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Abstract

We present a hierarchical model for human activity
recognition in entire multi-person scenes. Our model de-
scribes human behaviour at multiple levels of detail, rang-
ing from low-level actions through to high-level events.
We also include a model of social roles, the expected be-
haviours of certain people, or groups of people, in a scene.
The hierarchical model includes these varied representa-
tions, and various forms of interactions between people
present in a scene. The model is trained in a discriminative
max-margin framework. Experimental results demonstrate
that this model can improve performance at all considered
levels of detail, on two challenging datasets.

1. Introduction

In this paper we present a method for human activity
recognition in entire scenes. Realistic scenes of human
activity often involve multiple, inter-related actions at the
same time. Levels of detail include low-level actions per-
formed by individuals, groups of people involved in inter-
actions, and an overarching scene level event. This work
develops a model for integrating these varied levels of de-
tail and sources of information that provide cues to infer
the unknown labels at each level. We focus on the notion
of social roles, modeling the expected behaviours of certain
people, or groups of people, in a scene.

Consider the scene shown in Fig. 1. In terms of human
activity recognition, there is a variety of questions one can
ask. One can label this scene at multiple levels of detail.
Who is the attacker? What are the players in the bottom
right corner doing? How many people are running? Which
players are defending (marking) members of the opposing
team? What is the overall game situation? Note that po-
tential queries often involve social roles such as “defender”,
“attacker” or “man-marking.” In this paper we present a
model towards answering queries such as these.

The representation of human activity is a challenging,
open problem. It is arguable that multiple levels of detail
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Figure 1. An example of video event. Beyond the general event
description (e.g. Free Hit), we can explain the scene at multiple
levels of detail such as low-level actions (e.g. standing and jog-
ging) and mid-level social roles (e.g. attacker and first defenders).
The social roles are denoted by different colors. In this exam-
ple, we use magenta, blue and white to represent attacker, man-
marking and players in the same team as the attacker respectively.

and types of labels are required depending on the problem
focus; we present a model that can be used to capture a
variety of levels of detail in a unified framework. In addi-
tion to modeling of low-level actions (e.g. running or stand-
ing) and high-level events (“attack play”, “penalty corner”),
we model social roles. Social roles take into account inter-
related people and are a complementary representation to
the low-level actions typically used in the activity recogni-
tion literature. For example, a player engaged in the social
role of “man-marking” is likely to have an opponent nearby.

Further, the notions of low-level actions, social roles, and
high-level events naturally require a contextual representa-
tion — the actions and social roles of all the people in a scene
are interdependent, and related to the high-level event tak-
ing place. Our model captures these relationships, and al-
lows flexible inference of the social roles and their depen-
dencies in a given scene.

The main contribution of this paper is the development
of this structured model of scenes of human activity. This
model is hierarchical and contains representations rang-
ing from low-level actions through social roles through to
scene-level event class. We formalize parameter learning
for this model in a max-margin framework. Moreover, this
model can be used for a variety of human activity scene la-
beling tasks and queries. We demonstrate experimentally
that it is effective, and that including social roles and rela-



tionships among them can result in improved performance
on a variety of tasks.

2. Previous Work

Human activity recognition is an active area of research,
see Poppe [20] for a survey. Much of the work focuses on
recognition of low-level single-person actions (e.g. [22]).
In this paper we rely on the low-level features and repre-
sentations used by these methods to predict the actions of
individuals, but build higher-level models upon them.

