
Notes on Satisfiability-Based Problem Solving

Application Examples

David Mitchell
mitchell@cs.sfu.ca
February 8, 2020

This is a preliminary draft. Please do not distribute. Corrections and suggestions welcome.

In this section, we describe (very basic versions of) methods of solving some application
problems by reduction to SAT.

1 Applications to Digital Circuits

A k-ary Boolean function is a function f : {0, 1}k → {0, 1}. A combinational digital
circuit is a device for computing Boolean functions, constructed by composing, or wiring
together, components called “gates” that implement simple Boolean functions such as
AND, OR and NOT. A circuit computing a k-ary function is said to have k inputs (or
input wires) and one output. For example, the circuit of Figure 1 has three inputs, one
AND gate, one OR gate, and one output. We can also construct circuits with multiple
output wires: a circuit C with k input wires and l output wires computes a function
fC : {0, 1}k → {0, 1}l .

Here we illustrate simple versions of two problems involving combinational circuits. For
any circuit C with k inputs and one output, we can write a formula of propositional
logic that computes the same function as C, using k atoms X1, . . . , Xk corresponding to
the k input wires x1, . . . , xk. For each input vector ā ∈ {0, 1}k, we consider ā to also be
a truth assignment for the atoms with ā(X1) = true iff ā(x1) = 1. The formula must be
satisfied by exactly the truth assignments for which the circuit outputs 1. For the circuit
of Figure 1, we obtain the formula ((X1∧ X2) ∨ X3).

However, in our applications, we want to model the entire computation performed by a
circuit with k inputs and l outputs, sometimes with reference to the internal wires. (Also
note that, if we don’t have variables corresponding to internal wires, the formula might
have to be much larger than the circuit.) To do this, we construct a formula with one
propositional atom for each input, each output, and each internal wire that connects an
output of one of the gates to the inputs of one or more other gates. We construct the

1

AND

OR

x1
x2

x3

z

y

Figure 1: A simple circuit.

formula from sub-formulas modelling the computation of each gate within the circuit.
For example, let C be the circuit of Figure 1, with input wires x1, x2, x3, output wire y,
and internal wire z. The gates have semantics similar to connectives in propositional
logic, with wires taking values in {0, 1}. For example, wire z, the output wire of the
AND gate, will have the value 1 if the value applied to both of the gates input wires,
x1 and x2, is 1, and otherwise will have the value 0. The circuit computes a Boolean
function fC : {0, 1}3 → {0, 1}. When values are applied to the input wires, the output
wire will have the value y = fC(x1, x2, x3).

Our formula is φC = (Z ↔ (X1 ∧ X2)) ∧ (Y ↔ (Z ∨ X3)). The satisfying assignments
for φC correspond exactly to the computations of the circuit. In particular, let α be truth
assignment for the atoms of φC. As before, we consider α also to be an assignment of
values to the corresponding wires of the circuit, with α(x1) = 1 iff α(X1) = true, etc.
Then the truth assignments that satisfy φC are exactly those for which fC(α) = 1 iff
α(Y) = true. That is, a truth assignment α satisfies φC iff the value α(Y) assigned to
the “output atom” Y corresponds to the value fC(α(x1), α(x2), α(x3)) computed by the
circuit.

1.1 Circuit Equivalence

Two circuits with the same number of inputs and outputs are equivalent if they compute
the same function. Testing circuit equivalence arises often in the following form. We have
a given circuit C, which computes a desired function fC, but we hope to obtain a better
circuit that computes this function, for example one using fewer gates or less energy. If
we have a candidate circuit D, we would like to check whether D is equivalent to C or
not. That is, we want to determine if, for every tuple ā ∈ {0, 1}k, fD(ā) = fC(ā). We can
do this by writing a formula φC 6≡D that, intuitively, says there is an input on which the
outputs of C and D are different.

