
 CMPT-882 Scribe Notes on ILP and Inverted Deduction

4/6/2004 CMPT882_Scribe_ILP_Week12.doc Page 1 of 9

Scribe Notes on
FOIL and Inverted Deduction

by Gabor Melli (melli@sfu.ca)
This document summarizes the two inductive logic programming (ILP) approaches of the FOIL
algorithm and induction by inverted deduction (inverted deduction). The information for these
notes was drawn from chapters 10.4 through 10.6 in Tom Mitchell’s “Machine Learning”
textbook, from Oliver Schulte’s April 1, 2004 lecture, and from background knowledge.

1 Introduction
Inductive Logic Programming (ILP) is the research area which studies machine learning
algorithms that produce logic programs. Typically these logic programs restricted to first-order
logic. First order logic is Turing complete so it is more expressive than “propositional”
representations used by most other machine learning algorithms. As we will see the need for this
level of expressiveness can be necessary for even simple domains such as family relations. A
further advantage of ILP is that it is not produce black-box models. Its hypotheses can generally
be translated into English text which can then enable knowledge discovery. The ILP approach has
also been successfully applied to tasks such as Natural Language Processing, Web click-stream
mining, and protein folding pattern discovery.

The document is structured as follows: First we review some relevant logic terminology. An
example is then presented to illustrate when ILPs can be useful. Next the FOIL algorithm is
described. Finally the topic of induction by inverted deduction is introduced. Some familiarity
with the concepts of statistics and propositional rule learners is assumed although a glossary is
provided at the end of the document to further support the terminology.

2 First-Order, Terminology
This section addresses one of challenges with the use of first-order logic: its terminology. We
limit ourselves to the terminology required to understand the operation of FOIL and inverted
deduction. The terminology is divided into three sections:

1) Literals: e.g. Female(Sharon), ¬Father(Sharon, Bob), Female(X)

The first example presents three literals. Literals are composed of predicates (e.g. Female) that
are combined with either constants (e.g. Sharon) or variables (e.g. X). What predicates do is
express the relations between the objects (terms) in the world that is being modeled.
Conventionally predicate expression are read starting with the first term and then the predicate.
For example, Father(Sharon, Bob) reads “Sharon has father Bob”. A literal composed of a
predicate and a constant is an assertion. The ¬ symbol reverses a terms truth function (negates).

2) Horn Clauses: e.g. YX∀∀ Daughter(X,Y) ← Parent(Y,X) ^ Female(Y)

This second example presents a Horn clause. A Horn clause is composed of a head or consequent
(e.g. Daughter(X,Y) ←) and a conjunction of one or more positive literals in its body or
antecedent (e.g. Parent(Y,X) ^ Female(Y)). The variables in the predicates of a Horn clause (e.g.
X, Y) are always universally quantified. The quantification enables the variables to bind to
assertions. The negative bindings includes the observations that do not match the constraints.

 CMPT-882 Scribe Notes on ILP and Inverted Deduction

4/6/2004 CMPT882_Scribe_ILP_Week12.doc Page 2 of 9

3) IF/THEN rule: e.g. IF L1 and … Ln THEN H

A common way to present the resulting Horn clause theory from an ILP system is by converting
the resulting clauses into IF/THEN rules, where the consequent is place after the THEN and the
antecedents are place in the IF expression.

3 Example: Familial Relations can be Complicated
One of the typical domains used to demonstrate the need and power of ILP over propositional
attribute-value based algorithms is that of familial relations. In the supervised learning example
below the learner is challenged to discover the rule that describes whether a person has a
granddaughter. The successful model must be able to infer that Howard has a GrandDaughter,
while Julie and John do not.

Female
a 1 a 2 a 1 a 1 a 2

Sharon Bob Sharon Victor Sharon
Tom Bob … … …
Bob Victor
… …

Female
a 1 a 2 a 1 a 1 a 2

Julie John Julie Howard Julie
John Howard

T
E

ST

Visible

T
R

A
IN

GrandDaughterFather

Father GrandDaughter

HiddenVisible

Figure 1 – Sample train dataset from p.288 in Mitchell’s textbook. The test set and relational format

is not from the textbook. The tables can be read either as “IS A” or “HAS”, e.g. Victor has
granddaughter Sharon. The hidden relation is used to test model accuracy.

