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Abstract. Tree-structured models have been widely used for human gstse
mation, in either 2D or 3D. While such models allow efficiezaining and infer-
ence, they fail to capture additional dependencies betwedy parts, other than
kinematic constraints between connected parts. In thispage consider the use
of multiple tree models, rather than a single tree model fonan pose estima-
tion. Our model can alleviate the limitations of a singlests#ructured model by
combining information provided across different tree mled&he parameters of
each individual tree model are trained via standard legraigorithms in a single
tree-structured model. Different tree models can be cogtin a discriminative
fashion by a boosting procedure. We present experimensaltseeshowing the
improvement of our approaches on two different datasetgh®first dataset, we
use our multiple tree framework for occlusion reasoning.t@second dataset,
we combine multiple deformable trees for capturing spatiaistraints between
non-connected body parts.

1 Introduction

Estimating human body poses from still images is arguably ainthe most difficult
object recognition problems in computer vision. The diffi@s of this problem are
manifold — humans are articulated objects, and can bend@mtdrt their bodies into a
wide variety of poses; the parts which make up a human figerganed in appearance
(due to clothing), which makes them difficult to reliably eet; and parts often have
small support in the image or are occluded. In order to réliatierpret still images of
human figures, it is likely that multiple cues relating difat parts of the figure will
need to be exploited.

Many existing approaches to this problem model the humag Beé combination
of rigid parts, connected together in some fashion. Thecglmionfiguration constraints
used are kinematic constraints between adjacent parth, asitorso-upper half-limb
connection, or upper-lower half-limb connection. This getonstraints has a distinct
computational advantage — since the constraints form estreetured model, inferring
the optimal pose of the person using this model is tractable.

However, this computational advantage comes at a cost.Igpap, the single tree
model does not adequately model the full set of relatiorsshgiween parts of the body.
Relationships between parts not connected in the kinernragcannot be directly cap-
tured by this model.



The main contribution of this paper is developing a framewior modeling human
figures as a collection of trees. We argue that this frameWwaskthe advantage of being
able to locally capture constraints between the parts wtictstitute the model. With a
collection of trees, a global set of constraints can be neztiéle demonstrate that the
computational advantages of tree-structured models c&ejte and provide tractable
algorithms for learning and inference in these multiple tneodels. We present two ap-
plications of our framework. The first application uses thatiple tree model frame-
work for occlusion reasoning. The second application combimultiple deformable
trees to capture a richer set of spatial constraints betweely parts. A preliminary
version of this work appeared in a workshop paper [24] in \Whgpatial constraints
between parts were modeled. In this paper we demonstratéhtgomultiple tree model
can be used for occlusion reasoning. We provide a model, m@neince algorithms and
experimental validations. We also provide an analysis ofagproach which compares
to existing approaches for combining multiple trees [10, 23

The rest of this paper is organized as follows. Section 2exgsiprevious work.
Sections 3, 4 and 5 give the details of our approach. Sectwasents our experimental
results. Section 7 concludes this paper.

2 Reated Work

One of the earliest lines of research related to finding ped@im images is in the
setting of detecting and tracking pedestrians. Startirth thie work of Hogg [5], there
has been a lot of work in tracking with kinematic models infb®dD and 3D. Forsyth et
al. [3] provide a survey of this work.

Some of these approaches are exemplar-based. For exarmoydenal: Blake [21]
use 2D exemplars for people tracking. M&riMalik [11] and Sullivan&; Carlsson [19]
address the pose estimation problems as 2D template m@gtaking pre-stored ex-
emplars upon which joint locations have been marked. Inraadeal with the com-
plexity due to variations of pose and clothing, Shakhnaioet al. [14] adopt a brute-
force search, using a variant of locality sensitive hashorgspeed. Exemplar-based
approaches are effective when dealing with regular humaagdiowever, they cannot
handle those poses that rarely occur. See Fig. 7 for somepg&am

There are many approaches which explicitly model the hunoaly fas an assem-
bly of parts. Ju et al. [7] introduce the “cardboard peopleddal, where body parts
are represented by a set of connected planar patches. Balvabd; Huttenlocher [2]
develop the tree-structured pictorial structure (PS) naae apply it in 2D human
pose estimation. There is also some work using non-treetated models. Sudderth et
al. [18] introduce a non-parametric belief propagationoetwith occlusion reasoning
for hand tracking. Siga& Black [15] use a similar idea for pose estimation. Both of
them use loopy belief propagation (LBP) for the inferenaett®e convergence is not
guaranteed. Ren et al. [13] use bottom-up detections oflgkliaes as part hypothe-
ses, and combine these hypotheses with various pairwisegastraints via an integer
quadratic programming. While this sidesteps the problemM<B®, the solution relies
heavily on the performance of lower-level limb detectorsn&et al. [17] detect corner
features in video sequences and model them using a decobi@dsangulated graph,



where the graph structure is found by a greedy search. doffersyth [6] use a mixture
of tree model for human tracking. Again, they both rely on gdaw-level detectors,
and cannot search the images exhaustively.

