

# Propositionalization for Unsupervised Outlier Detection in Multi-Relational Data

Fatemeh Riahi, Oliver Schulte



Flairs, May 2016



# The Short Version

# Our Goal

Most of outlier detection method work with a single data table or attribute value format.

One of the main data models for structured data is the relational data model.

We develop a preprocessing method that leverages single-table methods.

| Player    | AppearsPlayerInMatch |              |
|-----------|----------------------|--------------|
| Match     | AppearsTeamInMatch   |              |
| Player ID | Player ID            | ShotEff(T,M) |
| 112       | 1                    | High         |
| 112       | 2                    | High         |
| 123       | 1                    | Low          |
| 123       | 2                    | Med          |
| 151       | 1                    | low          |
| Match ID  | Team ID              | Match ID     |
| 1         | 20                   | 1            |
| 2         | 20                   | 2            |
| Team      | Team                 |              |
| Team ID   | Team ID              | ShotEff(T,M) |
| 1         | 20                   | Med.         |
| 20        | 20                   | Med.         |
| 20        | 1                    | Low          |

# Approach

Fix a target class of individuals (e.g. players).

*Learn* informative features from the relational data.

Combine the learned features in a single table, one column for each learned feature.

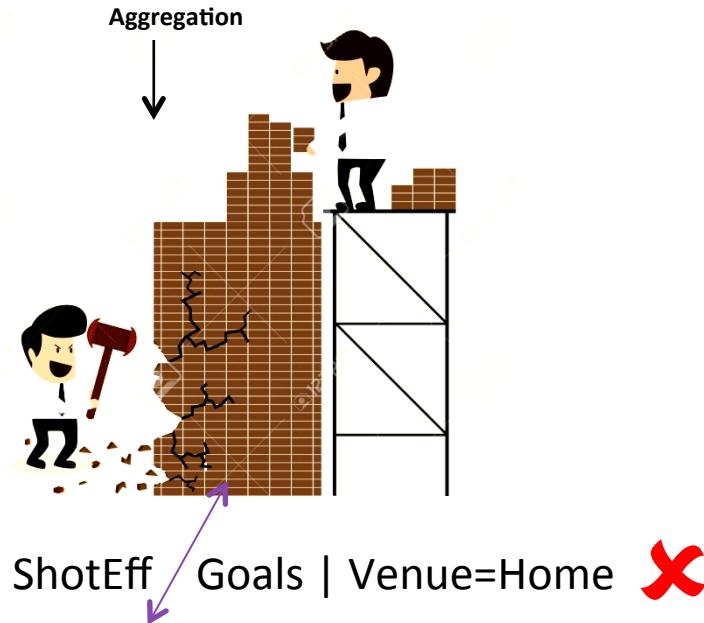
- This is called “propositionalization”.

Apply standard single-table outlier detection methods to the learned feature table.

# Previous Work

Manually construct new features by aggregating single attributes (Breunig et al.).

Information loss: misses interactions among features.



Avg(ShotEff)=0.45      Avg(Goals)=0.5

| PlayerID | MatchID | Venue | Shot_Eff | Goals |
|----------|---------|-------|----------|-------|
| 1123     | M1      | Home  | 0.9      | 1     |
| 1123     | M2      | Away  | 0        | 0     |
| 1123     | M3      | Home  | 0.9      | 1     |
| 1123     | M4      | Away  | 0        | 0     |

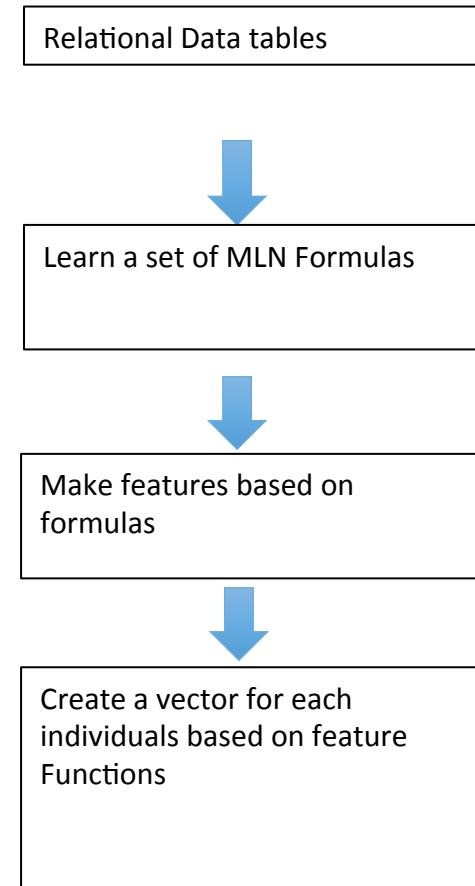
# Our Approach

Learn conjunctions of associated attributes.

This can be done by applying Markov Logic Network Structure Learning.