3.1.1 Propositional Learner with simple data transformation.

Before showing how an ILP system would handle this task we demonstrate how a propositional
learner would be challenged. One of the first challenges that a propositional learner would
encounter with this dataset is that the dataset is not structured as a set of fixed length-vectors of
attribute-value pairs. This situation is typically resolved by JOINing the relations, as in Figure 2.

Target
Father Child Child is Fem. Has Gdaugh

Bob Sharon TRUE FALSE
Victor Bob FALSE TRUE

… … … …

Predictors

Figure 2 – The resulting dataset after a simple JOIN of the Father, Female, and

GrandDaughter data in Figure 1.

A propositional learner would not locate a predictive model for this dataset. It would not be able
to state that Sharon is Victor’s granddaughter. At best it may discover that a child’s gender has
some influence on the likelihood that that child is a parent, or even a parent to a female child.

 CMPT-882 Scribe Notes on ILP and Inverted Deduction

4/6/2004 CMPT882_Scribe_ILP_Week12.doc Page 3 of 9

3.1.2 Propositional Leaner with complex data transformation
One way to interpret the problem encountered on this dataset by a propositional learner is that the
dataset invalidates the assumption that observations are independent and identically distributed.1
The algorithm cannot make the connection in one observation (Bob as a father) and another (Bob
as child). A common way to enable a propositional learner to produce a predictive model on this
data is to transform the data so that the required relations appear as attributes in the data. See
Figure 3. This transformation is sometimes referred to as ‘flattening’ the data.

Target
Father Child Child is Fem. Child's Child C's C is Fem. Has Gdaugh

Bob Sharon TRUE NULL NULL FALSE
Victor Bob FALSE Sharon TRUE TRUE

… … … … …

Predictors

Figure 3 – The resulting dataset after a complex transformation of the Father, Female,

GrandDaughter and a second instantiation of the Father relation data in Figure 1. Two new
predictor attributes are added: Child’s Child and C’s C is Fem.

Now the search for a rule is trivial. A decision tree would locate the pattern:

IF Child’s Child is Female = TRUE
THEN HasGrandDaughter = TRUE.
ELSE HasGrandDaughter = FALSE

As we will see, the transformation of the data performed in this example is what FOIL does
automatically to objectively search out a pattern.

1 Note that the Father relation breaks the iid assumption commonly required by most simple machine
learning algorithms. Knowing that a person, e.g. Bob, is someone’s father tells you that they are also
someone’s child (but not every child is a father).

 CMPT-882 Scribe Notes on ILP and Inverted Deduction

4/6/2004 CMPT882_Scribe_ILP_Week12.doc Page 4 of 9

4 The FOIL Algorithm
The Foil algorithm is a supervised learning algorithm that produces rules in first-order logic
[Q90] The algorithm is a generalization of the SEQUENTIAL-COVERING and LEARN-ONE-RULE
algorithms (see Appendix 1). The main modification is that search can also specialize on
predicates with variables. The resulting rules differ from Horn clauses in two ways: negated
symbols are allowed within the body, and FOIL’s rules will not include function symbols.

4.1 FOIL Example
Some intuition into how FOIL operates will be given by way of example before a formal
definition is provided. FOIL is a top-down algorithm that starts out with a general rule and
explores the search space by greedily specializing the current rule. The diagram in Figure 4
illustrates how the rule for the sample dataset is expanded towards the correct model of IF
Father(y,z) ^ Father(z,x) ^ Female(x) THEN GrandDaughter (x,y).

Figure 4 – Sample run of FOIL on the Figure 1 dataset. The algorithm starts with the

most general rule. In this example the population has 1,000 individuals, 50 of which are
granddaughters to someone in the data. As FOIL adds literals to the rule it will greedily

choose the rule that increases the proportion of POSitives to NEGatives (marked with).

