters for each clause which kept track of the
number of true and false literals. These were used to detect when a clause became
unit (or satisfied). This required visiting every clause mentioning variablex when-
everx was assigned a value. The Chaff solver introduced the two-watched-literal
scheme [36], a variant of an earlier scheme used in the solver Sato [45], to reduce
the number of clause visits. Under this scheme, two non-false literals are chosen

to watch in each clause. A clause could only become unit if one of these is set
false, so we need only visit a clause when one of its watched literals is set false.
When a literalp is assigned true, we visit each clause in which¬p is a watched
literal, and search its literals for another that has not been set false to use as a
watch. If there is none, we inspect the other watched literal for the clause. If it is
assigned true, the clause is satisfied and we ignore it; if it is false we have reached
a conflict; if it is unassigned the clause is now a unit clause, and we add that literal
to the UP queue.

The scheme has two additional benefits; we do not need to keep track of satis-
fied clauses, and backtracking is essentially free. When we backtrack we remove
assigned values in reverse of the order they were assigned, so any watched literal
before backtracking remains a valid literal to watch after backtracking. Therefore,
to backtrack the only work is to change the location of the stack pointer on the as-
signment. In contrast, most other schemes require doing work, such as revising
counter values, when backtracking.

4.2 Cache-aware implementation

The introduction in Chaff of cache-aware implementation is as important as the
introduction of the watched literal scheme. When solving challenging formulas
the size of the clause store may easily grow to tens or hundreds of thousands of
clauses, many of which contain hundreds of literals. A current i86-family proces-
sor has 1MB of L2 cache, so only a fraction of these clauses can be in the cache
at any time. Each time part of a clause is accessed that is not in the L2 cache –
a cache miss – it must be read from main memory. The time penalty for this is
large: 50 to 250 instructions to read from main memory, versus 5 to 10 for reading
from L2 cache (and one or two instructions to read from L1 cache).

A cache aware implementation attempts to minimize cache misses by, for ex-
ample, reducing the memory footprint and preferring arrays to pointer-based data
structures. Whenever possible data is stored so that sequences of memory accesses
are likely to involve contiguous memory locations. Zhang and Malik [47] report
experiments that show that cache-aware solvers like Chaff and BerkMin have a
speedup on the order of a factor of three over earlier designs like RelSAT, GRASP
and Sato purely due to number of cache misses. The difference between perfor-
mance for the same algorithm using counter-based unit propagation versus the
two-watched-literal scheme was on average a factor of eight, which must partly
be due to number of clause visits and partly to attendant cache misses.

Current implementations store the clauses in one array as a sequence of literals
with sentinel values delimiting clauses. More complex data structures have been
tested, including tries [44] and ZBDDS [2]. Effects of cache misses may partly
explain why these have not been widely adopted, despite some advantages.

The cache miss rate is further reduced in siege [40] by using 21 bits for each
literal (including one bit to flag watched literals), rather than the usual 32. This
allows three literals per 64-bit word rather than two, and so a much reduced mem-
ory footprint. Siege has the fastest unit propagation of any solver of which we
are aware, but this has to be weighed against the resulting limitation to formulas
with 220 = 524,288 variables. Few current public benchmarks have this many
variables, but it is an unreasonable limitation for many industrial users.

4.3 Handling Short Clauses

Pilarski and Hu [37, 38] observe that hardware verification instances typically
have a large number of binary (size 2) clauses, and that it makes little sense to
execute the standard unit propagation algorithm for them. Fractions of binary
clauses range from 55 to 90 per cent in various benchmark collections. One need
only keep a list for each literalp of all literalsq for which there is a binary clause
(¬p∨ q), and scan this list upon assigningp true. This reduces memory footprint
as well as number of operations to execute. Ryan [40] extends the idea to special
data structures for clauses of size three as follows. For each literal appearing in
a ternary clause, there is a list of all pairs of literals occurring together with it in
ternary clauses. There are three such pairs, on three different lists, for each ternary
clause. Each of these pairs has a pointer to the other two pairs representing this
clause. For algorithm details see [40].

