
Constraint Programming with Unrestricted

Quantification

David Mitchell and Eugenia Ternovska⋆

School of Computing Science,
Simon Fraser University,

Burnaby, BC, V5A 1S6 Canada
{mitchell, ter}@cs.sfu.ca

Abstract. Search problems occur widely in AI, and a number of general-
purpose constraint-based methods for solving them have been developed.
Convenient modelling of many problems is enabled by use of quanti-
fiers of various sorts, but the most prominent approaches support only
limited use of quantifiers. A recently proposed constraint programming
framework, based on classical logic and the notion of expansion of a
finite structure with new relations, supports unrestricted use of both
first-order and second-order quantifiers. The framework can be parame-
terized to capture various complexity classes, including NP and Σ

p

k for
any k. Second-order quantifiers can be used to concisely model search
problems at any of these complexity levels. First-order quantifiers can
be used freely for modelling convenience, without affecting the complex-
ity level which is determined by the second-order quantifiers. We explain
this framework, discuss the roles of quantifiers, and give some examples.

1 Introduction

Challenging applications which require solving NP-hard search problems abound
in many fields. Many of the general-purpose approaches to solving such problems
fall naturally under the rubric “constraint programming”. Arguably, the main
activities in this area are the development of good modelling languages and tech-
niques, and the development of effective solvers for these languages. The most
widely studied of these approaches include propositional satisfiability (SAT), fi-
nite domain constraint satisfaction (CSP), answer set programming (ASP), and
constraint logic programming (CLP). ASP and CLP have a restricted form of
(implicit) quantification. One direction for improving modelling power and con-
venience in SAT and CSP is extension of the languages with quantifiers of various
sorts.

In the case of SAT, quantifiers may be added in two ways. One is with a
limited kind of first-order quantification, so-called “lifted SAT” or “propositional
schemata” (see, for example, [1, 2]), to more concisely describe sets of similar

⋆ Both authors supported by the National Sciences and Engineering Research Council
of Canada

constraints. Depending on details, this approach may or may not change the
computational complexity of the language. The other is with quantification of
the propositional atoms, as in QSAT (QBF). In this case, each alternation of
quantifiers gives an increase in the complexity by an exponential (assuming that
the polynomial heirarchy does not collapse). Notice that, if we view QSAT as
a fragment of classical second-order logic (SO), the quantifiers in QSAT are
second-order.

ASP and CLP are both based on the language of logic programming, and
thus include an implicit form of quantification. Normal variables which occur
in both the head and body of a rule are implicitly universally quantified, while
others are implicitly existential. Thus, quantification is limited to a restricted use
of first-order quantifiers, where the outer quantifier is ∀ and the inner quantifier
is ∃. Extending these languages with more general use of quantifier, such as first-
order quantification in a different order, or quantification over relational (SO)
variables is challenging.

Not all modelling limitations may be addressed by quantification, of course.
For example, all the approaches described above may benefit from extension of
the languages with built-in cardinality operators. Recursion is another impor-
tant case. There are many applications, such as planning and verification, which
involve encoding sequences of events or otherwise reasoning about actions. For
these, the natural way to model certain properties involves recursion. While
QSAT and QCSP provide sufficient expressive power to model these problems
concisely, they have no built-in mechanism to support natural expression of re-
cursion or induction, or minimization of sets in general. ASP and CLP naturally
provide a form of recursion, but the semantics which provide the associated min-
imization rely on non-classical negation, which makes encoding many properties
less intuitive than in a classical setting.

The Model Expansion Framework In [3, 4] we presented a formal framework
for constraint programming based on classical logic, which we believe addresses a
number of weaknesses in existing approaches. A novel feature of this approach is
the support of unrestricted use of quantifiers, both first-order and second-order.

An important feature of the framework introduced in [3, 4] is the explicit
separation of problem description and instance. An instance is represented by
a finite structure, such as a graph. A solution will typically be a function or
relation over the universe of the instance, such as a set of edges or a mapping
of vertices to colours. The problem description is a formula, for example of
first-order logic, which describes the relationship between instances and their
solutions, i.e., between a graph and its 3-colourings.

This formulation of search problems has significant implications for the use
of quantification in modelling, since quantifiers used in describing the problem
occur in a fixed formula, rather than as part of the instance description. On one
hand, first-order quantifiers may be used freely, without changing the complexity
level of the modelling language. This is in contrast to QSAT and QCSP, where
each quantifier alternation “moves” the modeler one exponential up in the poly-

nomial heirarchy. On the other hand, second-order quantifiers can be introduced
exactly for the purpose of modelling problems at higher complexity levels.

