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Abstract. Learning statistical patterns based on relational frequencies
is a machine learning task that supports applications like strategic plan-
ning and query optimization. Parametrized Bayes nets (PBNs) are a
1st-order logic extension of Bayes nets for representing statistical pat-
terns in relational data. The standard grounding semantics for PBNs is
not appropriate for answering frequency queries, because such queries
concern generic events, not individual ground facts. We propose a new
frequency semantics for PBNs, that is based on Halpern’s classic domain
frequency semantics for probabilistic 1st-order logic [?]. A suitable ob-
jective function for learning parameters for answering frequency queries
is the recent relational BN pseudo-likelihood measure [?], which is based
on random instantiations of 1st-order variables, like Halpern’s semantics.
The pseudo-likelihood maxima are the observed empirical frequencies in
the relational data structure. A naive computation of database frequen-
cies is intractable due to the complexity imposed by negated relational
links. We render this computation tractable by using the fast Mobius
transform. Evaluation on four benchmark datasets shows that maximum
pseudo-likelihood provides accurate estimates at di↵erent sample sizes.

1 Introduction

Many real-world applications store data in relational format, with di↵erent tables
for entities and their links. One of the machine learning problems that arise from
relational data is frequency estimation: building a model that can answer queries
about the rates of generic events in the database [?]. For example, a frequency
query for a movie customer database may be “what is the percentage of friends
who are both women”? A model of relational frequencies can be used for several
applications.

Statistical 1st-order Patterns. AI research into combining 1st-order logic
and probability investigated in depth the representation of statistical pat-
terns in relational structures, based on relational frequencies [?, ?]. Often
such patterns can be expressed as generic statements, like “intelligent stu-
dents tend to take di�cult courses”.

Policy making and strategic planning. A university administrator may wish
to know which program characteristics attract high-ranking students in gen-
eral, rather than predict the rank of a specific student in a specific program.



Maier et al. [?] describe several applications of causal-relational knowledge
for decision making. These causal relations reflect correlations defined by
relational frequencies.

Query optimization is an application where a statistical model predicts a
probability for given table join conditions that can be used to infer the size
of the join result [?]. Estimating join sizes (selectivity estimation) is used to
minimize the size of intermediate join tables [?].

Approach We focus on building a Bayes net model for relational frequency, uti-
lizing Poole’s Parametrized Bayes nets (PBNs) [?]. The nodes in a PBN are con-
structed with functors and 1st-order variables (e.g., genre(M ) may be a node).
The PBN semantics proposed by Poole is a grounding semantics where the 1st-
order Bayes net is instantiated with all possible groundings to obtain a directed
graph whose nodes are functor with constants (e.g., genre(scream)). The ground
graph can be used to answer queries about individuals, such as “if user 10 has 30
friends, of whom 10 are women, what is the probability that user 10 is a woman”?
However, the ground graph is not appropriate for answering queries about fre-
quencies because these are about generic rates and percentages, not about any
particular individuals. We propose a new semantics for Parametrized Bayes nets
that supports frequency queries. The semantics is based on Halpern’s classic do-
main frequency semantics for probabilistic 1st-order logic. This semantics views
statements with 1st-order variables as expressing a frequency statement. For in-
stance, the claim “”the percentage of friends who are both women is 40%” could
be expressed by the 1st-order formula

P (Gender(X ) = female,Gender(Y ) = female|Friend(X ,Y )) = 40%.

Formally, the domain frequency semantics views a 1st-order variable as ran-
domly selecting a member of its domain [?, ?]. The probability of a 1st-order
statement is the probability that it is satisfied by independent random instan-
tiations of its variables. We show that the random selection idea can be ap-
plied to assign a frequency semantics to 1st-order queries over the nodes in a
Parametrized Bayes net. While we focus on PBNs, the random selection seman-
tics can be applied to any statistical-relational model whose syntax is based on
1st-order logic.

Getoor introduced statistical-relational models (SRM) as a Bayes net type
representation of relational frequencies [?]. To our knowledge, ours is the first
work that evaluates a relational model other than SRMs for frequency estima-
tion.