Our work is closely related to some recent work on learnirsgidininative models
for localization. Ramanan [12] uses a variant of ConditiéRendom Fields (CRF) [8]
for training localization models for articulated objectsich as human figures, horses,
etc. Sminchisescu et al. [16] uses “mixture of experts” fisual tracking.

Our work is also related to boosting on structured outputmdBing was originally
proposed for classification problems. Recently people haepted it for various tasks
where the outputs have certain structures (e.g., chages tgraphs). For example, Tor-
ralba et al. [20] use boosted random fields for object deiaatith contextual informa-
tion. Truyen et al. [22] use a boosting algorithm on Markon&am Fields (MRF) for
multilevel activity recognition.

3 Modeling the Human Body

In our method we use a combination of tree-structured dedbfenmodels for human
pose estimation. The basic idea is to model a human figure &sginted combination
of several tree-structured deformable models. The paemmef each tree model are
learned from training data in a discriminative fashion.

We first describe how we model the human body, and then denad@s$tow this
model of multiple trees can be used for modeling spatial taimgs and occlusion rea-
soning. We also relate the pictorial structures [2] definét wixel likelihoods and the
CRF model [12] defined with patch likelihoods. This connetiurns out to be useful
when we develop our occlusion reasoning scheme in Sect. 5.

3.1 SingleTree-structured Deformable Body M odels

Consider a human body model witi parts, where each part is represented by an
oriented rectangle with fixed size. We can construct an ectid graptG = (V, E)

to represent thé( parts (Fig. 1(a)). Each part is represented by a vestex V', and
there exists an undirected edge = (v;,v;) € E between vertices; andv; if v; and

v; has some dependency. Lgt= (z;, y;, 0;) be a random variable encoding the image
position and orientation of thieth part, we denote the configuration of tRepart model
asL = (Iy,ls,...,lx). Given the model parametesand assuming no occlusions, the
conditional probability ofZ. in an imagel can be written as:

P(L|1,6)  P(L|®)P(I|L,0) = P(L|a) [ [ P(I]1:, 5:) (1)
where we explicitly decompos@(L|I, ©) into the prior termP(L|«) and the product

of several likelihood term®(I|l;, 5;). EachP(I|l;, 3;) is a local likelihood for the part
7. Assuming pixel independence, we can write each localilibeld as:

P(Il;, 8;) = Py (f(1u)) Poguy (f (Tu)) SN R
uegz,;) h T—]:;[(li) e uen(ly) Poguy (f (1u))



In the above equation, we have used the following notatiois. a pixel location
in the imagel, I, is the image evidence at pixel In this paper, we use binary edges
as our image evidenceg(I,,) is a function returning 1 if7,, is an edge point, and 0
otherwise £2(1;) is the set of pixels enclosed by pags defined by;. 1" is the set of all
pixels in the whole imagé?, (., is a binomial distribution indicating how likely pixel
is an edge point under the pajt P, (,,) is a binomial distribution for the background.

Py (f (L)) ; .
Le m = exp(ﬁz(“)f(fu)), we will have:

(I|luﬁz H exXp ﬁz u)f( u)) = €Xp ( Z Bi u)f U ) (3)

weR(l;) ueN(l;)
=exp (8] f:(1(1;))) (4)

where f;(I(l;)) is the part-specific feature vector extracted from the dedrimage
patch at locatiori;. In our case, it is a binary vector of edges for part; is a part-
specific parameter that favors certain edge patterns forianted rectangle patch;)
in image/. In our formulation,3; is simply the concatenation df3;.,) }ue(,). We
visualizeg; in Fig. 1(d).