Example:

- Formula:  $ShotEff = high \text{ and } PassEff = low$  is a new feature indicating when both conditions are true.



# Contributions

First propositionalization method for supporting relational outlier detection (as opposed to classification).

Find informative conjunctive features for relational outlier detection:  
A novel application of Markov Logic Network structure learning.

# Propositionalization With Markov Logic Networks

# Logical Concepts

Population is a set of individuals.

- Example: all players in the database.

Relationship shows which objects are linked.

- Example: shotEfficiency(Player, Match) links Player  $p$  and Match  $m$ .

Formula is conjunction of assignments.  $f(\sigma_1, \dots, \sigma_n) = \nu$

- Example: shotEfficiency(Player, Match)=low/high/medium
- Grounding of a formula or term means assigning constant values to its logical variables.
  - Example: shotEfficiency(Player='wayne rooney', Match=1)

# A summary of the model

Markov Logic Network is a set  $\{(\phi_1, \omega_1), \dots, (\phi_n, \omega_n)\}$  where  $\phi_i$  is a formula and  $\omega_i$  is the weight of the formula.

## Markov Logic Learning:

- Input: A relational database.
- Output: A set of conjunctive formulas that describe statistical patterns in the relational data.
- We use the moralization method (Khosravi et al. AAAI 2010, Schulte and Khosravi MLJ 2012).

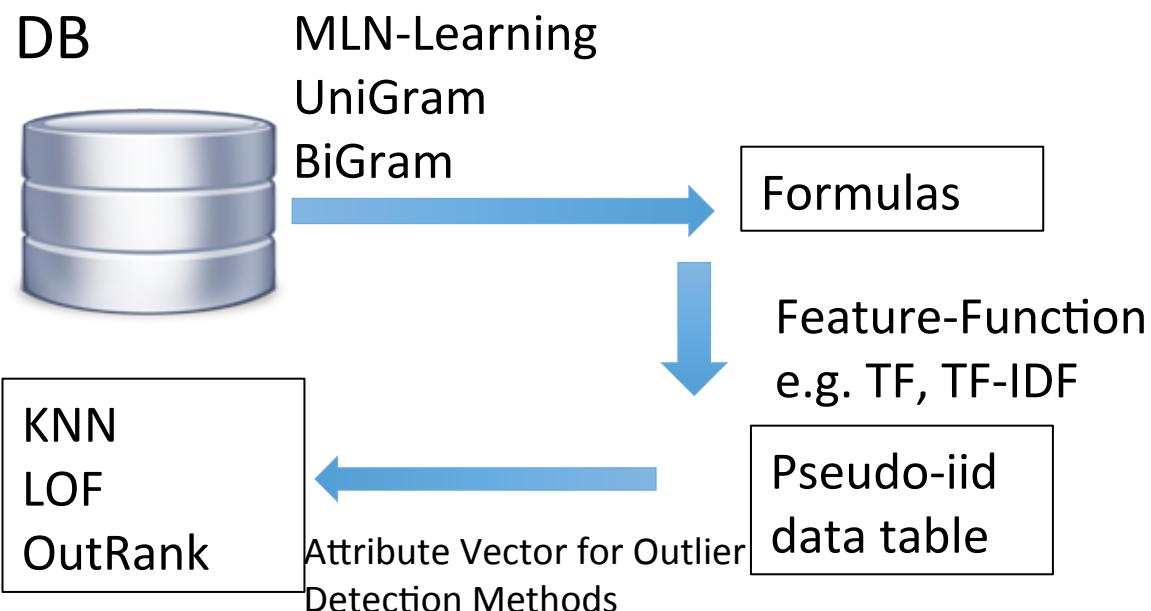
# Baselines

Wordification (Perovsek 2013): Using the concept of n-grams from NLP:

- Unigram: All single literals.
- Bigram: All conjunctions of two literals.
- We can use either term frequency (TF) or term frequency/inverse document frequency (TF-IDF).
- We call TF and TF-IDF that map multiple instances of a formula to real values

## Feature Functions

# Outlier Detection using Propositionalization



# Example

CP Table

| ShotEff(P,M) | PassEff(P,M) | CP   | Prior |
|--------------|--------------|------|-------|
| Low          | High         | 0.5  | 0.5   |
| Low          | Low          | 1    | 0.5   |
| High         | High         | 0.95 | 0.5   |

Smooth CP Table

| ShotEff(P,M) | PassEff(P,m) | CP   | Prior |
|--------------|--------------|------|-------|
| Low          | High         | 0.5  | 0.5   |
| Low          | Low          | 1    | 0.5   |
| High         | High         | 0.95 | 0.5   |
| High         | Low          | 0    | 0     |