IF Father (z,x)
THEN GD(x,y)

POS 20% 50
NEG 80% 200

IF Female (x)
THEN GD(x,y)

POS 0% 0
NEG 100% 425

IF any
THEN GD(x,y)

POS 5% 50
NEG 95% 950

IF Father (z.x) ^ Father(y,z)
THEN GD(x,y)

POS 50% 50
NEG 50% 50

…

…

IF Father (z,x)^Father(y,z)^Female(y)
THEN GD(x,y)

POS 100% 50
NEG 0% 0

…

no female
grandfathers
in the data

fathers x of a
father z have 50%
chance of having
a granddaughter

fathers x are
somewhat likely

to be grandfathers

 CMPT-882 Scribe Notes on ILP and Inverted Deduction

4/6/2004 CMPT882_Scribe_ILP_Week12.doc Page 5 of 9

4.2 FOIL
The FOIL algorithm is summarized in Figure 5. The outer loop adds new rules to the output until
no more positive examples are covered. The inner loop searches for the next best rule by
incremental specialization. The outer loop corresponds to the SEQUENTIAL-CONVERING
algorithm, the inner to FIND-A-RULE (see Appendix).

Figure 5 – Pseudocode description of the Foil algorithm from [M97].

The definition for Candidate_literals and Foil_Gain is given below.

4.3 Expand the Search (Candidate_literals)
FOIL expands its search space by specializing rules through the addition of literals to the
rule body. If the current rule has rule head P(x1,…xk) and body literals of Li … Ln the
following three type of literal additions will be attempted:

1) Q(vi,…,vr) where Q is a valid predicate and at least one of variable vi is already in
the rule body.

2) Equal (xj,xk), where variables xj, xk are already in the rule.
3) The negation of the above: ¬Q(v1,…vr), or ¬Equal(xj,xk).

4.3.1 Enter Recursion
A more sophisticated form of rule specialization involves the addition of a literal that
contains the target predicate. This specialization is necessary to discover rules such as IF
Parents(x,z)^Ancestor(z,y) THEN Ancestor(x,y). The highlighted literal initiates a
recursive description. Some care must be taken to avoid infinite recursion.

 CMPT-882 Scribe Notes on ILP and Inverted Deduction

4/6/2004 CMPT882_Scribe_ILP_Week12.doc Page 6 of 9

4.4 Guiding the Search (Foil_Gain)
FOIL uses a version of the gain algorithm to determine which newly specialized rule to
favour. Each rule’s utility is estimated by the number of bits required to encode all of the
positive bindings.

)logt(log R)L,Foil_Gain(
00

2
11

1
2 np

p

np

p o

+
−

+
≡

Where
- L is the candidate literal to add to rule R
- p0 = number of positive bindings of R
- n0 = number of negative bindings of R
- p1 = number of positive binding of R + L
- n1 = number of negative bindings of R + L
- t is the number of positive bindings of R also covered by R + L

Note that
00

2log-
np

po

+
 is the optimal number of bits to indicate class of a positive

binding covered by R.

4.5 Pruning
As defined the FOIL algorithm attempts to fit any noise found in the data. To be robust to noise
FOIL can be updated with pruning to avoid this overfitting. Refer to decision tree notes for
further discussion on pruning.

 CMPT-882 Scribe Notes on ILP and Inverted Deduction

4/6/2004 CMPT882_Scribe_ILP_Week12.doc Page 7 of 9

5 Induction as Inverted Deduction
An alternative approach to first-order logic classification is based on the observation that
induction is the inverse of deduction. Inverted deduction searches for hypothesis h that explains
the target f(xi) for all observations xi in the data D and for background knowledge B. Formally2:

)()^^)()(,(iiii xfxhBDxfx a>∈<∀

5.1 Example:
Consider the target “pairs of people <u, v> such that the child of u is v”: Child(u,v), and:

 D: Male(Bob), Female(Sharon), Father(Sharon, Bob)

 f(u,v): Child(Bob, Sharon) // one positive example

 B: Parent(u,v) ← Father(v,u)

Recall that we want to find h such that ∀xi (B^h^xi) |-- f(xi).

Two candidate hypotheses are:

h1: Child(u,v) ← Father(v,u)

h2: Child(u,v) ← Parents(v,u)

5.2 Background Knowledge
In the example above the background rule Parent(u,v) ← Father(v,u) played a role in the search.
Most machine learning algorithms do not allow for a declarative statement of background
knowledge that would assist the algorithm more quickly locate a better fitting hypothesis.
Interestingly this would allow a system to interactively present candidate hypothesis to the user
for validation. As the user enters more background knowledge the search could be expanded.