Other features of the approach of [3, 4] include:

• Since it is based on classical logic, results and techniques from classical logic,
and in particular finite model theory, can be applied directly for identifying
tractable fragments, proving correctness of axiomatizations, etc.
• The full range of expressive features of classical logic can be used, including
arbitrary use of equality and function symbols and both first-order and second-
order quantification. Moreover, it can be extended with pre-defined functions
and constraint relations, such as those used in CSP, CLP and ASP practice.
• In the framework, classical logic is extended with inductive definitions, pro-
viding a natural way to express recursion, including recursion through negation.
This is important for modelling problems involving transition systems, such as
in planning and verification.
• Most approaches begin with restrictive syntax to ensure practicality. In con-
trast, we consider it important to make the formal foundation as general as
possible, while capturing exactly the complexity classes of interest and remain-
ing close to classical logic. For example, we see no reason to arbitrarily restrict
quantifier alternations, to disallow function and equality symbols, or to restrict
the form of the formulas to a syntax similar to that of logic programming. In
practice, of course, modellers will exploit this generality only to a point.

The remainder of the paper is organized as follows. In Section 2 we define
model expansion and describe the basic approach. In Section 3 we describe how
to capture NP and other complexity classes with model expansion, and Section 4
describes the extension of classical logic with inductive definitions. In Section 5
we encode CSP and ASP as model expansion, and in Sections 6 and 7 with give
two modelling examples: the minimum-open-stacks problem from the Constraint
Modelling Challenge 2005, and the problem of finding a winning strategy for the
first player in the generalized Connect-4 game. Finally, in Section 8, we discuss
future work toward making our approach practical.

2 Model Expansion

Preliminaries A vocabulary is a set τ of relation and function symbols, each
with an associated arity. Constant symbols are zero-ary function symbols. A
structure A for vocabulary τ (or, τ -structure) is a tuple containing a universe
|A|, and a relation (function) for each relation (function) symbol of τ . For relation
symbol R of vocabulary τ , the relation corresponding to R in a τ -structure A is
denoted RA. The size of a structure A is the number of elements in its universe,
denoted ||A||. For a formula φ, we write vocab(φ) for the collection of exactly
those function and relation symbols which occur in φ. We reserve the symbol
σ for the vocabulary of instance descriptions. To simplify presentation, we give
our definitions and proofs for the case without function symbols, but all given
results hold in their presence as well. For precise definitions and results from
finite model theory which we use but do not prove, we refer the reader to [5].

Model Expansion We cast computational problems as the following logical
task.

Definition 1. The model expansion problem MX is: Given a formula φ with
vocabulary vocab(φ), and a finite structure I for vocabulary σ ⊂ vocab(φ), is
there a structure A which is an expansion of I to vocab(φ), and such that A |= φ.

The idea is that the finite structure is an object of interest, such as a graph,
and the formula specifies a question about the object, such as whether it is Hamil-
tonian or not, in such a way that the expansion relations witness the property.
As a decision problem, we are interested in the existence of an expansion of A
that satisfies φ, while the search problem is that of finding such an expansion.

Example 1. (Cliques) Let the input structure be a graph, G = 〈V ;E〉, (i.e., E
is binary, symmetric and irreflexive), and φ be:

∀x∀y [(Clique(x) ∧ Clique(y)) ⊃ (x = y ∨ E(x, y))]

Let A be a structure which is an expansion of G to the vocabulary of φ. Then
A |= φ iff CliqueA is a set of vertices which form a clique in G.

Relation symbols which are not interpreted by the instance structure behave
as existentially quantified second-order variables, so in the case of first-order
(FO) φ, we have the same power as existential second-order logic (∃SO) over
finite structures.

Example 2. (Quasigroup Completion) Consider the vocabulary {Cell}, which
we will use to specify the elements in a square matrix a, where Cell(r, c) = i will
mean that element ar,c is i. Let φ be:

∀r∀i ∃c Cell(r, c) = i

∧ ∀c∀i ∃r Cell(r, c) = i

∧ ∀r∀c∀i(GivenCell(r, c, i) ⊃ Cell(r, c) = i)

In any structure A satisfying φ, the function Cell gives the entries in a Latin
Square of size ||A|| × ||A||. If I is just a universe of size n, then the model
expansion problem is that of finding an n × n Latin Square. If I also specifies
the relation GivenCell, then we have the NP-complete Quasigroup Completion
Problem.

Observe that here the description of constraints does not change with the
size of the instance. Only that which is inherently part of the instance – in this
case the size and the pre-determined cells – changes with instance. This is in
contrast to many other frameworks where the constraint descriptions themselves
change size with instance size, so the constraint model can only be presented
as a schema. For example, a typical CSP encoding has n2 variables xi,j for
i, j ∈ [n] = {1, . . . , n}, and the following constraints:

xi,j ∈ [n] for each i, j ∈ [n]
alldiff{xi,1, . . . , xi,n} for each i ∈ [n]
alldiff{x1,i, . . . , xn,i} for each i ∈ [n]
xi,j = k for each given cell

The structure of this schema closely corresponds to that of the model expansion
version, but it represents an set of 2n all-different constraints, each of size n. In
contrast, the corresponding formulas in the model expansion version are a direct
expression of the property represented by this large set of constraints.