Propagation in these structures is much faster than in the scheme for general
clauses, so it makes sense to maximize their use. In siege, propagation always is
done first through the binary clauses. When this is complete, propagation through
ternary clauses begins, but each time a unit clause is found and a literal set true,
propagation is done again through the binary clauses before continuing the process
of propagating through ternary clauses. Finally, after ternary clause propagation
is complete, propagation begins through longer clauses, once again with a return
to the short clause propagation process each time a variable is assigned.

4.4 Resolution Strategy

At any point during unit propagation there may be more than one unit clause
and thus a choice of which order to assign literals and propagate further. For
simplifying the formula and detecting existence of a conflict only speed matters
and this order is of little concern. However, the particular order chosen does affect
which conflicting clause is identified, and which clauses are resolved against it to
produce the conflict clause. This has received little attention so far in the literature
but is almost certainly important.

The strategy described in the previous subsection for propagation through
short clauses amounts also to a strategy for deriving conflict clauses. Roughly, we
give preference to resolving the current clause against binary or ternary clauses
when possible. This produces a distinct pattern in derivations of conflict clauses
in siege. In most cases each such derivation involves only one or two long clauses,
but a long sequence of steps resolving these with short – mostly binary – clauses.
Typically the resulting conflict clause is not much longer than the original long
clause in the sequence.

We may view this as carrying out a more general strategy to allow the size
of derived clauses to grow, but only slowly. We know by results on resolution
proof complexity that hard-to-refute formulas require deriving long clauses, so
our solvers must allow derivation of such clauses. On the other hand, long clauses
are hard to manage and, because there are many of them, a priori any particular
long clause is likely not to be useful. Therefore, it makes sense to allow clause
length to grow only strategically.

We described unit propagation above using a breadth-first search scheme by
keeping a queue of assignments for propagating. Ryan [40] reports that a depth
first scheme has a slightly more efficient implementation, but results in slightly
poorer performance. Presumably this is because the depth first scheme is more
likely to involve longer sequences, and thus to produce larger derived clauses.

5 Decision Heuristics

DPLL branching heuristics have been the subject of numerous studies. The most
successful are based roughly on making choices that make the resulting restricted
formulas as “simple” as possible (see, e.g., [19]). The original DPLL scheme of
choosing a variable in a minimum length clause is an inexpensive-to-compute ver-
sion of this, as it will tend to result in unit propagation and thus reduce the number
of variables and clauses in the formula. As machine speeds increased larger and
harder instances could be solved and the tradeoff between time spent choosing
branching variables and time saved by a good choice shifted in favour of more
complex heuristics. Some representative examples, of increasing complexity, in-
clude:

MOMS Choose the literal with the Maximum number of Occurrences in Mini-
mum Size clauses.

2-sided Jerowslow-Wang [23]Let φ[l] be the set of clauses ofφ that contain
literal l. Define a scorejw(l) for literals ofφ by jw(l) =

∑
C∈φ[l] 2−|C|. Choose

the variablex with maximum jw(x) + jw(¬x).

Satz One of the best DPLL solvers produced is Satz [27]. It uses MOMS to
select a set of promising variables, and for each literall for these assignsl
and carries out unit propagation. Literals are scored according to the size of
the resulting formula. The size of the subset of selected variables depends
on the level of the current search node, with all variables tried near the root
as decisions at these levels are the most important.

Marques-Silva [31] compared use of several DPLL heuristics in the early
CDCL solver GRASP [33], and found that none was a clear winner. More sig-
nificantly, making a random choice was almost as good as the other strategies,
strongly suggesting that DPLL-type heuristics are inappropriate for CDCL. The
decision strategies which have been found to work in CDCL solvers appear to em-
phasize a kind of locality rather than formula simplification, favouring variables
which have appeared in recently derived conflict clauses.