5.3 Practical Difficulties
The application of inverted deduction to induce first-order hypothesis has several practical
difficulties.

5.3.1 Intolerance to Noisy Data
Does not work with noisy data because inverted deduction will fit every pattern in the data.

5.3.2 Computational Complexity
The first order logic representation creates an intractably large search space for hypothesis h.
Unfortunately, the addition of background knowledge also increases the complexity.

2 The expression X |⎯ Y can be read as X “entails” Y, or Y is “follows from” X.

 CMPT-882 Scribe Notes on ILP and Inverted Deduction

4/6/2004 CMPT882_Scribe_ILP_Week12.doc Page 8 of 9

6 Appendix
The SEQUENTIAL-COVERING and LEARN-ONE-RULE algorithms described in chapter 10.2
of Mitchell’s textbook are included below in order to review how FOIL generalizes them
in order to handle first-order rules.

 CMPT-882 Scribe Notes on ILP and Inverted Deduction

4/6/2004 CMPT882_Scribe_ILP_Week12.doc Page 9 of 9

7 Glossary
Black-box Techniques: Are typically good at creating accurate models for supervised learning problems,
but their result does not provide knowledge about the system that was modeled. Neural networks, Support
Vector Machines, and Instance-Based Learning are typically described as black-box algorithms.

CN2: A supervised classification algorithm that generates decision lists. The algorithm is a specialization
of the SEQUENTIAL-COVERNING algorithm that uses beam search. See SEQUENTIAL-COVERING.

Definite clause: A clause without negation. See Horn Clause.

First-Order Logic (aka First-Order Predicate Calculus): A logic system that allows quantification on
variables. First-order logic is Turing complete. See: Second-Order Logic.

FOIL: A machine learning program proposed by Quinlan [Q90] that discovers patterns in the data
expressed as first-order rules. The algorithm is a greedy-search implementation of the SEQUENTIAL-
COVERING. See: SEQUENTIAL-COVERING.

Horn Clause: A clause containing at most one positive literal, written: (a definite clause) or (a definite
goal).

Inductive Logic Programming (ILP): Inductive Logic Programming (ILP) is the research area that
studies machine learning algorithms which produce logic programs, and typically programs restricted to
first-order logic. See: FOIL, Horn Clause.

Independence: Two events A and B are statistically independent if the chance that they both happen
simultaneously is the product of the chances that each occurs individually: i.e., if P(A^ B) = P(A)P(B).
Intuitively two events are independent when learning that one of the events occur does not help you
determine whether the other event also occurred: i.e., P(A|B) = P(A).

iid: A set of random variables are iid (independent and identically distributed) if they are independent and
have the same probability distribution.

Prolog: A programming language which as the name suggest if adapted to "Programming in Logic". Prolog
was originally designed by A. Colmerauer and P. Roussel in 1971 for natural-language processing but has
since been applied to several other AI problems.

Propositional Learners: A term typically used by the ILP research community for algorithms that are
incapable of learning relations between observations, such as Ancestor(x,y). The term captures techniques
such as decision trees, neural networks, and instance based learners.

Propositional Logic (Propositional Calculus): A logic system that operates on individual members of the
domain. See: First-Order Logic.

Second-Order Logic (aka Second-Order Predicate Calculus): A logic system that allows quantification
over predicates. The system is impractical for computational purpose, but is helpful in the theoretical
analysis of uncountable theories, such as Cantor sets. See: First-Order Logic.

SEQUENTIAL-COVERING: A supervised classification algorithm that performs a general-to-specific beam
search through rule-space. The algorithm removes training examples covered by each discovered rule and
then repeats until all the positive examples have been covered. The algorithm does not backtrack so the
underlying LEARN-ONE-RULE must be effective. See: CN2, FOIL.

Top-Down Learning: Refers to the technique of starting from a general rule and to proceed by specializing
it.

8 References
[1]. P. Clark and R. Niblett. The CN2 Induction Algorithm. Machine Learning, 3:261-284, 1989.
[2]. T. M. Mitchell. Machine Learning. McGraw Hill. 1997.
[3]. J. Ross Quinlan. Learning Logical Definitions from Relations. Machine Learning 5: 1990.