3 Capturing Complexity Classes

The complexity of model expansion lies between satisfiability and model check-
ing. For example, FO model checking is PSPACE-complete, FO model expansion
is NEXPTIME-complete, and FO satisfiability (even the case of satisfiability by
a finite model) is undecidable. Model expansion is like satisfiability, in that it
involves finding a model, but undecidability is avoided by specifying the finite
universe as part of the instance. Note that the set inclusion in σ ⊂ vocab(φ)
in the formalization of the model expansion problem must be proper. The case
where σ = vocab(φ) is model checking.

Theorem 1. The first-order model expansion problem is NEXPTIME-complete.

The proof is a straightforward reduction from Bernays-Schoenfinkel satisfiability,
as given in [3], or from combined complexity of ∃SO over finite structures.

A Parameterized Version The intended scheme for using model expansion
in representing and solving search problems in NP, and at other Σp

k levels of
the polynomial heirarchy, is to represent the problem with a fixed formula, and
represent instances with finite structures. To formalize this, we define a parame-
terized version of model expansion.

Definition 2. Fix a formula φ and a vocabulary σ ⊂ vocab(φ). The parameter-
ized model expansion problem MX(σ, φ) is: Given a finite structure I for vocab-
ulary σ, is there an expansion A of I to vocab(φ) such that A |= φ.

In the intended methodology the formula φ describes the problem and σ repre-
sents a particular instance. By taking φ to be from different logics, for example
classical first-order (FO) or second-order (SO) logic, or fragments of these, we
may capture different complexity classes.

Capturing NP It is easy to see that for some choices of φ and σ, MX(φ,σ) is
NP-complete, as shown by the following two examples.

Example 3. (3-Colourability) Let σ be {E}, so the input structure is a graph
AI = G = 〈V ;E〉, and the vocabulary of φ be {E,R,B,G}. An an expansion of
I to this vocabulary gives a 3-colouring of the graph, with colours R,B and G.
To require the colouring be total and proper, let φ be:

∀x[(R(x) ∨B(x) ∨G(x)) ∧ ¬(R(x) ∧B(x))
∧¬(R(x) ∧G(x)) ∧ ¬(B(x) ∧G(x))]

∧

∀x∀y[E(x, y) ⊃ (¬(R(x) ∧R(y))
∧¬(B(x) ∧B(y)) ∧ ¬(G(x) ∧G(y)))]

MX(φ,σ) is equivalent to graph 3-colourability: The expansions of I that satisfy
φ, if there are any, correspond exactly to the proper 3-colourings of G. A slightly
more complicated formula can express K-colourability, with an additional input
relation to specify K.

Example 4. (3-SAT) For a given set of clauses Γ = {C1, . . . Cm}, the input
structure I has universe {a,¬a|a ∈ atoms(Γ)} and two relations, ComplementsAI

and ClauseAI . Let φ be

∀x∀y∀z (Clause(x, y, z)
⊃ True(x) ∨ True(y) ∨ True(z))

∧ ∀x∀y (Complements(x, y)
⊃ (True(x) ≡ ¬True(y)))

A solution is the expansion of the structure I by the relation TrueAI , which
specifies which literals are mapped to true by a satisfying assignment.

In fact, a much stronger property can be shown: Parameterized FO model
expansion captures exactly the NP search problems.

Definition 3. We say a class of finite σ-structures K is expressed by MX(σ, φ)
iff for any σ-structure I, AI ∈ K iff there is an expansion A of I such that
A |= φ.

Assume standard encodings of languages by classes of structures, and vice
versa (see, e.g. [5]).

Theorem 2. Let σ be a vocabulary, K a class of finite σ-structures. Then K is
in NP iff for some FO formula φ, K is expressed by MX(σ, φ).

This is just a slight re-casting of Fagin’s Theorem, which states the existen-
tial second-order logic (∃SO) over finite structures captures exactly NP. This
is because the expansion relation symbols (those in vocab(φ) \ σ) behave as
existentially quantified SO relation variables. (See [3] for further details.)

Notice that, in modelling problems in NP, we may make completely unre-
stricted use of first-order quantifiers, as well as function symbols and equality.

Other Complexity Classes Some lower complexity classes can be captured
similarly, applying results for various fragments of ∃SO [6, 7]. For example, FO
universal Horn MX(σ, φ) expresses P over ordered structures.