VMTF Introduced in [40], Variable Move To Front (VMTF) is easy to imple-
ment and very cheap to compute. It often performs better than the more expensive
VSIDS heuristic introduced in Chaff, and almost as well as the much more com-
plex heuristics used in BerkMin and recent versions of Chaff. The variables are
stored in a list, initially ordered by non-increasing frequency of occurrence in the
input formula. An occurrence count c(l) is maintained for every literall. Each
time a conflict clauseC is derived occurrence counts for literals ofC are incre-
mented and some number of variables occurring inC, for example min(|C|,8),
are moved to the front of the list. When a decision literal must be chosen, the
first unassigned variablev on the list is selected. If c(v)>c(¬v), v is set true; if
c(v)>c(¬v), v is set false; ties are broken randomly.

VMTF chooses a variable from a recently derived clause (but not the last con-
flict clause, as its literals are all assigned), making it likely that the next conflict
clause contains a variable occurring in a recent conflict. The choice of sign max-
imizes the number of existing clauses which havev with the opposite sign, and
thus could be resolved against it.

VSIDS The first heuristic suited to CDCL solvers was VSIDS (Variable State
Independent Decaying Sum), introduced in Chaff [36]. For each literall, keep
a score s(l) which initially is the number of occurrences ofl in φ. Each time a
conflict clause withl is added, increment s(l). Periodically (every 255 decisions)
re-compute all literal scores as s(l) = r(l) + s(l)/2, where r(l) is the number of
occurrences ofl in a conflict clause since the previous update. To choose a deci-
sion literal, pick the unassigned literal with the highest score. Dividing the scores
provides an aging mechanism which emphasizes variables in relatively recently
derived clauses. It is worth noting that computing VSIDS requires about 10% of

Chaff running time, whereas computing VMTF requires about 1% of siege run-
ning time.

BerkMin The strategy in the BerkMin solver [14] is approximately as follows.
Each variable has a score, which is periodically aged as in VSIDS, except that
division is by 4 rather than 2 to increase the recency emphasis. Scores are incre-
mented for all variables used in the conflict clause derivation, not just those in
the conflict clause. To choose a decision literal, letC be the most recently added
clause that is not satisfied by the current assignment. IfC is an input clause, pick
the variable with highest score, choosing the sign based on an estimate of which
sign will produce the most unit propagation. IfC is a conflict clause, letl be the
unassigned literal ofC with the highest score. Letnl be the total number of occur-
rences ofl in conflict clauses so far, andn¬l similarly for ¬l. Setl true if nl > n¬l;
setl false ifnl < n¬l; break ties randomly.

Chaff 2004 The most recent versions of Chaff [30], use a complex heuristic
that combines a BerkMin-like method with a version of VSIDS plus a scheme for
deleting part of the current assignment when a newly derived conflict clause is
very large, as a means of trying to keep conflict clause sizes small.

In general, the development of CDCL heuristics so far has seen increased per-
formance as a consequence of increased emphasis on literals in recently derived
conflict clauses as a first order heuristic, and keeping conflict clause size moderate
as a second order heuristic.

6 Restarts: RobustnessvsCompleteness

Solvers often take dramatically different running times on very similar instances,
and even over instances which are identical other than re-ordering clauses or lit-
erals within clauses, or re-naming variables. Often one instance among such a
set takes unreasonably long while the rest are manageable, but that one instance is
solved in reasonable time if re-ordered. The intuitive explanation is along the lines
that even for some relatively easy instances certain orders of search may take the
algorithm into parts of the search space that do not produce useful conflict clauses,
leaving it “floundering”.

Restarts were proposed in [17] as an approach to dealing with high variance in
running times over similar instances. A restart is the operation of throwing away
the current partial assignment (excluding assignments at decision level zero), and
starting the search process from scratch. In CDCL the new search will normally
be different, because the cache of learned clauses is retained. This cache is typi-
cally much larger than the input formula so after restarts these clauses dominate

the choice of decision variables. Chaff, BerkMin and siege all implement fre-
quent restart policies: BerkMin restarts after every 550 conflicts, siege after every
16,000 conflicts.