Previous work has also focused on human activity recog-
nition in scenes, modeling interactions between individuals
and higher-level group activities. Intille and Bobick [10]
use probabilistic graphical models for recognizing hand-
specified structured activities such as American football
plays. Medioni et al. [15] reason about interactions be-
tween objects such as vehicles and road checkpoints. Moore
and Essa [17] recognize multitasked activities. Cupillard et
al. [5] presents an approach for recognizing specific activ-
ities such as violence or pickpocketing viewed by several
cameras. Chang et al. [2] presents a real-time system to de-
tect aggressive events in prison. Two hierarchical clustering
approaches are proposed to group individuals, and events
modeled at a group level. The main limitation of this line
of work is that the models are designed for specific activ-
ities with strict rules, e.g. parade, and thus can not be ap-
plied to more general activities. Ryoo and Aggarwal [21]
propose a stochastic representation for more general group
activities based on context-free grammars, which character-
izes both spatial and temporal arrangements of group mem-
bers. However, the representation of activities are encoded
manually by human experts. Different from the aforemen-
tioned approaches, our work employs a structured SVM
framework that is able to capture some structure of group
activities, and the structures of group activities are learnt
automatically. Patron-Perez et al. [19] also use a structured
SVM framework, with a focus on activities that are defined
on a pair of interacting humans. Gupta et al. [9] use AND-
OR graphs to represent complex events.

Another important cue for disambiguating actions is the
context provided by the actions of nearby humans in the
same scene. A few recent approaches include a model of
group activity context, e.g., Choi et al. [3, 4], Lan et al. [13],
and Amer and Todorovic [1]. We build on this line of work,
but include person-person interactions as context at varying
levels of detail and representation.

Our model also incorporates high-level information
about the overall event present in a scene. There has
also been much effort on scene-level representations of
activity, much of it using unsupervised learning. Loy et
al. [14] model regions of activity and their relationships
over surveillance videos. Wang et al. [24] examine hier-
archical representations, and apply them to traffic scenes.
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Mehran et al. [16] aim to discover anomalous events in
surveillance video by analyzing low-level motion cues.
Kuettel et al. [12] build temporal latent topic models that
can be used to discover patterns of activity in traffic surveil-
lance video. These models have a similar aim to ours in
terms of modeling high-level activities and relationships be-
tween entities, but typically work at a lower feature level of
detail and don’t explicitly model interactions.

Most prior methods to activity recognition focus on one
of these levels of abstraction (or detail), using others, typi-
cally lower levels, as latent intermediate representations of
little inherent interest. In contrast, our model is explicitly
designed to support semantic level-of-detail inferences in
the context of rich multi-person event scenes.

3. Modeling Video Event Structures

In this paper we develop a model for human activity in
an entire scene. The model is hierarchical, and includes
various levels of detail: low-level actions, mid-level social
roles, and high-level events. The relationships and interac-
tions between these are included in the model.

This model is general, and we show two different appli-
cation domains in our experiments. However, to ground the
model description, we describe an instantiation applicable
to modeling field hockey videos. We define 11 low-level
action classes: pass, dribble, shot, receive, tackle, prepare,
stand, jog, run, walk, save; 5 social roles: attacker, first
defenders, defenders defend against person (man-marking),
defenders defend against space, other; and 3 scene-level
events: attack play, free hit and penalty corner. Each per-
son is labeled with both action and social role. Attacker is
the person who controls the ball, defenders are classified
into three categories: first defenders directly defend against
the attacker, other defenders either defend against person
or space. Players from the same team of the attacker, the
referee and the goalie are assigned the label of “other”.

We propose a discriminative model for learning the hi-
erarchical structures of video events in this domain. The
model is a general framework that can carry out different
inferences based on a user’s preference (e.g., finding the
attacker, action recognition and social role recognition of
each player). This is done by modifying the learning crite-
rion (i.e., the loss function) while keeping the model struc-
ture unchanged.

A graphical illustration of the model is shown in Fig. 2.
At the lowest level, the compatibility between a person’s
feature vector (e.g., HOG [6]) and action is modeled. At the
intermediate level, the model explores the contextual infor-
mation by modeling interactions between people in terms
of their social roles. Social roles naturally capture impor-
tant interactions, e.g. first defenders tend to appear in the
neighborhood of an attacker, man-marking happens when
there is a player from the opposing team. On the top level



Features

(a) (b)
Figure 2. Graphical illustration of the model. Different types
of potentials are denoted by lines with different colors in (a). An
example of the graph structure G of the intermediate layer is in
(b): an attacker is connected to every other player, non-attackers
are connected to the closest player within a distance of €.

of the model are the scene-level events. Events are inter-
dependent with social roles, e.g., during a penalty corner,
attacker appears in the corner of the field.