Learning The state-of-the-art structure learning method for PBNs is the learn-
and-join algorithm of Khosravi et al. [?]. In this paper we study parameter learn-
ing for frequency modelling. A standard Bayes net parameter learning method is
maximum likelihood estimation. A relational likelihood function for Bayes nets
is di�cult to define because of cyclic data dependencies. We propose to utilize a



recent relational pseudo-likelihood measure for Bayes nets [?] that is well defined
even in the presence of cyclic dependencies. This measure matches the frequency
semantics well because it is also based on the concept of random instantiations:
The pseudo log-likelihood is the expected log-likelihood of a random instantia-
tion of the 1st-order variables in the PBN. The pseudo-likelihood can be used as
an objective function for estimating Bayes net parameters from relational data.
In this paper we consider the parameters that maximize the pseudo likelihood,
abbreviated as MPLE. The maximization problem has a closed-form solution:
the MPLE parameters are the empirical frequencies, as with classical i.i.d. max-
imum likelihood estimation. The paper examines the accuracy and tractability
of MPLE. The main computational challenge is to compute database statistics
that involve negated relationships. Enumerating the complement (negation) of
a relationship table is computationally infeasible. We show that the fast Möbius
transform makes MPLE tractable, even in the case of negated relationships. The
Möbius transform has been applied for computing Dempster-Schae↵er belief up-
dates [?]. Ours is the first application in relational learning.

Results We evaluate MPLE on four benchmark real-world datasets. On complete-
population samples MPLE achieves near perfect accuracy in parameter esti-
mates, and excellent performance on Bayes net queries. The accuracy of MPLE
parameter values is high even on medium-size samples.

Contributions Our main contributions for frequency modelling in relational data
are the following:

1. A new frequency semantics for graphical models based on 1st-order logic,
derived from Halpern’s random selection semantics for probabilistic 1st-order
logic.

2. Making the computation of frequency estimates tractable by computing
database statistics using the fast Möbius transform.

3. Evaluating the empirical accuracy of the Bayes net frequency models at
medium to large sample sizes.

While this paper focuses on Bayes net frequency models, the fast Möbius
transform is a general procedure for computing relational statistics that involve
negated links. This problem arises also in learning Probabilistic Relational Mod-
els with (link) existence uncertainty [?, Sec.5.8.4.2]. Getoor et al. use a “1-
minus” technique that avoids enumerating the complement of a single relation.
The FMT achieves this for an arbitrary number of relations, which has been
an open problem in statistical-relational learning. Other application areas in-
clude multi-relational data mining and ILP models with clauses contain negated
relationships.

Paper Organization We review background and notation in the next section.
Section 3 presents s theoretical results on the consistency and asymptotic e�-
ciency. Section 4 presents the fast Möbius transform for relational data. Simu-
lation results are presented in Section 5, showing the runtime cost of estimating



parameters, and evaluations of their quality by (a) inference on random queries,
and (b) comparison with the true population parameter values.

2 Related Work

Type 1 and Type 2 Relational Probabilities. Classic AI research established a
fundamental distinction between two types of probabilities associated with a re-
lational structure [?, ?]. Type 1 probabilities are assigned to the rates, statistics,
or frequencies of events in a database. Type 2 probabilities are assigned to spe-
cific, non-repeatable events or the properties of specific entities; we may refer
to them as instance probabilities. Syntactically, type 1 probabilities are assigned
to formulas that contain 1st-order variables (e.g., P (Flies(X )|Bird(X ) = 90%,
or “birds fly” with probability 90%), whereas instance probabilities are assigned
to formulas that contain constants only (e.g., P (Flies(tweety) = 90%). There
has been much AI research on using Bayes nets for representing and reasoning
both with class frequencies [?] and instance probabilities [?]. Most statistical-
relational learning has been concerned with type 2 instance probabilities; mod-
els like Probabilistic Relational Models (PRMs) [?] and Markov Logic Networks
(MLNs) [?] define probabilities for ground instances using a grounding semantics.
To our knowledge, Statistical Relational Models (SRMs) [?] are the only statisti-
cal model class with an explicit semantics for representing database frequencies,
prior to our proposed semantics for PBNs.

