A Tractable Pseudo-Likelihood for Bayes Nets Applied To Relational Data

Oliver Schulte
School of Computing Science
Simon Fraser University
Vancouver, Canada

Machine Learning for Relational Databases

Relational Databases dominate in practice.

- Want to apply Machine Learning → Statistical-Relational Learning.
- Fundamental issue: how to combine logic and probability?

Typical SRL Tasks

- Link-based Classification: predict the class label of a target entity, given the links of a target entity and the attributes of related entities.
- **Link Prediction**: predict the existence of a link, given the attributes of entities and their other links.
- **Generative Modelling**: represent the joint distribution over links and attributes. ★Today

Measuring Model Fit

Statistical Learning requires a quantitative measure of data fit.

- e.g., BIC, AIC: log-likelihood of data given model + complexity penalty.
- In relational data, units are interdependent
 - ⇒ no product likelihood function for model.
- Proposal of this talk: use **pseudo likelihood.**
 - *Unnormalized* product likelihood.
 - Like independent-unit likelihood, but with event frequencies instead of event counts.

Outline

- 1. Relational databases.
- 2. Bayes Nets for Relational Data (Poole IJCAI 2003).
- 3. Pseudo-likelihood function for 1+2.
- 4. Random Selection Semantics.
- 5. Parameter Learning.
- 6. Structure Learning.

Database Instance based on Entity-Relationship (ER) Model

Students				
<u>Name</u>	intelligence	ranking		
Jack	3	1		
Kim	2	1		
Paul	1	2		

	Professor	
Name	popularity	teaching Ability
Oliver	3	1
David	2	1

Registration							
S.name	<u>C.number</u>	grade	satisfaction				
Jack	101	Α	1				
Jack	102	В	2				
Kim	102	Α	1				
Kim	103	Α	1				
Paul	101	В	1				
Paul	102	С	2				

Course						
<u>Number</u>	Prof	rating	difficulty			
101	Oliver	3	1			
102	David	2	2			
103	Oliver	3	2			

Key fields are underlined.

Nonkey fields are deterministic **functions of key fields**.

Pseudo-Likelihood for Relational Data - SDM '11

Relational Data: what are the random variables (nodes)?

- A functor is a function or predicate symbol (Prolog).
- A **functor random variable** is a functor with 1st-order variables f(X), g(X, Y), R(X, Y).
- Each variable X, Y, \ldots ranges over a **population** or domain.
- A **Functor Bayes Net*** (FBN) is a Bayes Net whose nodes are functor random variables.
- Highly expressive (Domingos and Richardson MLJ 2006, Getoor and Grant MLJ 2006).

*David Poole, "First-Order Probabilistic Inference", IJCAI 2003. Originally: Parametrized Bayes Net.

Example: Functor Bayes Nets

- Parameters: conditional probabilities *P(child | parents)*.
- Defines joint probability for every conjunction of value assignments.

What is the interpretation of the joint probability?

Random Selection Semantics of Functors

- Intuitively, P(Flies(X) | Bird(X)) = 90% means "the probability that a randomly chosen bird flies is 90%".
- Think of *X* as a random variable that selects a member of its associated population with uniform probability.
- Nodes like f(X), g(X, Y) are functions of random variables, hence themselves random variables.

Halpern, "An analysis of first-order logics of probability", AI Journal 1990. Bacchus, "Representing and reasoning with probabilistic knowledge", MIT Press 1990.

Random Selection Semantics: Examples

- P(X = Anna) = 1/2.
- $P(Smokes(X) = T) = \sum_{x:Smokes(x)=T} 1 / |X| = 1$.
- $P(Friend(X, Y) = T) = \sum_{x,y:Friend(x,y)} 1/(|X||Y|).$

• The database frequency of a functor assignment is the number of satisfying instantiations or groundings, divided by the total possible number of groundings.

Users

Name	Smokes	Cancer
Anna	Т	Т
Bob	Т	F

Friend

Name1	Name2
Anna	Bob
Bob	Anna

Likelihood Function for Single-Table Data

decomposed (local) data log-likelihood

$$\begin{split} & \ln P(T|B) = \\ & \sum_{\text{nodes } i \text{ values } k} \sum_{k \text{ parent-states } j} \\ & n_T(v_i = k, pa_i = j) \ln P_B(v_i = k | pa_i = j) \end{split}$$

Table *T* count of co-occurrences of child node value and parent state

Parameter of Bayes net *B*

$$= T = \mathbb{F}$$

$$Smokes(Y) \longrightarrow Cancer(Y)$$

Users

<u>Name</u>	Smokes	Cancer	P _B	ln(P _B)
Anna	Т	Т	0.36	-1.02
Bob	Т	F	0.14	-1.96

Likelihood/Log-likelihood

π≈	$\Sigma =$
0.05	-2.98
$P(T \mid B)$	In P(T B)

Proposed Pseudo Log-Likelihood

For database D:

$$\ln P^*(D|B) = \sum_{\text{nodes } i \text{ values } k \text{ parent-states } j} \sum_{P_D(v_i = k, pa_i = j) \ln P_B(v_i = k | pa_i = j)}$$

Database D
frequency of
co-occurrences of child
node value and parent
state

Parameter of Bayes net

Users

<u>Name</u>	Smokes	Cancer
Anna	Т	Т
Bob	Т	F

Friend

Name1	Name2
Anna	Bob
Bob	Anna

Semantics: Random Selection Log-Likelihood

- 1. Randomly select instances $X_1 = x_1, ..., X_n = x_n$ for each variable in FBN.
- 2. Look up their properties, relationships in database.
- 3. Compute log-likelihood for the FBN assignment obtained from the instances.
- 4. L^R = expected log-likelihood over uniform random selection of instances.