Given two circuits C and D, each with n inputs and m outputs, we can check if they
compute the same function from {0, 1}n to {0, 1}m as follows. Think of a circuit that
combines C and D as in Figure 2, producing a new circuit that computes a function from

2

{0, 1}n to {0, 1}2m. If C and D are not equivalent, there will be an input for this combined
circuit for which one of the outputs vi of D has a different value than the corresponding
output yi of C. We write our formula φC 6≡D based on this circuit.

D...

v1
v2...
vm. . .

C

x1
x2...

...
xn

y1
y2...
ym

Figure 2: Circuit for testing equivalence of CA and CB.

Suppose we have two formulas, φC and φD, which model C and D (respectively), as
described earlier in this section. Suppose that φC has atoms X1, . . . , Xn, for the inputs to
C, atoms Y1, . . . , Ym, for the outputs of C, and atoms Z1, . . . Zk for the internal wires of C.
Further assume (or, by renaming atoms, arrange that) formula φD has the same atoms
X1, . . . , Xn corresponding to inputs x1, . . . , xn, atoms V1, . . . Vk corresponding to outputs
v1, . . . vk (with, of course, each vi corresponding to yi in the output of C), and atoms
W1, . . . , Wj corresponding to the internal wires of D.

Now, a formula that models the computation of this circuit is just (φC ∧ φD). To obtain a
formula φC 6≡D that says there is an input to the combined circuit for which the outputs
of C and D are different, we simply conjoin to this the statement that the outputs are
different, obtaining as φC 6≡D the formula

φC ∧ φD ∧ ¬((Y1↔ V1) ∧ (Y2↔ V2) ∧ . . . ∧ (Ym↔ Vm)).

1.2 Automated Test Pattern Generation (ATPG)

In this application, we suppose we are manufacturing chips containing a digital circuit.
The manufacturing process is imperfect, and some chips will be flawed. We want to
construct tests that detect the most likely flaws in the chips. A common kind of flaw is
known as a “single stuck at fault”, in which the effect of a chip flaw is that a particular
wire in the circuit has a fixed value. To illustrate, suppose that in chips implementing
the circuit of Figure 1, sometimes there is a flaw which has the wire z stuck at 0. The
flawed version of the circuit is as shown in Figure 3.

3

AND

OR

x1
x2

z′=0
x3

z

y′

Figure 3: A circuit with a flawed wire stuck at 0.

We want to generate an input for which the correct and flawed circuits will produce
different outputs. We can use this to test the chips for the flaw, because on this input the
correct chips will give a different output than the flawed chips.

We proceed much as in the equivalence case, but here the circuits are partly the same,
and we need only model the way in which they are different. To do this, we make a
formula φ f law which models just that part of the circuit affected by the flaw. The only
wires that may have values different from the corresponding wires in the correct circuit
are z′ and y′. So, φ f law is (¬Z′ ∧ (Y′ ↔ (Z′ ∨ X3))).

Now, we obtain the following formula, φtest, that says there is an input on which the
correct and flawed circuits have different output:

φC ∧ φ f law ∧ ¬(Y ↔ Y′).

A satisfying assignment for φtest gives an input (the values given to x1,x2 and x3) which
constitutes a test pattern for the flaw: a flawed chip will give a different output value
than a chip with no flaws.

In this section, we describe a method of solving planning problems by reduction to
SAT.

2 Propositional STRIPS Planning

A propositional STRIPS planning instance Π is a tuple Π = 〈F, I, A, G〉 consisting of:

• Set F of “Facts”: Possible states of the world are described in terms of a set F of
“state variables”, or “facts”, each of which may be true or false. We will take F to be
a set of propositional atoms, so each truth assignment to F is a possible state of the
world. We denote by lits(F) be the set of literals over F, that is { f ,¬ f | f ∈ F}. The
maximal satisfiable subsets of lits(F) are one-to-one with the truth assignments for
F, and thus with states of the world.

4

• Initial state I: The initial state is given by a truth assignment for F.