Following previous work [12], we assume the prior teF(L|«) is defined in terms
of the relative locations of the parts as follows:

P(L|a) ocexp(z Wl — 1 ) (5)
(

J)EE

Most previous approaches use Gaussian shape pribrs 1) oc N(l; — 1j; pi, 27)
[2]. However, since we are dealing with images with a widegeaof poses and aspects,
Gaussian shape priors seem too rigid. Instead we choosdial §er using discrete
binning (Fig. 1(c)) similar to the one used in Ramanan [12]:

o(ls = 1) = af bin(l; — 1) (6)

bin(-) is a vector of all zeros with a single one for the occupied binis a parameter
that favors certain spatial and angular bins for pasith respect to its parent This
spatial prior captures more intricate distributions thaBaaissian prior.

Combining (1), (4) and (5), we obtain the following formudat:

P(L|I,0) o<exp( > Wl - 1)) Zw)) (7)

(1,7)EE

whereg¢(l;) is a potential function that models the local image evideiocgart: lo-
cated at;. ¢(l;) is defined as)(1;) = BT f:(1(1;)).

Equation (7) is exactly the same Conditional Random FieldKformulation of
human pose estimation problem in Ramanan [12]. This showdvth different for-
mulations (pictorial structures [2] and CRF [12]) of humarse estimation problems
are in fact equivalent. The only difference is that they usdkeient criteria for model



parameter learning, i.e., maximizing the joint likeliho@dL) or the conditional like-
lihood (CL). In the following, we will use the CRF formulatian (7). But we will
come back to the pictorial structure formulation of (1), wivee develop our occlusion
reasoning method.

To facilitate tractable learning and inferencg,is usually assumed to form a tree
T = (V, Er) [2,12]. In particular, most work uses the kinematic treeg(Hi(b)) as the
underlying tree model.
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Fig. 1. Representation of a human body: (a) human body represestedl@-part model; (b)
corresponding kinematic tree structured model; (c) digcbénning for spatial prior; (d) visual-
ization of the learned edge-based appearance nibdet each body part. Dark areas correspond
to small values of3;, and bright areas correspond to large values,of

Inference in a single tree-structured model can be done lsgage-passing. Using
3D convolution, one can search exhaustively over all padtions in an image without
relying on feature detectors. Learning of the model paransetan be done by closed-
form solutions (ML) or gradient ascent methods (CL). See 242 for details.

3.2 Multiple Tree Models

In our work we model the human body by a collection of multippése-structured mod-
els. For example, one can use the two tree models in Fig. 4 tbehtbe kinematic
constraints and the occlusion relationships between tige @ne can also use different
tree structures (e.g., Fig. 6) to model the spatial conggdhat are not captured in the
kinematic tree. The weighting parameters which combinentb#iple tree models can
also be learned in a discriminative fashion using boost8er{. 4).

The final form of our model is:

F(L,1;0) =) wifi(L,1;6) (8)
t

wheref;(L, I; ©) is a single tree model with tree structure w; is the weight associ-
ated with this single tree model. The optimal pdsecan be obtained in our model as
L* = argmaxy, F'(L, I; ©). In the next section, we describe the algorithm for learning
all the model parametef8 = {w,, ©,}.

4 Spatial Constraintswith Multiple Trees

Our learning algorithm for spatial constraints is based aaBoost.MRF proposed in
Truyen et al. [22]. Given an imagg the problem of pose estimation is to find the



best part labelind.* that maximizesd' (L, I), i.e. L* = argmaxy, F'(L,I). F(L,I)is
known as the “strong learner” in the boosting literaturezgbia set of training examples
(I',LY),i = 1,2,...,N. F(L,I) is found by minimizing the following loss function
LO:
Lo=Y_ Y exp(F(I',L) - F(I', L)) (9)
i L

We assumé’(L, I) is a linear combination of a set of so-called “weak learners”
ie, F(I,L) = Y, w f:(L,I). Thet-th weak learnerf;(L, I) and its corresponding
weight w; are found by minimizing the loss function defined above, (f, w;) =
argmaxy ., Lo. In our case, we choose the weak learnef @5, I) = logp(L|I). To
achieve computational tractability, we assume each weakdéeg is defined on a tree
model.

If we can successfully learn a set of tree-based weak leaufyéE, I) and their
weightsw,, the combination of these weak learners captures more depeies than a
single tree model. At the same time, the inference in thisehidstill tractable, since
each component is a tree.