The effects of restart policies are not very well studied. A preliminary report
is given in [5]. A more principled approach is taken in [24], but the experiments
there use solvers that do not implement clause learning. Roughly speaking, using
restarts only provides a modest improvement in typical performance, but substan-
tially improves robustness. That is, they significantly reduce the variability in
running time found over collections of similar instances, often allowing a solver
to handle a compete set of benchmark instances where the version without restarts
fails on some small number of them.

Fixed-interval restart policies such as in BerkMin, siege and recent versions of
Chaff, together with clause deletion, make these solvers incomplete because there
is no mechanism to avoid repeating the same search over. Completeness can be
assured by retaining all learned clauses, but a practical solver cannot possibly do
this. Some solvers, such as GRASP and some versions of Chaff, retain complete-
ness by gradually increasing the restart interval, so that eventually a search must
complete with no restart. The utility of this is not clear, as the running time to
reach this condition would generally be too large to be interesting.

Although proving unsatisfiability is very important, completenessper seis not.
The reason is that all complete solvers will fail to terminate in reasonable time on
many instances, and it does not matter if on some of these instances the solver
would never halt. What does matter is that a solver halt in reasonable time on
as many currently interesting instances as possible, and adding restarts typically
improves performance by this measure.

7 Pre-Processing

The idea of pre-processing the input formula before running the main algorithm
occurs regularly in the literature. The most usual ideas are to add certain derived
clauses or to apply transformations that reduce the number of variables or clauses.
The most successful example is that of Bacchus and Winter [3], based on a deriva-
tion rule HypBinRes. The rule permits deriving a binary clause (p∨ ln) from an
n-ary clause (l1 ∨ . . . ln) andn − 1 binary clauses (p ∨ ¬l1), . . . (p ∨ ¬ln−1). The
primary work of the preprocessor is to compute a modified closure of the formula
under this operation (importantly, without explicitly computing the closure under
binary resolution, which often makes formulas too large to solve). Using the pre-
processor together with BerkMin and Chaff in many cases reduced running times
or allowed them to solve instances they could not without it. The preprocessor
alone was also able to solve some instances that the solvers cannot handle.

That CDCL solvers add many more derived clauses than they start with sug-
gests that executing something like this pre-processing step after deriving some
clauses might be valuable. A CDCL solver that executed HypBinRes at every
search node [4] performed well over a wide range of problems in the 2002 SAT
Solver Competition, but the overhead of performing this computation so often
made it uncompetitive overall with the best solvers. However, executing it at in-
frequent intervals, such as when clause deletion is done, seems likely to pay off.

8 Problems

1. Determine the power of CDCL as a proof system. We know that DPLL has
the same power as tree-like resolution, and CDCL is no more powerful than un-
restricted resolution. Beame et al [7] have studied the power of CDCL as a proof
system, and shown that it is more powerful than regular and Davis Putnam reso-
lution, which are already known to be stronger than DPLL. However, the question
of whether it is as strong as general resolution remains open.

2. Design a data structure that supports an efficient unit propagation algorithm,
while reducing cache misses. Using additional memory is acceptable. The amor-
tized cost of UP must remain close to linear in the number of conflicts found.

3. Characterize classes of instances that CDCL solves well. Since resolution can
simulate CDCL, any family of formulas hard for resolution will be hard for CDCL.
Is there a CDCL strategy that efficiently handles instances with bounded tree width
or other structural properties that guarantee existence of short refutations?

4. Identify a proof system more powerful than resolution which can be effectively
used within the CDCL algorithm scheme. There are many formula families which
require exponential size resolution refutations, and which must therefore require
exponential time of DPLL and CDCL. It would be interesting as well as useful to
have a practical algorithm not subject to these bounds. The branching nature of
DPLL makes it hard to naturally take advantage of more powerful reasoning steps.
However, CDCL seems somewhat more flexible. Any efficient scheme for propa-
gation of values and derivation of conflict clauses can be used in place of UP and
the conflict derivation scheme described, provided it produces a conflict “clause”
(not necessarily a clause) satisfying the conditions mentioned in Section 3.1.

