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Scribe Notes on 
FOIL and Inverted Deduction 

by Gabor Melli (melli@sfu.ca) 
This document summarizes the two inductive logic programming (ILP) approaches of the FOIL 
algorithm and induction by inverted deduction (inverted deduction). The information for these 
notes was drawn from chapters 10.4 through 10.6 in Tom Mitchell’s “Machine Learning” 
textbook, from Oliver Schulte’s April 1, 2004 lecture, and from background knowledge. 

1 Introduction 
Inductive Logic Programming (ILP) is the research area which studies machine learning 
algorithms that produce logic programs. Typically these logic programs restricted to first-order 
logic. First order logic is Turing complete so it is more expressive than “propositional” 
representations used by most other machine learning algorithms. As we will see the need for this 
level of expressiveness can be necessary for even simple domains such as family relations. A 
further advantage of ILP is that it is not produce black-box models. Its hypotheses can generally 
be translated into English text which can then enable knowledge discovery. The ILP approach has 
also been successfully applied to tasks such as Natural Language Processing, Web click-stream 
mining, and protein folding pattern discovery. 

The document is structured as follows: First we review some relevant logic terminology. An 
example is then presented to illustrate when ILPs can be useful. Next the FOIL algorithm is 
described. Finally the topic of induction by inverted deduction is introduced. Some familiarity 
with the concepts of statistics and propositional rule learners is assumed although a glossary is 
provided at the end of the document to further support the terminology. 

2 First-Order, Terminology 
This section addresses one of challenges with the use of first-order logic: its terminology. We 
limit ourselves to the terminology required to understand the operation of FOIL and inverted 
deduction. The terminology is divided into three sections: 

1) Literals: e.g. Female(Sharon), ¬Father(Sharon, Bob), Female(X) 

The first example presents three literals. Literals are composed of predicates (e.g. Female) that 
are combined with either constants (e.g. Sharon) or variables (e.g. X). What predicates do is 
express the relations between the objects (terms) in the world that is being modeled. 
Conventionally predicate expression are read starting with the first term and then the predicate. 
For example, Father(Sharon, Bob) reads “Sharon has father Bob”. A literal composed of a 
predicate and a constant is an assertion. The  ¬ symbol reverses a terms truth function (negates). 

2) Horn Clauses: e.g. YX∀∀   Daughter(X,Y) ← Parent(Y,X) ^ Female(Y)  

This second example presents a Horn clause. A Horn clause is composed of a head or consequent 
(e.g. Daughter(X,Y) ←) and a conjunction of one or more positive literals in its body or 
antecedent (e.g. Parent(Y,X) ^ Female(Y)). The variables in the predicates of a Horn clause (e.g. 
X, Y) are always universally quantified. The quantification enables the variables to bind to 
assertions. The negative bindings includes the observations that do not match the constraints.  
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3) IF/THEN rule: e.g. IF L1 and … Ln THEN H 

A common way to present the resulting Horn clause theory from an ILP system is by converting 
the resulting clauses into IF/THEN rules, where the consequent is place after the THEN and the 
antecedents are place in the IF expression. 

3 Example: Familial Relations can be Complicated 
One of the typical domains used to demonstrate the need and power of ILP over propositional 
attribute-value based algorithms is that of familial relations. In the supervised learning example 
below the learner is challenged to discover the rule that describes whether a person has a 
granddaughter. The successful model must be able to infer that Howard has a GrandDaughter, 
while Julie and John do not. 

Female
a 1 a 2 a 1 a 1 a 2

Sharon Bob Sharon Victor Sharon
Tom Bob … … …
Bob Victor
… …

Female
a 1 a 2 a 1 a 1 a 2

Julie John Julie Howard Julie
John Howard
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GrandDaughterFather

Father GrandDaughter

HiddenVisible

 
Figure 1 – Sample train dataset from p.288 in Mitchell’s textbook. The test set and relational format 

is not from the textbook. The tables can be read either as “IS A” or “HAS”, e.g. Victor has 
granddaughter Sharon. The hidden relation is used to test model accuracy. 