By using second-order quantifiers, we may also capture higher complexity
classes. In particular, for each k > 0, the complexity class Σp

k of is captured by
Π1

k−1 MX(σ, φ). (A Π1
k formula is a SO formula in which there are k alternations

of second-order quantifiers, in which the first quantifier is universal).
To illustrate representing problems above NP in the polynomial heirarchy,

we choose the simple example of QSAT2, the problem of deciding the truth of a
quantified boolean formula ψ of the form ∃x∀yθ, which is Σp

2 -complete.

Example 5. (QSAT2) Consider a QSAT formula of the form ∃x∀yθ, where θ
is propositional. For simplicity, we assume that θ is in CNF. Since our interest
is in search problems, we formally address the witnessing problem, which is to
find a truth assignment for the existentially quantified variables which makes
the formula true.

The instance structure I is a two-sorted structure with domains for clauses
and literals. The instance vocabulary is σ = {InClause,Complements,Existential},
where:

– InClause(l, c) means that literal l occurs in clause c of ψ,
– Complements(l1, l2) means that l1 and l2 are complementary literals,
– Existential(l) means that the propositional variable for literal l is existen-

tially quantified in ψ.

The expansion vocabulary (i.e., vocab(ψ)\σ) contains one relation symbol ε,
which will denote truth assignments to the existential literals. The relation gives
the set of literals which are mapped to true. We will also use the relation variable
symbol τ , which will be universally quantified, and will be used to talk about all
truth assignments to θ. The first-order variables l and l′ will be taken to range
over literals. The second-order variables τ , ε and α range over sets of literals.

First, we axiomatize the property that relations which encode truth assign-
ments map complementary literals to complementary values:

∀α (Consistent(α) ≡ ∀l ∀l′ (Complements(l, l′) ⊃ α(l) ≡ ¬α(l′))).

Then we declare that ε satisfies this property:

Consistent(ε).

We must also ensure that ε gives truth values to exactly the set of (literals
associated with) existentially quantified variables:

∀l (ε(l) ≡ Existential(l)).

Now we axiomatize the main property, which is that every truth assignment τ
for θ that agrees with ε on the assignments to existentially quantified variables
satisfies θ:

∀τ [(Consistent(τ) ∧ ∀l (Existential(l) ⊃ τ(l) ≡ ε(l)))
⊃ [∀c ∃ (InClause(c, l) ∧ τ(l))])

Note that model expansion does not naturally capture Πp
k levels. This is a

consequence of the fact that every model expansion problem has an implicit
second-order existential quantifier, which in turn is a consequence of our explicit
decision to model search problems. (Indeed, if there are some σ and φ so that
MX(σ, φ) is Πp

k -complete, then PH collapses to the k-th level. In particular, if
there are σ and φ such that MX(σ, φ) is co-NP-complete, then NP=co-NP.)

4 Inductive Definitions

Formally, FO model expansion has the same expressive power as ∃SO, so ex-
presses all problems in NP. However, some properties that are important for
modelling applications are not easy to express in this logic. The reader who
thinks otherwise is invited to express transitive closure as FO model expansion.
That is, write a FO formula φ with vocabulary {E, TC}, such that, given graph
G = 〈V ;E〉, in any structure A which extends G and satisfies φ, TCA is the
transitive closure of G. (The related task of expressing in a formula that one
vertex is reachable from another is easy, but does not do the job.) Our solu-
tion to this problem is to extend classical logic with inductive definitions. This
extension makes expressing properties like transitive closure natural and trivial.

Inductive definitions are common in mathematics. For example, in logic the
set of well-formed formula and the satisfaction relation |= are defined inductively.
Inductive definitions can be monotone (i.e., formulas) or non-monotone (i.e.,
|=). Both monotone and non-monotone induction are formalized in a natural
way in the logic for non-monotone inductive definitions (ID-logic), which is an
extension of classical logic (see [8, 9]). Inductive definition are useful in common-
sense reasoning, as well as mathematics. For instance, it was shown [10] that
the situation calculus can be formalized in a natural way as an (non-monotone)
iterated inductive definition in the well-ordered set of situations. In general,
inductive definitions are an important form of human knowledge, and ID-logic
is a good candidate for a modelling language.