3.1. Model Formulation

We first describe the labeling. We assume an image has
been pre-processed, so the location of the goal and persons
in the image have been found. We separate the players into
two teams according to their color histograms. Each per-
son is associated with two labels: action and social role.
Let h; € H and r; € R be the action and social roles of the
person ¢ respectively, where H and R are the sets of all pos-
sible action and social role labels respectively. Each video
sequence is associated with an event label y € )/, where )
is the set of all possible event labels.

We define the score of interpreting a video sequence [
with the hierarchical event representation as:

= waﬂh(%‘a hj)

+Zw2 ¢2 hj7/r] +Zw3 ¢3 yvrjark) (1)

gk

F,(x,y,r,h,I) = wT@(X,y, r,h,I)

Action model w; ¢;1(z;,h;): This potential function is a
standard linear model trained to predict the action label of
the j-th person. It is parameterized as:

=S wl 1(h;=0) 7, @

beH

wl (bl m]a

where 1(-) is the indicator function. x; is the feature vector
extracted from the j-th person. In order to encode temporal
information, we extract 3-frame tracklets for each person in
a video based on data association, and x; is computed by
concatenating the HOG ! extracted from the person bound-
ing box in three consecutive frames.

'We use the code available at http://www.cs.brown.edu/ pff/latent/ for
computing the HOG descriptor.
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Unary role model w, ¢2(hj,7;): This potential function
represents the properties of social roles, including depen-
dencies between the action label A, and social role r;, and
the role-specific locations of the j-th person. It is parame-
terized as:

wy 2(hj,rj, 1) Zngcb L(h; =0b)-1(r; =
cERbEH
+) 0> waek - 1(rj = ) - bing, (5) 3)
cER meM

Here we divide an image into M cells, bin,,(j) = 1 if the
7-th person falls into the m-th cell, otherwise 0. The spatial
binning is determined with the goal’s location as a reference
frame. For example, if the goal is on the left of the image,
then the first bin starts at the bottom left of the image.

Pairwise role model w3 ¢3(y, r;,r)): This potential func-
tion represents the dependencies between of a pair of social
roles 7; and r;, under an event y. It is parameterized as:

Zzzw&zbc (y=a)- ]1( =b)-

a€Y beER ceER
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We use a similar spatial context feature as in [7]: dji is
the feature that bins the relative location of the j-th and k-
th person into one of D spatial relations: overlap, next-to,
near, above and below. It is a sparse vector of all zeros
with a single one for the bin occupied by the satisfied spatial
relation. Similar to the unary role model, we use the goal’s
location in an image as a reference. For example, if the
goal appears at the right of an image, then d;i is “above”
when j-th person is to the right of k-th person. g;y, is a two-
dimensional vector: g;; = [1,0] if j and k are in the same
team, and g, = [0, 1] otherwise.

We use an undirected graph G = (V, £) to represent the
mid-level social roles and interactions, where a vertex v; €
YV corresponds to the social role 7, and an edge (v;, vi) €
& corresponds to the interactions between 7; and 7. In
our case, the attacker is connected to every other player, the
non-attackers are connected to the closest player within a
distance of . In the case that there is no attacker in a video
frame, then every player is connected to the closest player
within a distance of . An example graph structure is shown
in Fig. 2(b).