3.1.1 Propositional Learner with simple data transformation. 

Before showing how an ILP system would handle this task we demonstrate how a propositional 
learner would be challenged. One of the first challenges that a propositional learner would 
encounter with this dataset is that the dataset is not structured as a set of fixed length-vectors of 
attribute-value pairs. This situation is typically resolved by JOINing the relations, as in Figure 2. 

Target
Father Child Child is Fem. Has Gdaugh

Bob Sharon TRUE FALSE
Victor Bob FALSE TRUE

… … … …

Predictors

 
Figure 2 – The resulting dataset after a simple JOIN of the Father, Female, and 

GrandDaughter data in Figure 1. 

A propositional learner would not locate a predictive model for this dataset. It would not be able 
to state that Sharon is Victor’s granddaughter. At best it may discover that a child’s gender has 
some influence on the likelihood that that child is a parent, or even a parent to a female child. 
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3.1.2 Propositional Leaner with complex data transformation 
One way to interpret the problem encountered on this dataset by a propositional learner is that the 
dataset invalidates the assumption that observations are independent and identically distributed.1 
The algorithm cannot make the connection in one observation (Bob as a father) and another (Bob 
as child). A common way to enable a propositional learner to produce a predictive model on this 
data is to transform the data so that the required relations appear as attributes in the data. See 
Figure 3. This transformation is sometimes referred to as ‘flattening’ the data. 

Target
Father Child Child is Fem. Child's Child C's C is Fem. Has Gdaugh

Bob Sharon TRUE NULL NULL FALSE
Victor Bob FALSE Sharon TRUE TRUE

… … … … …

Predictors

 
Figure 3 – The resulting dataset after a complex transformation of the Father, Female, 

GrandDaughter and a second instantiation of the Father relation data in Figure 1. Two new  
predictor attributes are added: Child’s Child and C’s C is Fem. 

Now the search for a rule is trivial. A decision tree would locate the pattern: 
 

IF Child’s Child is Female = TRUE 
THEN HasGrandDaughter = TRUE. 
ELSE HasGrandDaughter = FALSE 

 
As we will see, the transformation of the data performed in this example is what FOIL does 
automatically to objectively search out a pattern. 

                                                 
1 Note that the Father relation breaks the iid assumption commonly required by most simple machine 
learning algorithms. Knowing that a person, e.g. Bob, is someone’s father tells you that they are also 
someone’s child (but not every child is a father). 
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4 The FOIL Algorithm 
The Foil algorithm is a supervised learning algorithm that produces rules in first-order logic 
[Q90] The algorithm is a generalization of the SEQUENTIAL-COVERING and LEARN-ONE-RULE 
algorithms (see Appendix 1). The main modification is that search can also specialize on 
predicates with variables. The resulting rules differ from Horn clauses in two ways: negated 
symbols are allowed within the body, and FOIL’s rules will not include function symbols. 

4.1 FOIL Example 
Some intuition into how FOIL operates will be given by way of example before a formal 
definition is provided. FOIL is a top-down algorithm that starts out with a general rule and 
explores the search space by greedily specializing the current rule. The diagram in Figure 4 
illustrates how the rule for the sample dataset is expanded towards the correct model of IF 
Father(y,z) ^ Father(z,x) ^ Female(x) THEN GrandDaughter (x,y). 
 

 
Figure 4 – Sample run of FOIL on the Figure 1 dataset. The algorithm starts with the 

most general rule. In this example the population has 1,000 individuals, 50 of which are 
granddaughters to someone in the data. As FOIL adds literals to the rule it will greedily 

choose the rule that increases the proportion of POSitives to NEGatives (marked with ). 