A definition ∆ is a set of rules of the form ∀x (X(t) ← ϕ), where x is a
tuple of variables, X is a relation symbol of some arity r, t is a tuple of terms
of length r and ϕ is an arbitrary first-order formula. The connective ← is called
the definitional implication, and is distinct from material implication, for which
we use ⊃. A rule ∀x (X(t) ← ϕ) in a definition does not correspond to the
disjunction ∀x(X(t) ∨ ¬ϕ) although it implies it. Intuitively, definitional impli-
cation should be understood as the “if” found in rules in (informal) inductive
definitions, such as “¬φ is a formula if φ is”. In the rule ∀x (X(t) ← ϕ), X(t)
is called the head and ϕ is the body. A defined symbol of ∆ is a relation symbol
that occurs in the head of a rule of ∆; other relation symbols are called open.
FO(ID) formulas are defined to be boolean combinations of definitions and FO
formulas. The semantics of ID-logic extends the classical FO and SO semantics
with the well-founded semantics of logic programming [11–13]. For precise de-
tails see [9]. For an intuitive explanation of the well-founded semantics and why
it formalizes different forms of inductive definitions see [13]. Effective modelling
requires modularity, which comes naturally with classical logic, but is non-trivial
when recursion through negation is present. Modularity conditions for ID-logic
have been given in [9].

Example 6. (Transitive Closure) We represent the problem of finding the
transitive closure of a graph as a model expansion problem. The input vocabu-
lary σ consists of a single symbol E, which represents the binary edge relation.

The universe of the input structure I is the set of vertices V . The formula consists
of a definition with two rules, defining the relation TC.

{

∀x∀y [TC(x, y)← E(x, y)],
∀x∀y [TC(x, y)← ∃z (E(x, z) ∧ TC(z, y))]

}

The rules state that the transitive closure of the set E of edges is the least
relation containing all edges and closed under reachability.

Example 7. (Minimum Horn Model) The model of a definite logic program
(i.e., one without negation) is the minimal model of the corresponding set of
Horn clauses. In this example, we represent the task of computing the least
model of a definite program as a task of model expansion. Our input structure
will represent the rules of the program using two relations, one which identifies
the head atoms of rules and one which identifies body atoms. In the vocabulary
for this structure, we have:

• H(r, h) denotes that h is the head atom of rule r,
• B(r, a) denotes that atom a occurs in the body of r,

The expansion vocabulary is the symbol M . The formula φ, represented by
an inductive definition below, states the relationship between the rules of the
program and the set of atoms M ; in essence, it gives a declarative specification
of the semantics of definite programs:

{

∀a [M(a)← ∃r (H(r, a)
∧ (¬∃b B(r, b) ∨ ∀b(B(r, b) ⊃M(b))))]

}

The formula says that an atom a is in the model if there is a rule with a in
the head, and where the body is either empty or consists of atoms already in
the model. In any expansion of I that satisfies φ, M will list the atoms of the
program in the unique minimal model of the program.

Extending FO with inductive definitions in this way makes many properties
easier to express, but the expressive power of model expansion is unchanged.

Theorem 3. Let σ be a vocabulary, K a class of finite σ-structures. Then K is
in NP iff for some FO(ID) formula φ, K is expressed by MX(σ, φ).

This might seem surprising at first. Extending FO with inductive definitions
do not increase the complexity of model expansion because, once relations have
been chosen for the open relation symbols in a definition, relations for the defined
symbols can be computed in polynomial time.

5 CSP and ASP as Model expansion

In this section, we encode CSP and ASP as parameterized model expansion. The
encodings of these NP-complete problems take advantage of the availability of
first-order quantifiers, including quantifier alternation.

CSP as Model expansion A CSP Instance is usually defined to be a tuple
〈X,D,C〉, where X is a set of variables, each of which ranges over the domain
D(x), and C is a set C = {C1, . . . , Cm} of constraints. Each constraint is a pair
Ci = 〈Si, Ri〉, where Si = 〈xi,1, . . . xi,k〉 is a tuple of variables, called the scope,
and Ri ⊆ D(xi,1) × . . . × D(xi,k) is a relation of arity k, called the constraint
relation. A solution, if there is one, is function α such that for every variable x,
α(x) ∈ D(x), and for each constraint Ci, 〈α(xi,1), . . . α(xi,k)〉 ∈ Ri.

For brevity, we will assume that the domain of each variable x is exactly
the set of values which at least one constraint permits x to take. Our instance
vocabulary σ will have two relation symbols, S for constraint scopes, and R for
constraint relations. S(c, k, x) will denote that the kth variable in the scope of
constraint c is x. R(c, t, k, a) will denote that the kth element of the tth tuple in
the constraint relation of constraint c is the value a. Given a σ-structure I, we
want to find a mapping of variables to values that satisfies the constraints. The
vocabulary for φ is {S,R,C, V }, where C, which is for convenience only, will be
the set of constraint names and V the value assignment. Formula φ is:

∀c (C(c) ≡ ∃y∃zS(c, y, z))
∧ ∀c [C(c) ⊃
∃t∀k∀x∀a(S(c, k, x) ∧ V (x, a) ⊃ R(c, t, k, a))]