• Set A of “Actions”: Each action a ∈ A is defined by two satisfiable sets of literals
from lits(F):

– The set pre(a) of preconditions of a;
– The set eff(a) of effects of a.

• Goal G: A set of states, specified by a satisfiable set of literals from lits(F). Any
state which satisfies G is a goal state.

An action a is executable in a state S if each literal in pre(a) is true in S, that is, if
S |= pre(a). The result of executing a in S is the state S′ defined by:

S′(f) =


f if f ∈ eff(a)

¬ f if ¬ f ∈ eff(a)

S(f) otherwise.

In other words, S′ is the same as S, except in-so-far as necessary so that S′ |= eff(a).

A plan P for Π of length L is a sequence of actions P = 〈a1, a2, . . . , aL〉 such that there is
a sequence of states SP = 〈s0, s1, . . . , sL〉 satisfying

1. s0 = I;
2. For each 1 ≤ i ≤ L, action ai is executable in si−1;
3. For each 1 ≤ i ≤ L, state si is the result of executing action ai in state si−1;
4. sL is a goal state, that is, sL |= G.

2.1 Representing Planning in CNF

Fact 1. Given as input a propositional STRIPS instance Π, deciding if Π has a plan is PSPACE-
complete.

Intuitively, the reason is that the shortest plan may be of length exponential in the size of
the planning instance. As a consequence, representing the set of plans in propositional
logic requires formulas which are of size exponential in the size of the instance, which
seems undesirable. Instead of doing this, we consider a more convenient task: represent-
ing plans of a given length.

Fact 2. Given as input a propositional STRIPS planning instance Π and a natural number L,
deciding existence of a plan of length at most L is NP-complete.

5

Actually, we will not model plans of bounded length, but rather plans which are fairly
naturally modelled with a bounded number of time-steps. In particular, we will devise
a family of formulas ΦΠ

T , parameterized by planning instance Π and positive integer T,
with the property that

ΦΠ
T is satisfiable iff there is a plan for Π involving at most T time steps.

Often, we leave the planning instance Π implicit, writing simply ΦT.

Notice the shift in perspective here: we defined plans as a sequence of actions, but the
description of the formula refers to time steps rather than actions. In fact, the formula
we will use:

1. allows time steps in which no action is performed;
2. allows multiple actions to be performed at one time step (with some constraints);
3. bounds the number of time steps, but not (at least directly) the number of actions.

These properties seem to make solving easier. The first allows finding plans without an
exactly specified number of steps. Any “no-op” steps can be trivially eliminated in post-
processing. The second property allows us to make the formula smaller. The size of the
formula needed to represent the plans grows linearly with the number of steps involved,
so allowing multiple actions per step reduces the size of formula needed to find plans
for a given instance. We call these “parallel plans”, but they do not model concurrent
actions in any serious way. We require that they be serializable, and therefore we need
to add clauses to ensure this.

To write the formula, we will use two sets of atoms:

• State Atoms: For each fact f ∈ F and each time t ∈ {0, . . . T}, we have atom ft. The
intuitive meaning of ft is that f is true at time t.

• Action Atoms: For each action a ∈ A and each time t ∈ {1, . . . T}, we have atom at.
The intuitive meaning of at is that action a is executed in the tth time step, which is
the transition from the state at time t− 1 to the state at time t.

The formula will be the union of the following sets of clauses, each enforcing a particular
constraint on plans. (In some cases, for improved readability, we do not write in clause
form, but the translation to clauses is easy.)

1. Initial State: The state at time 0 corresponds to the initial state.

For each fact f ∈ F, include unit clause (f0) if f is in I, and (¬ f0) otherwise.

2. Goal States: The state at time T satisfies the goal conditions.

6

For each fact f ∈ F, include unit clause (fT) if f is in G, and the unit clause (¬ fT)

if ¬ f is in G.