Optimizing Lo is difficult, Truyen et al. [22] suggest optimizing the foliong alter-
native loss functionLy = -, exp (—F(L*,I%)). It can be shown that ;; is an upper
bound of the original loss functiohp, provided that we can make squ w; = 1.1n
Truyen et al. [22], the requiremedt ; w; = 1 is met by scaling down each previous
weak learner’s weight by a factor of-w; aSw;. —w;(1—wy),forj =1,2,...,t—1,s0

’

thaty"\ ) w;+w; = Y 0_; wi(1—w;) +w, = 1, sincey "\~ w; = 1. In practice, we
find that this trick sometimes scales down previous weakkarto have zero weights.
So we use a slightly different method by scaling down eachkiesrner’s weight up to
t by a factor ofl /(1 + w;). It can be shown that we still ha@j;:l w; = 1. Figure 2
shows the overall algorithm.

Discussion: Our model is similar to “mixtures of trees” (MoT) [10] at a figdance,
but there are some important differences. MoT is a generativdel developed for
density modeling problem. It is not designed for classifaraor prediction. Although
one can use MoT as the spatial prior in a generative fashignot clear how to learn
the model in a discriminative way. Instead, our model isniedi discriminatively, and
our objective function is more closely tied to inference.

Another similar work is the tree-reweighted message pgs6iiRW)[23]. TRW
aims to approximate the partition function in MRF, it does aoswer the question
of learning a good model for recognition, i.e., TRW assunhesMRF model is given,
and it simply tries to solve the inference problem. Plus, TRWn iterative algorithm,
and its convergence is still an unsolved problem.

5 Occlusion Reasoning with Multiple Trees

In this section, we apply the multiple tree framework to tdetible counting of image
evidence” problem in human pose estimation illustratedétop row of Fig. 3, where
the same image patch is used twice to explain two differedi/huarts. Previous ap-
proaches [9] have focused on using strong priors of bodygtmssolve this problem.



Input: i = 1,2, ..., D data pairs, graph§G; = (V;, E:)}
Output: set of trees with learned parameters and weights
Select a set of spanning tregs}
Choose the number of boosting iteratidhs
Initialize {wi 0 = 5}, andw, =1
for each boosting rountd= 1,2, ..., T
Select a spanning tree
/* Add a weak learner */
O = argmaxe y ., wi,t—11og Pr,(Li, 1;|O)
fi =log Pr,(L|I,0)
if t > 1then
select the step size< w; < 1 using line searches
end if
/* Update the strong learner */
I = ﬁFt—l + l_t’;,t It
/* Scale down the previous learners’ weights*/
wj li’it,forj =1,2,...,t
/* Re-weight training data*/
Wit X Wi t—1 €xp(—wefit)
end for
Output{r:} {6} and{w:}, t =1,2,...., T

Fig. 2. Algorithm of boosted multiple trees
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Fig. 3. lllustration of “double counting of image evidence” profvletop row shows how the same
piece of image patch is used to explain two body parts, th@ilyotow shows how our occlusion
reasoning mechanism using multiple trees can alleviaseptfublem




However, these approaches are limited to the cases of ngsak and known activi-
ties. We believe the proper way to solve this problem is toomftice occlusion reason-
ing in the model. In our multiple tree framework, we can defome tree for the kine-
matic constraint (e.g., Fig. 4(a)), and a second tree foottwdusion relationships (e.g.,
Fig. 4(b)). In this section, we discuss how to incorporatelugion reasoning into the
human body model introduced in Sect. 3, and how to do inferéma tree model in-
volving occlusion relationships (see Fig. 4(b)). Beforepveceed, we first clarify the
terminology we are using. By “occlusion reasoning”, we do mecessarily mean the
body parts in the image are occluding each other, insteadseéacclusion” to refer to
the particular problem of using the same image patch to éxglfierent body parts, as
illustrated in Fig. 3.

Occlusion-sensitive formulation: The factorization of the global likelihood into
local likelihood terms in Eq. 1 is valid only if the local tes#(I|l;, 8;) fori € {1..K }
are independent. This assumption holds when there are rigsgmts among different
parts. In order to obtain a similar decomposition (hencéritisted inference) when
occlusions exist, we augment the configuratipof parti with a set of binary hidden
variablesz; = {z;(,) }uer, Similar to [18]. Note that there is a binary variaklg,) for
eachpixel. Let z;,,y = 0 if pixel u in the area enclosed by parts occluded byany
other part, and 1 otherwise. If a part is partially occludatly a subset of these binary
variables are zeros. Letting = {z1, 2o, ..., 2K }, the local likelihood term (2) can be
rewritten as:

P(I|L7 Z, @) = HP(IUiniaﬁi) (10)
Py (f )))m) 1
(Xl:[uel;l(l )< Poguy (f(1u)) an
= H H €xp ﬁz u)f( ?I)))Zi(“) (12)
i uef2(ly)

It is important to note that if all the occlusion variablgsare consistent, the global
likelihood P(I|L, Z, ©) truly factorizes as (12). Similar to [18], we enforce the sign
tency of the occlusion variables using the following funaoti

, . 0if I; occluded;, u € £2(z;), andz;(,,) = 1
1l ziws li) = { 1 other\lee

The consistency relationship of occlusion variablendz; can be enforced by the
following potential function:

VO (Ui, 25,25, 25) = H n(x5, Zicu)s TN(Tis Zju); T5) (13)
u€eY

Letting £o be the set of edges corresponding to pairs of parts that amepo
occlusions, and definingo (L, Z) H(”)ego ¢ (i, zi, 15, 2), we obtain the final
occlusion sensitive version of our model:

P(L|1,Z,0) x P(Llo)Po(L,Z)P(I|L, Z, 5) (24)



Occlusion-sensitive message passing: Now we discuss how to do message passing
that involves occlusion variables. Similar to previous work [18, 15], we assume that
potentially occluding parts have a known relative depthriteo to simplify the formu-
lation. In general, one could introduce another discretieléin variable indicating the
relative depth order between parts and perform inferencedoh value.

Our inference scheme is similar to [18]. It is based on thi¥ahg intuition. Sup-
pose partj is occluding part and we have a distribution d?(l;), we can use”(l;)
to calculate an occlusion probabilify[z;,,) = 0] for each pixek.. Then we can dis-
count the image evidence at pixehccording toP[z;,,) = 0] when we use that image
evidence to infer the configuration of If P[z;,,) = 0] is close to 1, it means pixe
has a higher probability of being claimed by partn this case, we will discount more
of the image evidence at In the extreme case d?|[z;,,) = 0] approaches 0 for all
{u:u € T}, itis equivalent to inference without occlusion reasoning

Consider the BP message sent frhnto (1;, z;) in message passing. At this point,
we already have a pseudo-margiidl;| 1)) (it is the true marginal(l,|1) if the un-
derlying graph structure is a tree, and the message is passethe root to the leaves).
If I; lies in front of [; (remember that we known the depth order), the BP message
1j.i(u) (Zi(w)) is uninformative. Ifi; is occluded and; is the only potentially occlud-
ing part, we firstly determine an approximation to the maagjimcclusion probability
Vitw) = Pr[zi) = 0]. If we think ofP(l}|I) as a 3D imagex, y, 0), v,y (Which can
be thought as a 2D image) can be efficiently calculated byawimg P(l} |T) with ro-
tated version of a uniform rectangle (with size proportidoahe size of;) filter, then
summing ove# dimension. Then the BP approximationit@an be written in terms of
these marginal occlusion probabilities (see [18] for thereale behind (15)):

Bb(u) (f(Iu))
l; Vi(u “Viw)\ B E Ty
P 11 o+ - (F2055)]) 69
= JI [iw + @ =viw) exp (Biqw f (1)) (16)
u€e2(l;)
~ [ lexp (1= viw) Biw f(Iu))] (17)
u€e2(l;)
= exp ( Z ((1 - Vi(u)) ﬁz(u)f (Iu))) (18)
u€e2(l;)
= exp (Bigi(I(ls), vi)) (19)

whereg; (I(1;), v;) is a function similar tof; (I(l;)), butinstead of returning 1, it returns
a fractional numbef1 — v;,,) at pixelu if I,, is an edge point. The approximation in
(17) is based on the fact that absolute valueg;of) are usually small (e.g., less than
0.6 in our experiments). Whem| is small,exp(x) can be approximated hiy+ « based
on the truncated Taylor expansionafp ().

Unlike previous methods [18, 15] which handle occlusionsogdng using sam-
pling, our final result (19) has a surprisingly simple forrhcén be efficiently calcu-
lated by first gettingy; (1(l;), v;) through a simple dot-product betwe¢(/) (a binary



2D edge map of the whole imadgand(1 — v;) (a 2D image of occlusion marginals),
then convolvingg; with rotated versions of;. The dot-product has the nice intuition
of discounting the image evidences by their occlusion wées Our method can be
applied efficiently and exhaustively over all the image pigeations. This is due to the
convolution trick. However, if the structure of the grapdlimmodel is not a tree, one has
to use loopy belief propagations. In that case, the conilutick is no longer valid,
since the message stored at a node is no longer in a simplédtiatrallows the deriva-
tion of (19) to go through. This further justifies the advaygaf using tree-structured
models.