SRMs and PBNs. SRMs di↵er from PBNs and other statistical-relational mod-
els in several respects. (1) The SRM syntax is not that of first-order logic, but is
derived from a tuple semantics [?, Def.6.3]. The semantics of SRMs is that tuples
are sampled independently from di↵erent tables, and a Boolean join indicator
variable takes on the value true if the tuples join (i.e., agree on the primary
key fields) [?, Def.6.3]. This is di↵erent from the random selection semantics we
propose for PBNs. (2) The expressive power of SRMs is less than that of PBNs.
A relevant di↵erence for our work is that SRMs cannot express general com-
binations of positive and negative relationships [?, Def.6.11]. While this avoids
the computational di�culties associated with negated relationships, it limits the
expressive power of SRMs. For discussion of further limitations see [?, Ch.6].
(3) With respect to learning, the published learning algorithm for SRMs uses
information gain as a model selection score, not a pseudo-likelihood [?]. Condi-
tional database frequencies were used by analogy with the relational case, but
there was no theorem establishing these as the score maxima. A direct empirical
comparison is di�cult as code has not been released (Getoor, personal commu-
nication). The study by [?] used all the data for both testing and training, rather
than considering increasing sample sizes. In this setting, SRMs achieved good
average accuracy on the task of join selectivity estimation for random queries;
the accuracy of parameter estimates was not considered.

Unified Learning For Type 1 and Type 2 Probabilities. For inference, connections
between relational frequencies and instance probabilities have been a major sub-



ject in AI research. For example, Halpern [?] showed that any type 2 inference
model can be used for type 1 as follows. Introduce a new individual constant for
each 1st-order variable in the relational model (e.g., random-student, random-
course, and random-prof). Applying instance probability inference to these new
individuals provides a query answer that can be interpreted as a generic fre-
quency. To illustrate, if the only thing we know about Tweety is that Tweety is
a bird, then the probability that Tweety flies should be the frequency of flyers in
the bird population. In statistical terminology, marginal probabilities assigned
to a ground atom should reflect population probabilities. We apply Halpern’s
method to perform frequency inference with Markov Logic Networks and com-
pare it with Bayes net inference; we leave for future work comparisons with other
instance probability models, such as PRMs.

We believe that a unified approach to learning for both relational probability
types is an exciting research direction for statistical-relational learning. This
paper contributes to unification in two ways. (1) We show how one and the same
1st-order model can be used for both type 1 and type 2 inferences. Depending
on the type of query asked, one needs to use a grounding semantics for type 2
queries about ground instances, and a frequency semantics for type 1 queries
about frequencies. (2) Previous work has used the random selection pseudo-
likelihood to learn structures that perform well for type 2 queries [?, ?]. In this
paper we provide evidence that the same likelihood measure learns structures
and parameter values that make accurate predictions for type 1 queries. Thus
the same objective function is suitable for learning models for both types of
queries.

3 Background: Parametrized Bayes Nets

Our work combines concepts from relational databases and graphical models. As
much as possible, we use standard notation in these di↵erent areas. Parametrized
Bayes nets are a basic learning model for relations; we follow the original presen-
tation of Poole [?]. We assume familiarity with Bayes nets and concepts such as
CP-table and I-map [?]. A functor is a function symbol or a predicate symbol.
Each functor has a set of values (constants) called the range of the functor.
To conform to statistical terminology, Poole refers to 1st-order variables as pop-
ulation variables. A population variable X is associated with a population,
which is a set of individuals, corresponding to a type or domain in logic. A
functor random variable or functor node is of the form f(X1, . . . ,Xk). A
Parametrized Bayes Net is a Bayes net whose nodes are functor random vari-
ables. Figure ?? shows a PBN. The syntax of PBNs is similar to that of other
directed relational graphical models (cf. [?]).

The functor formalism is rich enough to represent an entity-relationship
schema via the following translation: Entity sets correspond to populations,
descriptive attributes to functors, relationship tables to Boolean functors, and
foreign key constraints to type constraints on the arguments of relationship pred-
icates. Figure ?? shows a simple relational database instance [?].



Fig. 1. An illustrative Parametrized Bayes Net. Friend(X ,Y ) is a relationship node,
the other three nodes are attribute nodes.

Name% Gender% Coffee
Drinker%

Anna% F% T%

Bob% M% F%

Name1% Name2%

Anna% Bob%

Bob% Anna%

People% Friend%

Fig. 2. A simple relational database instance.

An instantiation or grounding for a set of variables X1, . . . ,Xk assigns a
constant ci from the population of Xi to each variable Xi.