ASP as Model expansion An answer set program P is a set of function-free
ground clauses in the syntax of logic programming. The input structure will
represent these rules using three relations. H(r, h) and B(r, a) are as in example
7, above. Neg(r, a) denotes that the occurrence of atom a in the body of r is
negated. The expansion vocabulary is {SM}, and we will write our formula φ
so that if A |= φ, then SMA consists of the atoms which are in a stable model
of P . The formula φ, which gives a declarative specification of the stable model
semantics, is:

∀r [¬R(r)↔ ∃a (B(r, a) ∧Neg(r, a) ∧ SM(a))]

∧















∀a [SM(a)← ∃r (R(r) ∧ H(r, a)
∧ ¬∃b B(r, b))],

∀a [SM(a)← ∃r (R(r) ∧ H(r, a)
∧ ∀b (B(r, b) ⊃ Neg(r, b) ∨ SM(b))]















The first conjunct is a formula which specifies the conditions under which a rule
is in the reduct of the program P with respect to the model SM . The second
conjunct is an inductive definition which says the model SM must be the least
model of that reduct. The first rule in the definition handles the case of rules with
empty bodies. In the second rule, which handles the general case, the disjunct
Neg(r, b) says that we ignore negated atoms, as they do not appear in the reduct
of P.

6 The Min-Open-Stacks Problem

For more on this problem, see [14]. We encode a search version of the problem,
namely: given a 0-1 matrix A and positive integer k, find a permutation of the
columns of A with cost at most k. Cost is defined as follows. Suppose A =
(A1, . . . An) is an m×n matrix, and σ a permutation of {1 . . . n}. Then the cost
of σ is the maximum cost of any column of the array Aσ = (Aσ(1) . . . Aσ(n)). The
cost of column i is the total number of rows j such that either aj,i = 1 or there
are columns i1 and i2 such that i1 < i < i2 and aj,i1 = aj,i2 = 1, or in other
words there is a cell with a 1 both preceding and following column i in row j.

The input structure will consist of the relation A, which specifies the matrix,
and constant k. Relation A consists of all those pairs (i, j) such that ai,j = 1.
For convenience only, we also include two relations Rows and Cols which give
the indices of the rows and columns of A.

In the formula, we also have a predicate symbol P , for the permutation σ, and
for convenience only, a predicate symbol B which will be a matrix based on the
permuted version of A. The formula φ will state that P is a permutation of the
set of column indices, that B is like a permuted version of A but with extra 1’s, so
that the cost of a column in B is just the number of 1’s in that column, and that
the cost of each column of B is at most k. We use ∀x ∈ Rows ψ to abbreviate
∀x(Rows(x) ⊃ ψ) and ∃x ∈ Rows ψ to abbreviate ∃x(Rows(x) ∧ ψ). We also
use the predicate symbol AtMost(n, setOfFormulas), which is a cardinality
constraint, and ≤. These are taken to have their natural interpretations, and can
be expected to be built-in to any realistic solver. Formula φ is the conjunction
of the following formulas,

∀x ∈ Cols ∃y ∈ Cols P (x, y)

∀x ∈ Cols ∃y ∈ Cols P (y, x)

∀x ∈ Cols ∀y ∈ Cols ∀z ∈ Cols P (x, y) ∧ P (x, z) ⊃ y = z






∀r ∈ Rows ∀c ∈ Cols (B(r, c)
← ∃x ∈ Cols P (x, c) ∧A(r, c)
∨ ∃i ∈ Cols ∃j ∈ Cols (i ≤ c ≤ j ∧B(r, i) ∧B(r, j)))







∀x ∈ Cols AtMost(k, {B(c, r) : r ∈ Cols})

The solution will be the extent of the predicate P , which specifies a permutation
with the required properties.

7 The Game of Connect-C

The game of connect-4 involves two players, Red and White, placing pieces on
a six by seven grid. On a turn, a player must place a piece of his own colour in
a column of his choice, where it falls to the bottom-most unoccupied cell in the
column. Red goes first. The winner is the first player to get four pieces in a row

vertically, horizontally, or on either diagonal. The game is a draw if the board
fills without a winner.

The game was proposed as a challenge problem for researchers studying
QSAT by Toby Walsh [15]. The game is known to be a win for the first player, but
encoding it and proving this to be the case automatically appears non-trivial. A
QSAT encoding of the generalized game (connect-c, for a board of size m by n)
was given in [16]. For the connect-4 case, the encoding generates QSAT instance
with 18687 variables and 70946 clauses, and with 17 quantifier alternations. We
claim our encoding is simpler.

Here, we encode the generalized game as model expansion, where the search
problem is to construct a winning strategy for Red. The game can be modelled
in several ways. The model we present here is in the style of situation calculus,
although a bit different from a situation calculus axiomatization. The quantifier
alternation depth of the encoding is 2.