4. Learning

We assume we are given a set of training examples
with the actions, social roles, and event labels. Given a
set of N such training examples (x”,y", h", r" I") (n =
1,2,..., N), we would like to train the model parameter w



that tends to produce the correct hierarchical event struc-
tures that include event y, social roles r and actions h given
a new test video. A natural way of learning the model is to
adopt the structured SVM formulation [11] as follows:

N
o1 2
i, 5”“4“+(72£;€n
s.t. B (x™,y", ", h" I") — F,(x",y,r,h, I") >

A(yaynvh7hnar7rn) 7£navnay7h7r (5)

where A(y,y",r,r" h, h™) measures the joint loss be-
tween the ground-truth event label, social role labels
and action labels (y™,r", h™) compared with the hy-
pothesized ones (y,r,h). We define the joint loss
as a weighted combination of the loss on differ-
ent terms A(y,y",r,r” h h") Do (y,y") +
v i Doy (ri,ri) + (1 —p—v) 32 Aojr(hi, hyY)), where
0 < <£1,0 £ v <1 balance the contribution of terms.

This is a rather general learning framework that can carry
out different inferences based on a user’s preference (e.g.,
finding the attacker, action and social role recognition for
each player). This is done by modifying the learning crite-
rion (i.e., the loss function) while keeping the model struc-
ture unchanged. For example, if the user’s preference is
social role recognition, then we can simply set u to zero to
make the formulation directly optimize the social roles .

The main computational challenge in structured SVM
learning is loss augmented inference or finding the most vi-
olated constraint. This is a special case of the general infer-
ence algorithm described next.

5. Inference

Given a test video there is a variety of queries one might
wish to answer. Using our hierarchical model, one can for-
mulate queries about any individual variable at any level of
detail. For instance, one can query on the overall event la-
bel y for the scene, or the social role label r; of a particular
person.

We examine the margin, or difference in model scores
between values, for an individual variable to give a score for
its setting. Given a video and a query variable g, the infer-
ence problem is to find the best hierarchical event represen-
tation that maximizes the scoring function F,(x,y, h,r, I)
while fixing the value of g to its possible values. For ex-
ample, if ¢ is the action of one person (one of the h;), we
would compute the maximum value of the scoring function
F,, when fixing g to each possible action. We then set the
score for the person to be performing each action as the dif-
ference between this score and that of the next best action.

For a given video and query variable ¢, this inference
requires solving the following optimization problem:

max F,(x,y,h,r,I) = max w' ®(x,y,h,r,I) (6)
y,h,r\q y,h,r\q
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The optimization problem in Eq. 6 is in general NP-hard
since it involves a combinatorial search. We instead use
a coordinate ascent style algorithm to approximately solve
Eq. 6 by optimizing one variable at a time while fixing the
other two variables, these steps iterate until convergence.
Since the action labels do not have any structures, we can
simply enumerate all the possible h € H to predict the the
best action label h*. We use the same strategy for predict-
ing the best event label y*. Optimizing the social roles r
is more challenging, since the graph structure G and r are
correlated. In the following, we develop methods for opti-
mizing the social roles r.

During inference, the graph structure G depends on
which person is the attacker. Once the attacker is fixed,
then the graph structure is fixed. Suppose there are K peo-
ple in a video clip, we enumerate all possible situations
(k=0,1,...,K), each person k is regarded as an attacker
one at a time if £ > 1; we also consider the case that there
is no attacker in the video clip (k = 0). This is equivalent
to enumerating all possible graph structures.

We introduce variables r* to denote the social roles r
when person k is the attacker, i.e. 7, = 1. The inference of
r requires solving the following optimization problem:

max max w' ®(x,y,h,r* I)
0<k<K rk

(7

The inner maximization of r* with a fixed k is a standard
max-inference problem in an undirected graphical model.
Here we use loopy BP to approximately solve it.

6. Experiments

In order to demonstrate our proposed method, we con-
sider two different experimental scenarios. First, we test our
approach on highly structured activities. We present a new
challenging Broadcast Field Hockey Dataset that consists
of sporting activities captured from broadcast cameras. Sec-
ond, we consider more general activities in daily living. We
test our model on a dataset of surveillance videos recorded
in a nursing home [13]. In order to show that our model can
perform various inferences based on a user’s preference, we
test the model with different tasks including action and so-
cial role recognition, searching for specific social roles and
scene-level events.