4 Frequency Semantics for Parametrized Bayes Nets

For a single population, a distribution over population members induces a joint
distribution over their attributes (e.g., age, height, gender). Classic AI research
generalized the concept of single population frequencies to 1st-order logic using
the idea of a random selection [?, ?]. We provide a brief review in the context
of a functor language. For example, consider a probabilistic 1st-order statement
using the obvious abbreviations for the BN of Figure ??:

P (Friend(X ,Y ) = T ,Gender(X ) = M ,Gender(Y ) = F ) = 1/4 . (1)

which assigns a probability to a sentence with free 1st-order variables.1 To
evaluate whether the sentence is true in a given database/interpretation D, the
1 The full syntax distinguishes between free variables and variables with a probabilistic

interpretation.



random selection semantics assumes a distribution over the population/domain
associated with each free 1st-order variable. Assuming the independence of these
distributions, we obtain a joint distribution over the values of population vari-
ables X1, X2, . . . ,Xk; that is, a joint distribution over tuples of individuals. The
domain frequency of a 1st-order statement is then the sum over all tuples that
satisfy the statement, weighted by the probability of each tuple. The statement
is true in a database if it assigns the domain frequency correct for the database.

In learning, an observed database instance D provides data only for a sub-
population. We define the observed database frequency, denoted by PD, of
a functor node assignment in a relational database to be the number of in-
stantiations of the population variables in the functor nodes that satisfy the
assignment in the database, divided by the number of all possible instantiations.
The database frequency is the special case of Halpern’s domain frequency with
a uniform distribution over all observed population members. For example, the
probability statement (??) is true in the database of Figure ?? given a uniform
distribution over users.

The random selection concept provides a type 1 semantics for Parametrized
Bayes nets: if we view 1st-order variables X1, X2, . . . ,Xk as independent random
variables that each sample an individual, then a functor of the form f(X1, X2, . . . ,Xk)
represents a funcion of a random k-tuple. Since a function of a random variable
is itself a random variable, this shows how we can view functor nodes containing
1st-order variables as random variables in their own right, without grounding
the variables first. For example, using the obvious abbreviations for the BN of
Figure ??, the semantics of a joint assignment like

P (F(X , Y ) = T , G(X ) = M , G(Y ) = M , CD(X ) = T) = 10%

is “if we randomly select two users X and Y , there is a 10% chance that they
are friends, both are men, and one is a co↵ee drinker”.

5 Review: Pseudo-Likelihood for Parametrized Bayes

Nets

Schulte [?, ?] proposed a way to measure the fit of a Bayes net model to relational
data that matches the random selection semantics: the idea is to consider a
random grounding of the 1st-order variables in the Parametrized Bayes net,
rather than a complete grounding. The pseudo log-likelihood is defined as follows.

1. Randomly select a grounding for all 1st-order variables that occur in the
Bayes Net. The result is a ground graph with as many nodes as the original
Bayes net.

2. Look up the value assigned to each ground node in the database. Compute
the log-likelihood of this joint assignment using the usual product formula;
this defines a log-likelihood for the random instantiation.

3. The expected value of this log-likelihood is the pseudo log-likelihood of the
database given the Bayes net.

For illustration, Table ?? provides a sample computation of the random se-
lection log-likelihood, where we have used the obvious abbreviations for functors.



As the example illustrates, the pseudo-likelihood is well-defined even in the pres-
ence of an autocorrelation dependency of Gender on itself.

X Y F(X,Y) G(X) CD(X) G(Y) BN probability BN log-p
Anna Bob T F T M 0.52 · 0.3 · 0.8 = 0.06 -2.81
Bob Anna T M F F 0.52 · 0.3 · 0.6 = 0.24 -3.10
Anna Anna F F T F 0.52 · 0.5 · 0.8 = 0.26 -2.30
Bob Bob F M F M 0.52 · 0.5 · 0.6 = 0.11 -2.59

Table 1. An example computation of the pseudo-likelihood for the database of Fig-
ure ?? and the Bayes net of Figure ??. (Unspecified BN parameters are chosen as
uniform solely for computational convenience.) The pseudo log-likelihood is -2.7, the
average of the log-probabilities (rightmost column).

Schulte [?] proves the following result, which shows that the pseudo-likelihood
maxima (MPLE) are the observed empirical frequencies, analogous to the max-
imum likelihood estimates for i.i.d. data.

Proposition 1. For a Bayes net structure and database D, the parameter val-
ues that maximize the pseudo-likelihood are the conditional empirical frequencies
defined by database distribution PD.

In the remainder of the paper we consider the properties of MPLE parameter
estimates. We begin with a procedure for computing them.