 

IF Father (z,x) 
THEN GD(x,y) 

POS 20%   50 
NEG 80% 200 

IF Female (x) 
THEN GD(x,y) 

POS    0%   0 
NEG 100% 425 

IF any 
THEN GD(x,y) 

POS   5%   50 
NEG 95% 950 

IF Father (z.x) ^ Father(y,z) 
THEN GD(x,y) 

POS 50% 50 
NEG 50% 50 

… 

… 

IF Father (z,x)^Father(y,z)^Female(y) 
THEN GD(x,y) 

POS 100% 50 
NEG    0%  0 

… 

 

 

no female 
grandfathers 
in the data 

fathers x of a 
father z have 50% 
chance of  having 
a granddaughter 

fathers x are 
somewhat likely 

to be grandfathers 
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4.2 FOIL 
The FOIL algorithm is summarized in Figure 5. The outer loop adds new rules to the output until 
no more positive examples are covered. The inner loop searches for the next best rule by 
incremental specialization. The outer loop corresponds to the SEQUENTIAL-CONVERING 
algorithm, the inner to FIND-A-RULE (see Appendix). 

 
Figure 5 – Pseudocode description of the Foil algorithm from [M97]. 

The definition for Candidate_literals and Foil_Gain is given below. 

4.3 Expand the Search (Candidate_literals) 
FOIL expands its search space by specializing rules through the addition of literals to the 
rule body. If the current rule has rule head P(x1,…xk) and body literals of Li … Ln the 
following three type of literal additions will be attempted: 

1) Q(vi,…,vr) where Q is a valid predicate  and at least one of variable vi is already in 
the rule body. 

2) Equal (xj,xk), where variables xj, xk are already in the rule. 
3) The negation of the above:  ¬Q(v1,…vr), or ¬Equal(xj,xk). 

4.3.1 Enter Recursion 
A more sophisticated form of rule specialization involves the addition of a literal that 
contains the target predicate. This specialization is necessary to discover rules such as IF 
Parents(x,z)^Ancestor(z,y) THEN Ancestor(x,y). The highlighted literal initiates a 
recursive description. Some care must be taken to avoid infinite recursion.  
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4.4 Guiding the Search (Foil_Gain) 
FOIL uses a version of the gain algorithm to determine which newly specialized rule to 
favour. Each rule’s utility is estimated by the number of bits required to encode all of the 
positive bindings. 
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Where 
- L is the candidate literal to add to rule R 
- p0 = number of positive bindings of R 
- n0 = number of negative bindings of R 
- p1 = number of positive binding of R + L 
- n1 = number of negative bindings of R + L 
- t is the number of positive bindings of R also covered by R + L 
 

Note that 
00

2log-
np

po

+
 is the optimal number of bits to indicate class of a positive 

binding covered by R. 

4.5 Pruning 
As defined the FOIL algorithm attempts to fit any noise found in the data. To be robust to noise 
FOIL can be updated with pruning to avoid this overfitting. Refer to decision tree notes for 
further discussion on pruning. 
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5 Induction as Inverted Deduction 
An alternative approach to first-order logic classification is based on the observation that 
induction is the inverse of deduction. Inverted deduction searches for hypothesis h that explains 
the target f(xi) for all observations xi in the data D and for background knowledge B. Formally2: 

)()^^)()(,( iiii xfxhBDxfx a>∈<∀  

5.1 Example: 
Consider the target “pairs of people <u, v> such that the child of u is v”: Child(u,v), and: 

 D:  Male(Bob), Female(Sharon), Father(Sharon, Bob) 

 f(u,v):  Child(Bob, Sharon) // one positive example 

 B:  Parent(u,v) ← Father(v,u) 

Recall that we want to find h such that ∀xi (B^h^xi) |-- f(xi). 

Two candidate hypotheses are: 

h1: Child(u,v) ← Father(v,u)                                                    

h2: Child(u,v) ← Parents(v,u) 

5.2 Background Knowledge 
In the example above the background rule Parent(u,v) ← Father(v,u) played a role in the search. 
Most machine learning algorithms do not allow for a declarative statement of background 
knowledge that would assist the algorithm more quickly locate a better fitting hypothesis. 
Interestingly this would allow a system to interactively present candidate hypothesis to the user 
for validation. As the user enters more background knowledge the search could be expanded. 