Extract Formulas

$f1: ShotEff(P, M) = low \wedge PassEff(P, M) = high$   
 $f2: ShotEff(P, M) = low \wedge PassEff(P, M) = low$   
 $f3: ShotEff(P, M) = high \wedge PassEff(P, M) = high$   
 $f4: ShotEff(P, M) = high \wedge PassEff(P, M) = low$

Choose weighting function

Prior Vector

| f1  | f2  | f3  | f4 |
|-----|-----|-----|----|
| 0.5 | 0.5 | 0.5 | 0  |

CP Vector

| f1  | f2 | f3   | f4 |
|-----|----|------|----|
| 0.5 | 1  | 0.95 | 0  |

KNN

LOF

OutRank

Apply feature function  
e.g. TF,TFIDF

# Evaluation Methodology

# Synthetic Datasets

- Synthetic Datasets: Should be easy! Two Features per player per match.

| atio | ShotEff | Match Result |
|------|---------|--------------|
|      | 1       | 1            |
|      | 1       | 1            |
|      | 0       | 0            |
|      | 0       | 0            |
|      | 1       | 1            |
|      | 1       | 0            |
|      | 0       | 0            |
|      | 0       | 1            |

| low correlation | ShotEff | Match Result |
|-----------------|---------|--------------|
| Normal          | 1       | 1            |
|                 | 1       | 0            |
|                 | 0       | 0            |
|                 | 0       | 1            |
| Outlier         | 1       | 1            |
|                 | 1       | 1            |
|                 | 0       | 0            |
|                 | 0       | 0            |

| Single Feature | ShotEff | Match Result |
|----------------|---------|--------------|
| Normal         | 0       | 0            |
|                | 0       | 0            |
|                | 0       | 0            |
|                | 1       | 1            |
| Outlier        | 1       | 1            |
|                | 1       | 1            |
|                | 1       | 1            |
|                | 1       | 1            |

# Real-World Datasets

## Real Datasets:

- Soccer Data
  - Strikers vs. Goalies
  - Midfielders vs. Strikers
- IMDb data
  - Drama vs. Comedy

# Evaluation

**Dimensionality:** The number of attributes in the final attribute table

**Attribute Complexity:** The length of conjunctions that define attributes

**Outlier Analysis Run Time**

**Attribute Construction Time**

Apply state-of-the-art outlier detection methods to the attribute table in order to compare the performance of different feature generation methods.

- Performance accuracy score: AUC

# Evaluation Results

# Evaluation Results

A propositionalization method is scored 1 point if it produces the best accuracy on a dataset, and 0.5 points if it ties. The table shows the total number of wins and average of AUC over all datasets.

| Propositionalization →<br>Outlier Detection Method ↓ | MLN-TF      |             | Bigram-IDF  |          | Unigram-TF |          | Treeliker |          |
|------------------------------------------------------|-------------|-------------|-------------|----------|------------|----------|-----------|----------|
|                                                      | Wins        | AVG(AUC)    | Wins        | AVG(AUC) | Wins       | AVG(AUC) | Wins      | AVG(AUC) |
| utRank                                               | <b>2.50</b> | <b>0.79</b> | <b>2.50</b> | 0.70     | 1.00       | 0.64     | 0         | NA       |
| NN                                                   | <b>3.50</b> | <b>0.78</b> | 1.50        | 0.67     | 1.50       | 0.67     | 0         | 0.64     |
| DF                                                   | <b>4.00</b> | <b>0.63</b> | 1.00        | 0.55     | 1.00       | 0.61     | 1         | 0.61     |

# Evaluation Results

Comparison of complexity, dimensionality and construction time for the attributes produced by different propositionalization methods.

| Dataset                 | MLN            |                |                   | Bigram         |                |                   | Unigram        |                |                   |
|-------------------------|----------------|----------------|-------------------|----------------|----------------|-------------------|----------------|----------------|-------------------|
|                         | Formula Length | Dimensionality | Construction Time | Formula Length | Dimensionality | Construction Time | Formula Length | Dimensionality | Construction Time |
| Strikers vs Goalies     | 3.55           | 331            | 5.24              | 2              | 1825           | 1.2               | 1              | 63             | 0.0               |
| Midfielders vs Strikers | 3.27           | 198            | 4.92              | 2              | 1762           | 0.85              | 1              | 62             | 0.0               |
| Drama vs Comedy         | 4.20           | 930            | 10.80             | 2              | 1991           | 2.87              | 1              | 47             | 0.0               |

# Conclusions

# Summary and Future Work

Impedance mismatch: Standard outlier methods assume single-table data, but relational databases maintain multiple interrelated tables.

AI-based solution: Discover informative features in the relational database use them to construct a single-data table.

Efficient conjunctive feature discovery = Markov Logic Network structure learning.

Works better than baselines with isolated attributes (unigrams) or enumerating all binary conjunctions of attributes (bigrams).

More results on comparing with supervised propositionalization (not in paper).

Other ways of generating unsupervised formula: WARMR