6 Computing Relational Frequencies

Initial work in SRL modelled the distribution of descriptive attributes given
knowledge of existing links. Database statistics conditional on the presence of
one or more relationships can be computed by table joins with SQL. More re-
cent models represent uncertainty about relationships with link indicator vari-
ables. For instance, a Parametrized Bayes net includes relationship indicator
variables such as Reg(S ,C ). Learning with link uncertainty requires computing
su�cient statistics that involve the absence of relationships. A naive approach
would explicitly construct new data tables that enumerate tuples of objects
that are not related. However, the number of unrelated tupes is too large to
make this scalable (think about the number of user pairs who are not friends
on Facebook). Can we instead reduce the computation of su�cient statistics
that involve negated relationships to the computation of su�cient statistics that
involve existing (positive) relationships only? The classic Möbius parametriza-
tion for binary variables provides an a�rmative answer [?, p.239]. Consider a
set b1, . . . , bm of binary variables, where all marginal probabilities are available
that involve only positive values. Thus we have available probabilities such as
P (b1 = 1); P (b1 = 1, b2 = 1); P (b1 = 1, b3 = 1, bk = 1); etc. These joint prob-
abilities are the Möbius parameters of the joint distribution. The Möbius



inversion theorem entails that all joint probabilities, involving any number of 0
values, can be computed as an alternating sum of the Möbius parameters. We
can apply this result for MPLE as follows. Consider a PBN family containing
m relationship nodes. We wish to compute frequencies of the joint family as-
signments, from which conditional probabilities are easily derived. The Möbius
inversion theorem entails that each joint frequency can be computed from joint
frequencies that involve existing relationships only.

The fast Möbius transform (FMT) is an optimal algorithm for converting
the Möbius parameters to a complete set of joint probabilities [?]. The FMT was
originally described using category theory with lattice structures. Our version
is adapted for joint probability tables (JP-tables). A JP-table is just like a
CP-table whose rows correspond to joint probabilities rather than conditional
probabilities. To represent a Möbius parameter, we allow relationship nodes to
take on the value ⇤ for “unspecified”. For instance, suppose that the family nodes
are Int(S ), Reg(S ,C ), RA(S ,P). Then the Möbius parameter P (Int(S ) = 1 ) is
stored in the row where Int(S ) = 1 ,Registered(S ,C ) = ⇤,RA(S ,P) = ⇤. The
FMT uses a local update operation corresponding to the simple probabilistic
identity

P (�,R, R = F ) := P (�,R)� P (�,R, R = T ) (2)

where � is an attribute condition that does not involve relationships and R
specifies values for a list of relationship nodes. This shows how a probability
that involves k + 1 false relationships can be computed from two probabilities
that each involve only k false relationships, for k � 0. The FMT initializes the
JP-table with the Möbius parameters without negated relationships, that is, all
relationship nodes have the value T or ⇤. It then goes through the relationship
nodes R1, . . . , Rm in order, replaces at stage i all occurrences of Ri = ⇤ with
Ri = F , and applies the local update equation for the probability value for the
modified row. At termination, all ⇤ values have been replaced by F and the JP-
table specifies all joint frequencies. Algorithm ?? gives pseudocode and Figure ??
illustrates the FMT in a schematic example with two relationship nodes.

Complexity Analysis. Kennes and Smets provide a thorough theoretical analysis
of the FMT. We summarize the main points, for more details see [?]. (1) The key
property of the FMT is that it accesses data only about existing links, never about
nonexisting links. The number of additions performed by the FMT is m2m�1. A
lower bound argument shows that this is optimal [?, Cor.1]. (2) Without a bound
on m, computing su�cient statistics in a relational structure is #P-complete [?,
Prop.12.4]. In practice, the number m of relationship nodes is small, 4 or less in a
typical relational model. (3) Kennes and Smets describe an “obvious algorithm”
that applies the local update to each row in the JP-table. The obvious algorithm
also uses only existing links, but requires O(3m) additions. 2

2 The obvious algorithm, but not the FMT, was rediscovered by Khosravi et al. and
presented as a conference poster at ILP 2009. This work was not included in the
proceedings or any other archival publication.



Algorithm 1 The fast Möbuis transform for parameter estimation in a
Parametrized Bayes Net.

Input: database D; a set of functor nodes divided into attribute nodes A1, . . . , Aj

and relationship nodes R1, . . . , Rm.
Output: Joint Probability specifying the data frequencies for each joint assignment
to the input functor nodes.