The focus of this paper is activity recognition. In or-
der to test our model for activity, we perform experiments
using ground-truth person locations, as well as those us-
ing a simple automated detector. Automatic detection and
tracking, particularly in sports and surveillance videos, is
an established area of research. Many excellent methods
(e.g. [18, 23]) automatically generate high-quality person
locations similar to our ground-truth results.

We compare our model with several baseline methods.
The first baseline is the action model in Eq. 2. It is equiv-



alent to an SVM with linear kernel based on the feature
vector of each person. This baseline can only perform
action recognition. The second baseline (which we call
unary) consists of both the action model (Eq. 2) and the
unary role model (Eq. 3). In order to compare with our
model for event recognition, we further add links between
the event y and social roles r with the potential function:
25 2y 2iber way Ly a) - 1(r; = b). We also
re-implement the adaptive structured latent SVM method
in [13] and compare to it on the Nursing Home Dataset [13].

In our datasets, the action/social role classes are ex-
tremely imbalanced (e.g. the number of attackers is less
than 1/10 of all the examples). In this case, the traditional
0-1loss Ag/; defined in Eq. 5 is not appropriate. We adopt
a margin rescaling approach by using the loss function in-
troduced in [25] to handle this problem:

1

mp

0

ifu#u"andu™ =p

Apgi(u,u™) = { (®)

otherwise

where m,, is the number of examples with class label p.

Rather than directly using certain raw features (e.g. the
HOG descriptor [6]) as the feature vector x; in our frame-
work, we train a multi-class SVM classifier based on the
raw feature of each individual and their associated action
labels. In the end, each feature vector x; is represented as
an N-dimensional vector, where the k-th entry of this vec-
tor is the score of classifying this instance to the k-th class
returned by the SVM classifier.

6.1. Broadcast Field Hockey Dataset

We have collected a new challenging dataset of broad-
cast field hockey games. Our dataset contains 58 video
sequences extracted from five matches. These video se-
quences are highlights of field hockey games with 11 action
classes, 5 social role classes and 3 scene-level event classes.
See Fig. 3 for example frames from the dataset. The human
activities depicted in the dataset contain complex person-
person interactions that go beyond simple actions and group
activities. For instance, sequences from a typical attack play
usually include interactions such as passing the ball, drib-
bling and tackling, receiving the ball and defending, etc.
We use Leave-One-Out (LOO) cross validation in our ex-
periments, cycling each video sequence as a test video one
at a time.

Results: We summarize the mean per-class accuracies for
action, social role and scene-level event recognition in Ta-
ble 1. We can see that our model significantly outperforms
the baselines in terms of all of the three tasks. In terms
of social role recognition, our model provides a strong im-
provement of more than 20% over the baseline. The com-
parison of confusion matrices, for social role recognition,
between our method and the baseline unary are illustrated
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Figure 3. Broadcast Field Hockey Dataset. Our dataset contains
58 video sequences with 11 actions: pass, dribble, shot, receive,
tackle, prepare, stand, jog, run, walk, save; 5 social roles: attacker,
first defenders, defenders defend against person, defenders defend
against space, other; 3 scene-level events: attack play, free hit, and
penalty corner, images in each row denote an event class. These
video sequences are highlights extracted from five field hockey
matches recorded in the Dublin Stadium by broadcast cameras.

in Fig. 4. As one can see, the task is almost unachievable
by only using the unary term of social roles (the accuracy
is close to chance). However, the confusions between dif-
ferent social roles are significantly reduced by including the
pairwise relations between players. We also report results
in Table 2 using the LSVM person detector [8] trained on
our dataset. We could draw similar conclusions as using the
ground truth person locations. Note that we treat the false
positives of the detector as incorrect predictions in report-
ing the classification accuracies. The average precision of
person detection on this dataset using the LSVM detector is
33.67.