3. Action Preconditions: If action a is executed in time step t, then the preconditions
of a hold a time t− 1.

For each action a, and each time t ∈ {1, . . . , T}, include clauses equivalent to

at →
∧

l∈pre(a)

lt−1.

4. Action Effects: If action a is executed in time step t, then its effects hold at time t.

For each action a, and each time t ∈ {1, . . . , T}, include clauses equivalent to

at →
∧

l∈eff(a)

lt.

5. Explanatory Frame Axioms: These are to ensure that the state only changes as a
result of actions being executed. In particular, if a “fact” changes truth value during
some time step, then it must be the effect of an action executed during that step.

For each fact f ∈ F, and each time t ∈ {1, . . . , T} include clauses equivalent to:

(ft−1 ∧ ¬ ft)→
∨

{a|¬ f∈eff(a)}
at,

and
(¬ ft−1 ∧ ft)→

∨
{a| f∈eff(a)}

at.

6. Serializability of Actions: If multiple actions {a1, a2, . . . ak} are executed during
time step t, then we require there to be an ordering of the actions which constitutes
a (sequential) plan (because we are using “parallel” plans as a convenience, not
to model truly concurrent actions). We may enforce this simply by requiring the
actions a1, . . . ak to be pairwise non-conflicting, in the sense that the execution of
one does not preclude the other being executed in the resulting state.

For each pair a, b of distinct actions, if pre(a) ∪ eff(b) is unsatisfiable, then for each
time t ∈ {1, . . . T}, include the clause

(¬at ∨ ¬bt).

7

2.2 “Optimal” Planning via Satisfiability

We now have a family of formulas which allow us to use a SAT solver to find plans
bounded by some number of time steps. Our goal is to find the shortest plans possible.
While finding optimum-length plans would be ideal, we will be satisfied with finding
“parallel” plans using a minimum number of time steps. Let T∗ denote the minimum
number of time steps for which a plan exists. To establish that we have an optimum plan,
we will need (at least) two calls to the SAT solver: one to show that ΦT∗ is satisfiable,
and one to show that ΦT∗−1 is unsatisfiable.

Unless we are extremely lucky and guess T∗, we will need to call the solver with a se-
quence of formulas generated using a sequence of time bounds σ = 〈T1, . . . Tk〉. We
would like to choose this sequence to minimize the total time required to find an opti-
mum plan (or perhaps the best plan we can find within some allotted amount of time).
The easiest scheme is to use σ = 〈1, 2, 3, . . . , T∗−1, T∗〉. While this seems wasteful, since
in most cases T∗ is not very close to 1, generating and testing the formulas when T is
very small tends to be very fast. This method has the obvious advantage that no guessing
is required, and in fact it works quite well in practice, provided T∗ is not too large.

Another natural idea is to use binary search. If we know an upper bound TUB on T∗, then
we perform a binary search in the interval [0, TUB], which will find T∗ in about log TUB

calls to the solver. If we don’t know such a bound, we can make a sequence of calls with
time bounds 〈1, 2, 4, . . . , 2i〉, where 2i is the smallest power of 2 with 2i ≥ T∗. We know
when we reach i because it is the first call to the solver that returns a plan. The last call
in this sequence gives us TUB = 2i, after which we perform binary search in the interval
(2i−1, 2i) for T∗, so we find T∗ in time O(log T∗). Unfortunately, minimizing the number
of solver calls may not (and typically will not) minimize time, because the running time
for the call varies dramatically with T. The typical pattern is, roughly, that time to solve
Φ1 is trivial; times increase dramatically as T∗ − 1 is approached; solving time drops
moderately just above T∗ − 1, and then increases further (due primarily to the large size
of the formula). Thus, the time to establish the optimum value tends to dominate, except
in the case that poor guesses well beyond the optimum are not made.

8

	Applications to Digital Circuits
	Circuit Equivalence
	Automated Test Pattern Generation (ATPG)

	Propositional STRIPS Planning
	Representing Planning in CNF
	``Optimal'' Planning via Satisfiability