1: for all attribute value assignments A1 := a1, . . . , Aj := aj do

2: initialize the JP-table with the Möbius parameters: set all relationship nodes to
either T or ⇤; find joint frequencies with data queries.

3: for i = 1 to m do

4: Change all occurrences of Ri = ⇤ to Ri = F .
5: Update the joint frequencies using (??).
6: end for

7: end for

23/n 
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J.P. = joint probability 

Fig. 3. The fast Möbius transform with m = 2 relationship nodes. For simplicity we
omit attribute conditions.

7 Evaluation

All experiments were done on a QUAD CPU Q6700 with a 2.66GHz CPU and
8GB of RAM. We evaluated the algorithm on real-world datasets. The datasets
and our code are available on the Web [pointer omitted for blind review].

7.1 Datasets

We used four benchmark real-world databases, with the modifications by [?],
which contains details and references.

Dataset #tuples

Mondial 814
Hepatitis 12447
Financial 17912
Movielens 82623

Table 2. Size of datasets in number of table tuples.

MovieLens. A dataset from the UC Irvine machine learning repository.
Financial A dataset from the PKDD 1999 cup.



Hepatitis Database. A modified version of the PKDD’02 Discovery Chal-
lenge database.

Mondial Database. A geography database. Mondial features a self-relationship,
Borders, that indicates which countries border each other.

To obtain a Bayes net structure for each dataset, we applied the learn-and-
join algorithm to each database [?]. This is the state-of-the-art structure learning
algorithm for PBNs; for an objective function, it uses the pseudo-likelihood de-
scribed in this paper. We also conducted experiments with synthetic graphs and
datasets. The results are similar to those on real-life datasets. We omit details
for lack of space.

7.2 Learning Times

Figure ?? shows the runtimes for computing parameter values. The first method
uses the fast Möbius transform to compute the conditional probabilities, the
second Complement method uses SQL queries that explicitly construct tables
for the complement of relationships, i.e., tables that contain tuples of unrelated
entities.

Table 3. Learning time results (sec) for the fast Möbius transform vs. constructing
complement tables.

Database Parameters Complement FMT C/FMT

Mondial 1618 157 7 22
Hepatitis 1987 18,246 77 237
Financial 10926 228,114 14,821 15
MovieLens 326 2,070 50 41

Fig. 4. Query Performance: Estimated vs. true probability. The average error and
standard deviation are shown as well. Number of queries/average inference time per
query: Mondial, 506/0.08sec; MovieLens, 546/0.05sec; Hepatitis, 489/0.1sec; Financial,
140/0.02sec.
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7.3 Inference

The basic inference task for Bayes nets is answering probabilistic queries. If
the given Bayes net structure is an I-map of the true distribution, then correct
parameter values lead to correct predictions. Thus the performance on queries
has been used to evaluate parameter learning in several studies [?]. We randomly
generate queries for each dataset according to the following procedure. First,
randomly choose a target node V 100 times, and go through each possible value
a of V such that P (V = a) is the probability to be predicted. For each value
a, choose randomly the number k of conditioning variables, ranging from 1 to
3. Make a random selection of k variables V1, . . . , Vk and corresponding values
a1, . . . , ak. The query to be answered is then P (V = a|V1 = a1, . . . , Vk = ak).

As in [?], we evaluate queries after learning parameter values on the entire
database. Thus the BN is viewed as a statistical summary of the data rather than
generalizing from a sample. BN inference is carried out using the Approximate
Updater in CMU’s Tetrad program. Figure ?? shows the query performance for
each database. A point (x, y) on a curve indicates that there is a query such
that the true probability value in the database is x and the probability value
estimated by the model is y.

The Bayes net inference is close to the ideal identity line, with an average
error of less than 1%.

Comparison With Markov Logic Networks Although most statistical-relational
models were designed for instance-level probabilities rather than frequency queries,
Halpern’s method described in Section ?? allows us to apply an instance-level
inference model for frequency estimates. To benchmark our results, we com-
pare PBN inferences with Markov Logic Network (MLN) frequency estimates.
In graphical terms, MLNs can be viewed as defining an undirected relational
model. They are a good comparison point because (1) they are currently one of
the most active areas of SRL research; the Alchemy system provides open-source,
state-of-the-art learning and inference software [?]. (2) They do not require the
specification of further components (e.g., a combining rule or aggregation func-
tion). (3) An undirected model can accommodate recursive relationships (cyclic
dependencies). We compare the following learning algorithms [?]. We use the
MC-SAT algorithm for MLN inference as implemented in Alchemy.