References

[1] 2004 SAT Solver Competition. http://www.lri.fr/~simon/contest/
results/.

http://www.lri.fr/~simon/contest/results/
http://www.lri.fr/~simon/contest/results/

[2] F. Aloul, M. Mneimneh, and K. Sakallah. Backtrack search using ZBDDs. InProc.,
International Workshop on Logic Synthesis (IWLS’01), 2001.

[3] F. Bacchus and J. Winter. Effective preprocessing with hyper-resolution and equality
reduction. InProc., Sixth International Symposium on Theory and Applications of
Satisfiability Testing 2003, pages 341–355, 2003.

[4] Fahiem Bacchus. Enhancing Davis Putnam with extended binary clause reasoning.
In Proceedings, AAAI 2002, pages 613–619, 2002.

[5] L. Baptista and J.P. Marques-Silva. Using randomization and learning to solve hard
real-world instances of satisfiability. InProceedings of the 6th International Con-
ference on Principles and Practice of Constraint Programming (CP’00), September
2000.

[6] Roberto J. Bayardo Jr. and Robert C. Schrag. Using CSP look-back techniques to
solve exceptionally hard SAT instances. InProc., CP-96, 1996.

[7] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and har-
nessing the potential of clause learning.Journal of Artificial Intelligence Research,
22:319–351, 2004.

[8] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. InProc., Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), 1999. LNCS Volume 1579.

[9] M. Buro and H.K. Büning. Report on a SAT competition. Technical Report 110,
Universität Paderborn, 1992.

[10] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Mod-
ular verification of software components in C. InProc., ICSE 2003, pages 385–395,
2003.

[11] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model
checking. InProc., International Conference on Computer-Aided Verification (CAV
2002), 2002.

[12] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[13] M. Davis and H. Putnam. A computing procedure for quantification theory.Journal
of the ACM, 7:201–215, 1960.

[14] E.Goldberg and Y.Novikov. BerkMin: a fast and robust SAT-solver. InProc., DATE-
2002, pages 142–149, 2002.

[15] E. Giunchiglia, F. Giunchiglia, and A. Tacchella. SAT-based decision procedures
for classical modal logics.Journal of Automated Reasoning, 24, 2000.

[16] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hud-
son Turner. Nonmonotonic causal theories.Artificial Intelligence, 153:49–104,
2004.

[17] C.P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through ran-
domization. InProc. of the National Conference on Artificial Intelligence (AAAI-
98), July 1998.

[18] GrAnDe (ground and decide). http://www.cs.miami.edu/~tptp/
ATPSystems/GrAnDe/.

[19] J.N. Hooker and V. Vinay. Branching rules for satisfiability.Journal of Automated
Reasoning, 15:359–383, 1995.

[20] Holger H. Hoos and David G. Mitchell (eds).Selected Papers from SAT 2004.
Springer (LNCS), 2005. To appear.

[21] ICAPS 2004 Planning Competition. http://www-rcf.usc.edu/~skoenig/
icaps/icaps04/planningcompetition.html.

[22] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity mech-
anism. InFoundations of Software Engineering, Proceedings of the 8th European
software engineering conference, 2001.

[23] Robert E. Jeroslow and Jinchang Wang. Solving propositional satisfiability prob-
lems.Annals of Mathematics and Artificial Intelligence, 1:167–187, 1990.

[24] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic restart policies.
In Proceedings AAAI-2002, 2002.

[25] Henry Kautz and Bart Selman. Unifying sat-based and graph-based planning. In
Proc. IJCAI-99, 1999.

[26] Daniel Le Berre and Laurent Simon. Fifty-five solvers in Vancouver: The SAT 2004
competition. InSelected Papers from SAT 2004. Springer (LNCS), 2005. To appear.

[27] Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability
problems. InProceedings, IJCAI’97, pages 366–371, 1997.

[28] Y. Lierler and M. Maratea. Cmodels-2: SAT-based answer sets solver enhanced to
non-tight programs. InProc., LPNMR-7 2004, 2004.

[29] Fangzhen Lin and Yuting Zhao. ASSAT: computing answer sets of a logic program
by SAT solvers.Artificial Intelligence, 157:115–137, 2004.