Each move is represented by a natural number, which specifies the column
where a piece is being placed. Since the order in which players move is fixed,
we may record any sequence of moves by the sequence of natural numbers. Any
such sequence also uniquely determines the resulting board layout. For example,
sequence (8, 3, 4), represents the result of putting a red piece to column 8, then
white to column 3, and then red to column 4. These sequences are like situations
(i.e., sequences of actions) in the situation calculus.

The initial (instance) structure I is a two-sorted structure. One domain,
call it N , is a set of natural numbers from 1 to n × m, where n and m are
the dimensions of the game grid. The second domain is the set of sequences of
natural numbers between 1 and m (the number of columns in the grid) of lengths
from 0 and n ×m. The elements of this domain correspond to positions of the
game. We denote this second domain by D. The vocabulary of the structure I is

σ = {S0, c, n, m, last-element, length, ⊑, ≤, +}.

– Constant S0 denotes the initial situation, interpreted as the empty sequence
in S.

– Constant c is the number of pieces in a row required to win. It is interpreted
by the natural number c in the domain N .

– Constants n and m represent the last row and the last column number of
the game grid, respectively.

– Function last-element denotes a mapping f : S → N from a situation to
the last action performed, i.e., from a sequence to the last element of that
sequence.

– Unary function length denotes the length of a list.
– Relation ⊑ is a prefix relation defined on pairs of situations (i.e., pairs of

sequences). Here, s ⊑ s′ denotes that s′ is reachable from (is an extension
of) s.

– Function + and relation ≤ on natural numbers have the standard meaning.

We do not axiomatize the functions and relations on sequences. Although it
is straightforward to do so, we think it reasonable to expect that any serious

implemented system would support some kind of list data structure and have
such functions and the relations built-in.

We use the following expansion predicates:

– R(i, j, s) — cell (i, j) is filled by Red in situation s;
– W (i, j, s) — cell (i, j) is filled by White in situation s;
– B(i, j, s) — cell (i, j) is the ‘bottom’ cell (i.e., the next cell to be filled in)

in column j;
– R-wins(s) — Red wins in situation s;
– W -wins(s) — White wins in situation s;
– R-turn(s) — in situation s, it is Red’s turn to move;
– Tr(s, s′) — there is a transition from situation s to situation s′, i.e., s′ is the

result of appending one move to the end of s.

In addition, the expansion vocabulary contains a strategy function δ which maps
situations to actions to be performed next. This function will be unrestricted in
situations where it’s White’s turn to move, and will specify a winning strategy for
Red in the other situations. The model expansion task is to find the extensions
of these predicates, and the strategy function. We assume that the positions in
the stacks are numbered top-to-bottom, that is the top position is 1, and the
bottom (first to be filled) position is n.

Our problem description is the conjunction of the following formulas.
Initially, it is Red’s turn to move:

R-turn(S0)

There are no pieces on the board in the initial situation:

∀i∀j (¬R(i, j, S0) ∧ ¬W (i, j, S0)).

Initially, the first positions to be filled are located at the bottom, i.e., at the row
of the grid numbered n:

∀j B(n, j, S0).

The transition relation holds for any pairs of situations such that the second
element of the pair is one action longer than the first:

∀s∀s′ (Tr(s, s′) ≡ length(s′) = length(s) + 1).

The successor situations are described as follows:

∀s (R-turn(s′) ≡ Tr(s, s′) ∧ ¬R-turn(s))

∀i∀j∀s (B(i, j, s′) ≡ Tr(s, s′) ∧B(i− 1, j, s) ∧ last-element(s) = j

∨B(i− 1, j, s) ∧ last-element(s) 6= j)

∀i∀j∀s (R(i, j, s′) ≡ Tr(s, s′) ∧B(i, j, s) ∧ last-element(s) = j ∧R-turn(s) ∨R(s))

∀i∀j∀s (W (i, j, s′) ≡ Tr(s, s′) ∧B(i, j, s) ∧ last-element(s) = j ∧ ¬R-turn(s) ∨W (s))

Now we describe what it means for a player to win a game. First, we introduce
the following abbreviation denoting the situation in which there are c red (or
white) pieces in a row.