The benefits of including the pairwise social roles can
be further demonstrated by the learned pairwise weights, as
visualized in Fig. 6. Our model learns meaningful multi-
class spatial layouts and team memberships — e.g., attacker
and defenders tend to be from opposing teams, defenders
defend against space and person tend to appear above the
attacker. For the low level action recognition and high-level
event recognition, our model again provides a noticeable
improvement over the baselines. The mid-level social roles
help by modeling which actions tend to be performed by
people in which social roles. Further, the structured interac-
tions between the people in these social roles can be indica-
tive of certain high-level events. We believe this is the rea-
son for the improved performance in low-level action and
high-level event recognition when using social roles.

Fig. 5 shows the comparison of precision-recall curves
for inference of different social roles using our method and
the baseline. Our model outperforms the baseline by signif-
icant margins in all of the five social roles. Fig. 7 shows the
visualizations of our predicted events and social roles.
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Figure 5. Precision recall curves. Our method in (red) and the baseline in (blue) applied in Broadcast Field Hockey Dataset to the task of
detecting: (a) attacker (b) first defenders (c) defenders defend against space (d) defenders defend against person (e) other.

Typical Performance

Failure Cases

free kick

Figure 7. Visualization of our results on Broadcast Field Hockey Dataset. The ground truth event (white) and the predicted event are
shown in the left corner of each image. Correct predictions are visualized in blue, otherwise yellow. Each bounding box is represented
by a color, which denotes the predicted social roles. We use magenta, yellow, green, blue and white to represent the social roles attacker,
first defenders, defenders defend against space, defenders defend against person and other respectively. The cross sign in the middle of
a bounding box indicates incorrect predictions, and the ground truth social roles are indicated by the color of the cross sign. The last
row shows bad predictions, all of them result from incorrect prediction of the attacker, since the social roles of other players are highly

dependent on the attacker.
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Figure 4. Confusion matrices for social role recognition. Illus-
trated are accuracies on the Broadcast Field Hockey Dataset: (a)
unary (stands for the unary term of social roles) (b) our approach.
Rows are ground-truths, and columns are predictions. Each row is
normalized to sum to 1. Here we use defend-f, defend-s, defend-
p to represent first defenders, defenders defend against space and
defenders defend against person respectively.

6.2. Nursing Home Dataset

The second dataset [13] consists of videos recorded in
a dining room of a nursing home by a low resolution fish

a"'eeke,d%nufd”i‘nu.s%’*’na.p"”er
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Method ‘ Role ‘ Event ‘ Action ‘
unary 21.7 | 56.9 21.5
full model 44.0 | 62.9 28.8
action model | N/A N/A 26.1

Table 1. Comparison of social role, event and action classification
accuracies (Mean per-class) of different methods on the Broadcast
Field Hockey Dataset.

‘ Method ‘ Role ‘ Event ‘ Action ‘
unary 18.9 | 48.9 15.3
full model 27.0 | 50.6 17.7
action model | N/A | N/A 17.2

Table 2. Comparison of social role, event and action classification
accuracies (Mean per-class) of different methods on the Broadcast
Field Hockey Dataset with automated person detector.

eye camera. Typical actions include walking, standing, sit-
ting, bending, and falling, and the scene-level events include
fall and non-fall. We further define four social roles: fall,



attacker defend-f defend-sdefend-p other

attacker defend-f defend-sdefend-p other

(a) (b)

Figure 6. Visualization of the learnt pairwise weight. In (a) are
opposing teams and in (b) spatial relations, under the event attack
play. Light cells indicate large values of weights. Consider the
example (a), the model favors seeing first defenders and the at-
tacker from opposing teams, defenders defend against person and
“other” (usually refer to the players being defended) from oppos-
ing teams are also favored. (b) the pairwise spatial weights for
each pair of classes are represented as an image patch: the three
bins in the middle of each patch denote the spatial relations: near,
next-to, overlap; the other two bins in the surroundings of each
patch represent the spatial relations: above and below. We can
see the attacker and first defenders tend to be close to each other,
and the attacker tend to appear below the defenders defend against
space.