	Hyper	entity	Hyperfeatures					
Γ	X	Y	F(X,Y)	S(X)	S(Y)	C(Y)	P_B^{γ}	$ln(P_B^{\gamma})$
γ_1	Anna	Bob	Т	Т	Т	F	0.105	-2.254
γ_2	Bob	Anna	Т	Т	Т	Т	0.245	-1.406
γ_3	Anna	Anna	F	Т	Т	Т	0.263	-1.338
γ_4	Bob	Bob	F	Т	Т	F	0.113	-2.185

$$L^R = -(2.254 + 1.406 + 1.338 + 2.185)/4 \approx -1.8$$

Proposition The random selection log-likelihood equals the pseudo log-likelihood.

Parameter Learning Is Tractable

Proposition For a given database D, the parameter values that maximize the pseudo likelihood are the empirical conditional frequencies in the database.

Structure Learning

- In principle, just replace single-table likelihood by pseudo likelihood.
- Efficient new algorithm (Khosravi, Schulte et al. AAAI 2010). Key ideas:
 - Use single-table BN learner as black box **module**.
 - Level-wise search through table join lattice. Results from shorter paths are propagated to longer paths (think APRIORI).

Running time on benchmarks

Dataset	JBN	MLN	CMLN
University	0.03+0.032	5.02	11.44
MovieLens	1.2+120	NT	NT
MovieLens Subsample 1	0.05 + 0.33	44	121.5
MovieLens Subsample 2	0.12 + 5.10	2760	1286
Mutagenesis	0.5 + NT	NT	NT
Mutagenesis subsample 1	0.1 + 5	3360	900
Mutagenesis subsample 2	0.2 + 12	NT	3120

- Time in Minutes. NT = did not terminate.
- x + y = structure learning + parametrization (with Markov net methods).
- JBN: Our join-based algorithm.
- MLN, CMLN: standard programs from the U of Washington (Alchemy)

Accuracy

- Inference: use MLN algorithm after moralizing.
- Task (Kok and Domingos ICML 2005):

JBN

MLN

CMLN

- remove one fact from database, predict given all others.
- report average accuracy over all facts.

Summary: Likelihood for relational data.

- Combining relational databases and statistics.
 - Very important in practice.
 - Combine logic and probability.
- Interdependent units → hard to define model likelihood.
- Proposal: Consider a randomly selected small group of individuals.
- Pseudo log-likelihood = expected log-likelihood of randomly selected group.

Summary: Statistics with Pseudo-Likelihood

- **Theorem**: Random pseudo log-likelihood equivalent to standard single-table likelihood, replacing table counts with database frequencies.
- Maximum likelihood estimates = database frequencies.
- Efficient Model Selection Algorithm based on lattice search.
- In simulations, very fast (minutes vs. days), much better predictive accuracy.

Thank you!

• Any questions?

Comparison With Markov Logic Networks (MLNs)

- MLNs are basically undirected graphs with functor nodes.
- Let MBN = Bayes net converted to MLN.
- Log-likelihood of MBN=

pseudo log-likelihood of B + normalization constant.

Likelihood Functions for Parametrized Bayes Nets

- Problem: Given a database D and an FBN model B, how to define **model** likelihood $P(D \mid B)$?
- Fundamental Issue: interdependent units, not iid.
- Previous approaches:
 - Introduce *latent variables* such that units are independent conditional on hidden "state" (e.g., Kersting et al. IJCAI 2009).
 - Different model class, computationally demanding.
 - Related to nonnegative matrix factorization----Netflix challenge.
 - 2. Grounding, or Knowledge-based Model Construction (Ngo and Haddaway, 1997; Koller and Pfeffer, 1997; Haddaway, 1999; Poole 2003).
 - Can lead to cyclic graphs.
 - 3. Undirected models (Taskar, Abeel, Koller UAI 2002, Domingos and Richardson ML 2006).

Hidden Variables Avoid Cycles

- Assign unobserved values *u(jack)*, *u(jane)*.
- Probability that Jack and Jane are friends depends on their unobserved "type".
- In ground model, *rich(jack)* and *rich(jane)* are correlated given that they are friends, but neither is an ancestor.
- Common in social network analysis (Hoff 2001, Hoff and Rafferty 2003, Fienberg 2009).
- \$1M prize in Netflix challenge.
- Also for multiple types of relationships (Kersting et al. 2009).
- Computationally demanding.

The Cyclicity Problem

- With recursive relationships, get cycles in ground model even if none in 1st-order model.
- Jensen and Neville 2007: "The acyclicity constraints of directed models severely constrain their applicability to relational data."

Undirected Models Avoid Cycles

Class-level model (template)

Ground model

Choice of Functors

- Can have complex functors, e.g.
 - Nested: *wealth(father(father(X)))*.
 - Aggregate: $AVG_C\{grade(S,C): Registered(S,C)\}$.
- In remainder of this talk, use functors corresponding to
 - Attributes (columns), e.g., intelligence(S), grade(S,C)
 - Boolean Relationship indicators, e.g. Friend(X, Y).