[30] Y.S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An efficient SAT solver. InSelected
Papers from SAT 2004. Springer (LNCS), to appear.

[31] JoÃčo P. Marques-Silva. The impact of branching heuristics in propositional satis-
fiability algorithms. InProceedings of the 9th Portuguese Conference on Artificial
Intelligence (EPIA), 1999.

[32] João P. Marques-Silva and Karem A. Sakallah. Conflict analysis in search algorithms
for propositional satisfiability. InProc., IEEE Conference on Tools with Artificial
Intelligence, November 1996.

[33] João P. Marques-Silva and Karem A. Sakallah. GRASP: A new search algorithm
for satisfiability. InProc., IEEE/ACM International Conference on Computer-Aided
Design, November 1996.

http://www.cs.miami.edu/~tptp/ATPSystems/GrAnDe/
http://www.cs.miami.edu/~tptp/ATPSystems/GrAnDe/
http://www-rcf.usc.edu/~skoenig/icaps/icaps04/planningcompetition.html
http://www-rcf.usc.edu/~skoenig/icaps/icaps04/planningcompetition.html

[34] João P. Marques-Silva and Karem A. Sakallah. Boolean satisfiability in electronic
design automation. InProc., IEEE/ACM Design Automation Conference (DAC ’00),
June 2000.

[35] Ken L. McMillan. Applying SAT methods in unbounded symbolic model checking.
In Proc., CAV 2002, pages 250–264, 2002. LNCS Volume 2404.

[36] M. Moskewicz, C. Madigan, Y. Zhao, and L. Zhang. Chaff: Engineering and ef-
ficient sat solver. InProc., 38th Design Automation Conference (DAC2001), June
2001.

[37] Slawomir Pilarski and Gracia Hu. SAT with partial clauses and back-leaps. InProc.,
DAC 2002, pages 743–746, 2002.

[38] Slawomir Pilarski and Gracia Hu. Speeding up SAT for EDA. InProc., DATE 2002,
2002.

[39] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.Computational
Intelligence, 9(3):268–299, August 1993.

[40] Lawrence O. Ryan. Efficient algorithms for clause learning SAT solvers. Master’s
thesis, Simon Fraser University, Burnaby, Canada, 2004.

[41] Sanjit Seshia and Randal Bryant. Deciding quantifier-free Presburger formulas using
parameterized solution bounds. InProc., LICS 2004, 2004.

[42] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. Combinational test gener-
ation using satisfiability.IEEE Transactions on CAD, 1996.

[43] Miroslav N. Velev and Randal E. Bryant. Effective use of boolean satisfiability
procedures in the formal verification of superscalar and VLIW microprocessors. In
Proc., IEEE/ACM Design Automation Conference (DAC ’01), pages 226–231, June
2001.

[44] H. Zhang and M. Stickel. Implementing Davis-Putnam’s method by tries. Technical
report, University of Iowa, 1994.

[45] H. Zhang and M. Stickel. An efficient algorithm for unit-propagation. InProc., the
Fourth International Symposium on Artificial Intelligence and Mathematics., 1996.

[46] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learn-
ing in a boolean satisfiability solver. InProc., International Conference on Computer
Aided Design (ICCAD2001), November 2001.

[47] L. Zhang and S. Malik. Cache performance of SAT solvers: A case study for efficient
implementation of algorithms. InProc., Sixth International Conference on Theory
and Applications of Satisfiability Testing (SAT-2003), 2003.

[48] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. InProc., DATE
2003, March 2003.

	Introduction
	Backtracking, Resolution and DPLL
	CDCL: Adding Backjumping and Learning
	The CDCL algorithm
	Deriving the Conflict Clause
	Backjumping
	Clause Deletion

	Unit Propagation (a.k.a. BCP)
	Watched Literals
	Cache-aware implementation
	Handling Short Clauses
	Resolution Strategy

	Decision Heuristics
	Restarts: Robustness vs Completeness
	Pre-Processing
	Problems