6 Experiments

CMU MoBo dataset: We first test our algorithm on the rescaled versions of siggrv

persons of CMU mobo dataset [4] for the occlusion reasor8itte people’s right arm

in this dataset is almost always occluded, we only try torimige arm. We use the
background subtraction masks that come with this datasettove the edges found in
the background.

We use the two tree structures shown in Fig. 4. The first trgeucas the kine-
matic spatial constraint. The second tree captures theisiodl relationships between
the left and right legs. Inference in the second tree usem#ssage passing algorithm
described in Sect. 5. Learning the model parameters is aidiyt If we use CMU
mobo dataset for training, we will probably end up with a sgg@patial prior specifi-
cally tuned to side-view walking. Instead, we learn the nipaeameter® = {«a;, 3;}
using the same training set in our second experiment (sea/helhat dataset contains
images of people with a variety of poses. We manually set #ights of these two trees
to be equal, since we do not have appropriate datasets watmdrtruths, and we do
not want to learn the parameters from the mobo dataset. theipte, this parameter can
be learned from some labeled dataset where the relativé deger of parts is known.

Some of the sample results are shown in Fig. 5. We can seehbaingle tree
model tends to put the legs on top of each other. But our metbaectly infers the
configurations of both legs. To quantify the results, we nadiglabel 300 mobo images
as ground truths and measure thagrplexity (or negative log-probability [12]) under
the learned model. Instead of measuring the perplexitylfenthole body posé, we
measure them separately for each body p&it= 1,2, ..., K') to emphasize the effect
of occlusion reasoning between two legs. As shown in Tableut method achieves
lower perplexity on the lower and upper right legs. The pexities for other body parts
are not shown in the table since they are the same for bothaudgtfhis is because we
have only modeled the occlusion relationships betweerethe |

Peopledataset: We test our algorithm on the people dataset used in previodsjdz2].
This dataset contains 305 images of people in various pBgss100 images and their
mirror-flipped versions are used for training, and the rerimay 205 images for test-
ing. We manually select three tree structures shown in FigltBough it will be an
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Fig. 4. Two tree structures used on CMU Mobo dataset. We use dastetti indicate occlusion
relationships, rather than spatial constraints

Table 1. Quantitative measurement on mobo dataset for the rightrugomet lower legs. Smaller
perplexities mean better performance

| Part[[Perplexity(two treegpPerplexity(one tre¢)

ru-leg 32.4939 33.9706
rl-leg 26.7597 33.6693

interesting future work on how to automatically learn theetistructure at each itera-
tion in an efficient way. We visualize the distributid(Z|I) as a 2D image using the
same technique in [12], where the torso is rendered as redjgper-limbs as green,
the lower-limbs and the head as blue. Some of the parsindisese shown in Fig. 7.
We can see that our parsing results are much clearer thamthasng the kinematic
tree. In many images, the body parts are almost clearlylei§ibm our parsing results.
In the results of using the kinematic tree, there are manyenpikels, indicating high
uncertainty about body parts at those locations. But witltipla trees, a lot of these
white pixels are cleaned up. It is plausible that if we santp&epart candidatels ac-
cording toP(l;|1) and use them as the inputs to other pose estimation alg&item.,
Ren et al. [13]), the samples generated from our parsindtseate more likely to be
the true part locations.

7 Conclusion

We have presented a framework for modeling human figures adlection of tree-
structured models. This framework has the computationadaiges of previous tree-
structured models used for human pose estimation. At the same, it models a richer
set of constraints between body parts. We demonstrate suitseon side-walking per-
sons in CMU mobo dataset, and a challenging people datafietswibstantial pose
variations.

Human pose estimation is an extremely difficult computdoviproblem. The solu-
tion of this problem probably requires the symbiosis of @as kinds of visual cues. Our
framework provides a flexible way of modeling dependencets/ben non-connected
body parts.
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Fig.5. Sample results on the CMU mobo dataset: (a) original ima@®siesults of using one

kinematic tree; (c) results of using multiple trees for asdbn reasoning

@



O—O—(W—-® 0006

Fig. 6. Three tree structures used on people dataset
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Fig. 7. Sample results on the people dataset: (a) original imagpeegults of using one kinematic
tree; (c) results of using multiple trees
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