4
An overview of empirical ILP systems

This chapter gives an overview of several empirical ILP systems. Special
attention is paid to FOIL, which has been the basis for a substantial
part of the work in this book. The systems GOLEM and MOBAL are
also briefly described. Some other empirical ILP systems are touched
upon for completeness.

4.1 An overview of FOIL

FOIL [Quinlan 1990] extends some ideas from the attribute-value learn-
ing paradigm to the ILP paradigm. In particular, it uses a covering ap-
proach similar to AQ [Michalski 1983] and an information based search
heuristic similar to ID3 [Quinlan 1986]. From MIS [Shapiro 1983] it
inherits the idea of top-down search of refinement graphs.

The hypothesis language £ in FOIL is restricted to function-free
program clauses. Constants and compound terms may not appear in
induced clauses. The body of a clause is a conjunction of literals A or
not A, where A is an atom. Literals in the body have either a predicate
symbol ¢; from the background knowledge B, or the target predicate
symbol, which means that recursive clauses can be induced. At least
one of the variables in the arguments of a body literal must appear in
the head of the clause or in one of the literals to its left. No literals
that bind a variable to a constant are allowed.!

Training examples are function-free ground facts (constant tuples).
Background knowledge B consists of extensional predicate definitions

!Literals that bind a variable to a constant value have the form X = wvalue.
The lack of this feature could be circumvented in FOIL by introducing additional
predicates into B which have the form is_a_value(X) for each possible value. This
feature has been recently added to FOIL4 [Cameron-Jones and Quinlan 1993].

67

68 An overview of empirical ILP systems [Ch.4

given by a finite set of function-free ground facts, i.e., B = M where
M denotes a ground model.

The FOIL algorithm is basically the same as the generic empiri-
cal ILP algorithm from Section 3.2.2. It consists of three basic steps:
pre-processing of training examples, hypothesis construction and hy-
pothesis post-processing.

Negative examples are not necessarily given to FOIL. They may
be generated in pre-processing, based on the closed-world assumption.
Hypothesis construction in FOIL is basically the same as the covering
loop of Algorithm 3.2. Post-processing of the induced hypothesis is a
form of reduced error pruning, briefly mentioned in Section 3.2.2 and
described in some more detail in Sections 8.3 and 8.4.

The covering loop of the FOIL algorithm (Algorithm 4.1) assumes
the given (pre-processed) set of training examples £, the language bias
L of function-free program clauses, the extensional background knowl-
edge B, as well as the search heuristics and the heuristics used as the
stopping criteria.

Algorithm 4.1 (FOIL — the covering algorithm)

Initialize Eq, 1= €.
Initialize H = ().
repeat {covering}
Initialize clause ¢ :=T + .
Call the SpecializationAlgorithm(c, Eeyr)
to find a clause ¢peq;.
Assign ¢ := cpesy-
Post-process ¢ by removing irrelevant literals to get c.
Add ¢ to H to get a new hypothesis H' := H U {c'}.
Remove positive examples covered by ¢’ from Eg, to get
a new training set &, 1= Eur — coverse:(B,{c'},EL.).
Assign Epyyr = &L H = H'.

cur?
until £}, = () or encoding constraints violated.

Output: Hypothesis H.

Sec.4.1] An overview of FOIL 69

In the inner specialization loop, FOIL seeks a clause of the form
p(Xl, XQ, Ce ,Xn) — Ll, LQ, veey Lm

Finding a clause consists of a number of refinement steps. Search
starts with the clause with an empty body. At each step, the clause
¢ = p(X1,Xo,...,X,) « L1, Lo, ..., L;_1 built so far is refined by
adding a literal L; to its body. Literals are atoms A (or negated atoms
not A) where A is of the form X; = X or ¢x(Y1,Y5%,...,Y,,), where
the X variables appear in ¢;, the Y variables either appear in ¢; or
are new existentially quantified variables, and ¢ is a predicate symbol
from the background knowledge B. At least one of the Y variables has
to appear in ¢;. Recursive calls, i.e., atoms of the form p(Z1, 2, ..., Zy,)
may also be added to the body of ¢;. This requires at least one ir-
reflexive partial ordering Xy < Z;, 1 < s < n, to hold in order
to prevent the clause from causing infinite recursion (see Chapter 7).
A more sophisticated approach to preventing infinite recursion devel-
oped along these lines has been recently implemented within FOIL4
[Cameron-Jones and Quinlan 1993].

In the specialization loop, FOIL makes use of a local training set
which is initially set to the current training set & = &, While &,
consists of n-tuples, the local training set consists of m-tuples of con-
stants, each of them being a value assignment to the m variables in the
current clause. Let &; denote the local training set of tuples that satisfy
the current clause ¢; = p(X1, Xo, ..., X,) « L1, Lo, ..., Li_1. Let n;
denote the number of tuples in &. Elements of £ are positive tuples
and elements of £, are negative tuples; the numbers of tuples in these
sets are denoted by n{ and ny’, respectively.?