5.3 Practical Difficulties 
The application of inverted deduction to induce first-order hypothesis has several practical 
difficulties. 

5.3.1 Intolerance to Noisy Data 
Does not work with noisy data because inverted deduction will fit every pattern in the data. 

5.3.2 Computational Complexity 
The first order logic representation creates an intractably large search space for hypothesis h. 
Unfortunately, the addition of background knowledge also increases the complexity. 

 

                                                 
2 The expression X |⎯ Y can be read as X  “entails” Y, or Y is “follows from” X. 
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6 Appendix 
The SEQUENTIAL-COVERING and LEARN-ONE-RULE algorithms described in chapter 10.2 
of Mitchell’s textbook are included below in order to review how FOIL generalizes them 
in order to handle first-order rules. 
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7 Glossary 
Black-box Techniques: Are typically good at creating accurate models for supervised learning problems, 
but their result does not provide knowledge about the system that was modeled. Neural networks, Support 
Vector Machines, and Instance-Based Learning are typically described as black-box algorithms. 

CN2: A supervised classification algorithm that generates decision lists. The algorithm is a specialization 
of the SEQUENTIAL-COVERNING algorithm that uses beam search. See SEQUENTIAL-COVERING.  

Definite clause: A clause without negation. See Horn Clause. 

First-Order Logic (aka First-Order Predicate Calculus): A logic system that allows quantification on 
variables. First-order logic is Turing complete. See: Second-Order Logic. 

FOIL: A machine learning program proposed by Quinlan [Q90] that discovers patterns in the data 
expressed as first-order rules. The algorithm is a greedy-search implementation of the SEQUENTIAL-
COVERING. See: SEQUENTIAL-COVERING. 

Horn Clause: A clause containing at most one positive literal, written: (a definite clause) or (a definite 
goal).  

Inductive Logic Programming (ILP): Inductive Logic Programming (ILP) is the research area that  
studies machine learning algorithms which produce logic programs, and typically programs restricted to 
first-order logic. See: FOIL, Horn Clause. 

Independence: Two events A and B are statistically independent if the chance that they both happen 
simultaneously is the product of the chances that each occurs individually: i.e., if P(A^ B) = P(A)P(B). 
Intuitively two events are independent when learning that one of the events occur does not help you 
determine whether the other event also occurred: i.e., P(A|B) = P(A). 

iid: A set of random variables are iid (independent and identically distributed) if they are independent and 
have the same probability distribution. 

Prolog: A programming language which as the name suggest if adapted to "Programming in Logic". Prolog  
was originally designed by A. Colmerauer and P. Roussel in 1971 for natural-language processing but has 
since been applied to several other AI problems. 

Propositional Learners: A term typically used by the ILP research community for algorithms that are 
incapable of learning relations between observations, such as Ancestor(x,y). The term captures techniques 
such as decision trees, neural networks, and instance based learners. 

Propositional Logic (Propositional Calculus): A logic system that operates on individual members of the 
domain. See: First-Order Logic. 

Second-Order Logic (aka Second-Order Predicate Calculus): A logic system that allows quantification 
over predicates. The system is impractical for computational purpose, but is helpful in the theoretical 
analysis of uncountable theories, such as Cantor sets. See: First-Order Logic. 

SEQUENTIAL-COVERING: A supervised classification algorithm that performs a general-to-specific beam 
search through rule-space. The algorithm removes training examples covered by each discovered rule and 
then repeats until all the positive examples have been covered. The algorithm does not backtrack so the 
underlying LEARN-ONE-RULE must be effective. See: CN2, FOIL. 

Top-Down Learning: Refers to the technique of starting from a general rule and to proceed by specializing 
it. 
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