PBN Bayes net parametrized with maximum pseudo likelihood estimates.
MBN+Neg The Bayes net structure is converted to an MLN using the stan-

dard moralization procedure. The weights of clauses are learned using Alchemy’s
default weight learning procedure [?].

LHL The LHL algorithm is a structure learning algorithm that produces a
parametrized MLN.

LSM The state-of-the-art LSM structure learning algorithm that produces a
parametrized MLN. In experiments by Kok and Domingos, LSM outper-
formed other MLN learners.



The MBN method (for “Moralized Bayes Net”), was used by Khosravi et al.
[?, ?, ?], but without clauses involving negated links. To define a complete joint
distribution for frequency querying, it is necessary to add clauses with negated
links. Unfortunately, Alchemy fails to terminate on any of our datasets because of
the computational challenges that arise from many clauses with negated links.
This is evidence for the usefulness of the Fast Möbius Transform. To obtain
comparison results, we used state-of-the art MLN structure learning algorithms
as well as the moralized structure. An advantage of this approach is that the
structures are learned with Alchemy clause weight estimation as a subroutine,
to they are optimized for Alchemy parameter learning.

The Bayes net models provide much more accurate frequency estimates than
the MLN models, with an average improvement of 10% or more. This shows that
even with complete data, learning an accurate model of relational frequencies is
not a trival task.

Average error
Dataset JBN MLN(LSM) MLN(LHL) MBN+Neg
Mondial 0.9% 8.6% 10.5% NT

Hepatitis 0.8% 11.2% 13.2% NT
Financial 0.9% 9.1% NT NT
Movielens 0.6% 14.2% NT NT

Table 4. The frequency query performance of Bayes nets vs. Markov Logic Networks.
We show the average absolute error over all random queries between the predicted
frequency and the true database frequencies. NT denotes non-termination within the
system resources.

7.4 Conditional Probabilities

Fig. 5. Error (absolute di↵erence) in conditional probability estimates. Median (red
center line) and spread of error in the estimates of conditional probability parameters,
averaged over 10 random subdatabases and all parameters in a given BN.

 



To study parameter estimation directly at di↵erent sample sizes, we per-
formed a set of experiments to train the model on N% of the data and test on
the other (100 � N)% of the data. Conceptually, we treated each benchmark
database as specifying an entire population, and then estimated the complete-
population frequencies from partial-population data. A fractional sample size
parameter is uniform across tables and databases. We employed standard sub-
graph subsampling [?, ?], which selects entities from each entity table uniformly
at random and restricts the relationship tuples in each subdatabase to those
that involve only the selected entities. Subgraph sampling matches the random
selection semantics which is based on random draws from a population. It is
applicable when the observations include positive and negative link information
(e.g., not listing two countries as neighbors implies that they are not neighbors).
The subgraph method satisfies an ergodic law of large numbers in the sense that
as the subsample size increases, the subsample relational frequencies approach
the population relational frequencies.

With increasing sample size, MPLE estimates approach the true value in all
cases. Even for the smaller sample sizes, the median error is close to 0, confirming
that most estimates are very close to correct. As the box plots show, the 3rd
error quartile of estimates is bound within 10% on Mondial, the worst case, and
within less than 5% on the other datasets.

8 Conclusion

This paper considered parameter learning for Parametrized Bayes nets that
model database statistics. Our approach was to use the maxima of a recent
pseudo-likelihood function as estimates, which are the empirical frequencies. The
fast Möbius transform makes the computation of database frequencies feasible
even when the frequencies involve negated links. Theoretically, the maximum
pseudo-likelihood estimates approach the true conditional probabilities as ob-
servations increase. Experimentally, the fit is good even for medium data sizes.
Overall, our results indicate that Parametrized Bayes nets together with max-
imum pseudo-likelihood estimates provide an accurate tractable model of the
frequency of events in a relational structure.

A direction for future work is to adapt more techniques from i.i.d. Bayes net
parameter learning, such as smoothing frequencies and incorporating uncertainty
in parameter estimates [?]. A theoretical understanding of estimator variance
would be desirable: we may adapt the asymptotic approximations of [?], or apply
graph estimator theory [?]. A plausible hypothesis is that recursive dependencies
of an attribute on itself lower the e↵ective sample size and hence increase the
parameter variance.