fallolgcl 0.08 0.13 0.00 fall
helpofZS8 0.05 FOEFA 0.01 help 0.08
visit 0.04 MeEEN 0.00 visit 0.06
residefOReISlM 006 0.05 0.01 reside 0.07 015 0.13
fay hep, Visie  "esig, fay hep, Visie  "esig,
(a) (b)

Figure 8. Confusion matrices for social role recognition. II-
lustrated are accuracies on the Nursing Home Dataset using: (a)
unary and (b) our approach. Rows are ground-truths, and columns
are predictions. Each row is normalized to sum to 1.

help, visit and reside. The fallen person is labeled as “fall”,
the people helping the fallen person are labeled as “help”,
“visit” happens when the nurses come to the nursing home
to talk to the residents or clean the room, the residents sit-
ting or standing in the nursing home are labeled as “reside”.
We use the same training/testing splits as [13].

The dataset is extremely challenging because of low
framerate and spatial resolution, which makes it difficult to
detect falls based on the features of a single person. Social
roles can be very helpful in this application. For example,
when a person falls, typically people come to help and thus
interact with the person lying on the ground.

Results: We summarize the mean per-class accuracies for
action, social role and scene-level event recognition in Ta-
ble 3. We can see that our model significantly outperforms
the other baselines in terms of all of the three tasks. In order
to show the contribution of social roles in event recogni-
tion, we re-implement the adaptive structured latent SVM
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Method \ Role \ Event \ Action

unary 350 | 732 40.9
full model 50.1 80.5 42.0
action model | N/A N/A 38.7
Lanetal. [13] | N/A | 785 N/A

Table 3. Comparison of social role, event and action recognition
accuracies (Mean per-class) of different methods on the Nursing
Home Dataset.

fall help
1 1
& 8
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3 ]
o E.
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k) 2
205 205
2 2
o o
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Figure 9. Precision recall curves. Our method in (red) and the
baseline in (blue) applied in the Nursing Home Dataset to the task
of detecting: (a) fall, (b) help, (c) visit and (d) reside.

method proposed in [13], the comparison shows the im-
provement of our method. We further ran a two-tailed T-
test and verified that the improved performance with respect
to [13] is statistically significant at alpha=0.05 (p-value =
0.75).

Fig. 8 shows the confusion matrices of our method and
the baseline unary in terms of social role recognition. Sim-
ilar to the first dataset, the baseline almost fails at separat-
ing the social roles. The pairwise model provides a strong
improvement in reducing the confusions between different
social roles.

Fig. 9 shows the comparison of precision recall curves
for searching different social roles of our method and the
baseline. We can see that our method significantly outper-
forms the baseline in three social roles: fall, help and reside.
For visit, our method performs similarly to the baseline,
this is because searching for visit rarely requires contex-
tual information, since the nurse usually visits the nursing
home alone. In this case, pairwise relations would not help.
Fig. 10 shows the visualizations of our predicted events and
social roles.

7. Conclusion

We have developed a structured model for human activ-
ity recognition in complex scenes. The model integrates a
variety of levels of detail including the low-level actions,
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Figure 10. Visualization of our results on the Nursing Home
Dataset. The ground truth event (white) and the predicted event
are shown in the left corner of each image. Please refer to Fig. 7
for the visualization rules. We use magenta, yellow, green and blue
to represent the social roles fall, help, visit and reside respectively.
The first three rows show the examples where the pairwise rela-
tions help predict falls and non-falls. The last row shows incorrect
predictions.

mid-level social roles, and high-level events. In particu-
lar, we have presented a new representation — social roles
for human activity recognition as a complementary repre-
sentation to the typical low-level actions. The advantage
of this model is that it naturally captures the interdepen-
dencies between actions, social roles and high-level events,
and allows flexible inference of the social roles and their
dependencies in a given scene. The model parameters are
learned in a max-margin framework. Our experimental re-
sults demonstrate that our model is effective in performing
a variety of inference tasks including action, social role and
event recognition. We illustrate that including social roles
in the model results in improved performance on all of these
tasks.
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