∀s (c-R-in-a-row(s) ≡
∃i∃j 0 ≤ i < n ∧ 0 ≤ j ≤ m− c ∧ ∀k [0 ≤ k < c ⊃ R(i, j + k, s)]
∨ ∃i∃j 0 ≤ i ≤ n− c ∧ 0 ≤ j < m ∧ ∀k [0 ≤ k < c ⊃ R(i+ k, j, s)]
∨ ∃i∃j 0 ≤ i ≤ n− c ∧ 0 ≤ j ≤ m− c ∧ ∀k [0 ≤ k < c ⊃ R(i+ k, j + k, s)]
∨ ∃i∃j 0 ≤ i ≤ n− c ∧ c− 1 ≤ j < m ∧ ∀k [0 ≤ k < c ⊃ R(i+ k, j − k, s)])

Winning situations for each player are defined inductively, by mutual recursion:















































R-wins(S0)← false,

W -wins(S0)← false,

∀s∀s′ (R-wins(s′)
← Tr(s, s′) ∧R-turn(s) ∧ c-R-in-a-row(s′) ∧ ¬W -wins(s)
∨R-wins(s)),

∀s∀s′ (W -wins(s′)
← Tr(s, s′) ∧ ¬R-turn(s) ∧ c-W -in-a-row(s′) ∧ ¬R-wins(s)
∨W -wins(s))















































8 Future Work

Many tasks need to be carried out to turn our approach into a practical tool.
Primary among these are:

• Development of practical modelling languages, based on experiments and ex-
perience with solving a variety of application problems. Classical logic is likely
not an acceptable modelling language for industrial users. In analogy to database
practice, where most users of the query language SQL are unaware that it is a
syntactic variant of (a slight extension of) FO, we expect to produce industrial
languages which are syntactic variants of FO(ID) and SO(ID).

• Further work on solver design and implementation. A prototype solver based on
reduction to SAT is described in [17]. Native solvers are now under development.
These will, in the manner of ASP solvers, involve combining the instance and
problem description to produce a ground problem, and then using propositional
solvers based on SAT-solver technology to find models to the ground instance.

• Adding aggregates and interpreted function and relation symbols to the formal
foundation. Interpreted functions should include some arithmetic. We believe
this can be done based largely on existing work in classical logic and database
theory. Some care is required, as adding arbitrary aggregates or arithmetic would
change the complexity.

• Work on tractable cases and on cases which admit efficient grounding.

References

1. Kautz, H., McAllester, D., B., S.: Encoding plans in propositional logic. In: Proc.,
of the 5th International Conference on Principles of Knowledge Representation and
Reasoning (KR-96), Morgan Kaufmann (1996) 374–384

2. East, D., Truszczynski, M.: Predicate-calculus based logics for modeling and solv-
ing search problems. ACM TOCL (2004) To appear.

3. Mitchell, D., Ternovska, E.: A framework for representing and solving NP search
problems. In: Proceedings of the Twentieth National Conference on Artificial In-
telligence (AAAI-05). (2005) 430–435

4. Mitchell, D.G., Ternovska, E.: Model extension as a framework for solving NP-
Hard search problems, (2005) Presented at the Seventh International Workshop
on Logic and Computational Complexity (LCC-05), (http://www.cis.syr.edu/˜
royer/lcc/LCC05/).

5. Libkin, L.: Elements of Finite Model Theory. Springer (2004)
6. Leivant, D.: Descriptive characterizations of computational complexity. In: Second

Annual Conference on Structure in Complexity Theory, IEEE Computer Society
(1987) 203–217

7. Graedel, E.: Capturing complexity classes by fragments of second order logic.
Theoretical Computer Science 101 (1992) 35–57

8. Denecker, M.: Extending classical logic with inductive definitions. In: Proc.
CL’2000. (2000)

9. Denecker, M., Ternovska, E.: A logic of non-monotone inductive definitions and
its modularity properties. In: Proc., LPNMR-04. (2004)

10. Denecker, M., Ternovska, E.: Inductive situation calculus. In: Proc., KR-04. (2004)
11. Van Gelder, A.: An alternating fixpoint of logic programs with negation. Journal

of computer and system sciences 47 (1993) 185–221
12. Fitting, M.: Fixpoint semantics for logic programming - a survey. Theoretical

Computer Science (2003) To appear.
13. Denecker, M., Bruynooghe, M., Marek, V.: Logic programming revisited: Logic

programs as inductive definitions. ACM Transactions on Computational Logic
(TOCL) 4 (2001)

14. Smith, B., Gent, I.: Constraint modelling challenge 2005 (2005) http://www.dcs.st-
and.ac.uk/ ipg/challenge/.

15. Walsh, T.: Challenges for SAT and QBF (2003) SAT-03 Invited Talk.
16. Gent, I., Rowley, A.: Encoding connect-4 using quantified boolean formulae.

Technical Report APES-68-2003, APES Research Group (2003) Available from
(http://www.dcs.st-and.ac.uk/ apes/apesreports.html).

17. Pelov, N., Ternovska, E.: Reducing ID-Logic to propositional satisfiability. In:
Proceedings of the Twentyfirst International Conference on Logic Programming
(ICLP 2005). (2005)