The FOIL specialization loop, implementing the function
Specialization Algorithm(c,Eeyy), is given in Algorithm 4.2. In each
refinement step, clause ¢;,q is obtained by adding a literal L; to the
body of the clause ¢; = p(Xi, Xo,...,X,) < L1, Lo, ..., L; 1, which

’In the case that m = n, the m-tuples of constants in the local training set &;
consist of those tuples from ., that are covered by ¢;. Therefore, the number of
examples from &, covered by ¢; could be denoted by n(c¢;). However, since the set
contains ‘extended’ tuples (m can be greater than n), the distinction between the
local training set & and the set of examples from &, covered by ¢; needs to be
kept and a different notation used.

70 An overview of empirical ILP systems [Ch.4

Algorithm 4.2 (FOIL — the specialization algorithm)

Initialize local training set & := &y
Initialize current clause ¢; := c.
Initialize 7 := 1.
while & # () or encoding constraints violated do
Find the best literal L; to add to the body of ¢; =T + @
and construct ¢jy1 :=T + Q, L;.
Form a new local training set £;41 as a set of extensions of
the tuples in &; that satisfy L;.
Assign ¢ := ¢i41.
Increment :.
endwhile

Output: Clause c.

covers the set of tuples &. The literal L; is either an atom A of
the form ¢ (Y1,Y5,...,Y,,) or X; = X, or not A. Some of the vari-
ables Y7,Y5,...,Y,, belong to the ‘old’ variables already occurring in
¢i, {OV1, ..., OVa}, while some are ‘new’, {NVi,..., NVyey}, i.e., in-
troduced by the literal L;. The set of tuples &; ;1 covered by clause ¢; ;1
is the set of ground (Old + New)-tuples (instantiations of < OVy,. ..,
OVouis, NVi,..., NVye, >) for which the body Ly, Lo, ..., L, 1, L; is
true. Producing a new training set £, ;1 as a set of extensions of the
tuples in &; that satisfy L; can be expressed in the relational algebra ter-
minology by saying that & is the natural join of & with the relation
corresponding to literal L;.

Table 4.1 illustrates the FOIL specialization algorithm on the fam-
ily relations problem from Section 1.4. The search starts with clause
c1 = daughter(X,Y) « . The initial local training set £; contains all
training examples, two of which are positive (n{ = 2) and two negative
(nf = 2). Choosing literal L; = female(X) gives rise to the new lo-
cal training set & of tuples covered by ¢y, which contains two positive
(ng = 2) and one negative tuple (ny = 1). Adding the second literal
Ly = parent(Y, X) to the body of clause ¢y produces clause ¢z with a
local training set £3 containing only positive tuples. Thus, a consistent

Sec.4.1] An overview of FOIL 71

Current clause ¢y : daughter(X,Y) <

& (mary,ann) @ nt =2 I(c;)=1.00
(eve,tom) @ n{ =2
(tom,ann) & L, = female(X)
(eve,ann) © Gain(L;) =084 nf¥ =2

Current clause ¢y : daughter(X,Y) < female(X)

&y (mary,ann) & ny =2 I(cy) =0.58
(eve,tom) @ ns =1
(eve,ann) & Ly = parent(Y, X)

Gain(Ly) =1.16 ny® =2

Current clause c3 : daughter(X,Y) < female(X), parent(Y, X)

& (mary,ann) @ ny =2 I(c3) =0.00
(eve,tom) @ ngy =0

Table 4.1: FOIL trace for the family relation problem.

clause ¢z (which covers no negative tuples) is generated.

If a positive literal with new (existentially quantified) variables is
added to the body of the clause, the size (arity) of the tuples in the
local training set increases. A tuple from &; may also give rise to more
than one tuple in & ;. Consider again the problem of learning family
relations, with the first literal L; = parent(Y, Z) introducing a new
variable Z (see Table 4.2). All of the tuples in & have two successors
in &, which contains eight 3-tuples. The tuples in &;,; inherit the
labels @ and & from their parents in &;.

The choice of literals is directed by an entropy-based search heuris-
tic, called weighted information gain, which can be described as fol-
lows. If the local set of tuples & contains n; tuples, n’ of which are
positive and n{ negative, the information needed to signal that a tu-

[52
ple is positive is I(¢;) = —loga(*=) = —logg(ng;n#) (see Section 8.4
which explains the informativity and the information gain heuristics
in more detail). Let the choice of the next literal L; give rise to a
new tuple set &1; the information needed for the same signal is then
I(cis1) = —loga(

®
it

m) Note that if L; does not introduce new variables,

72 An overview of empirical ILP systems [Ch.4

Current clause ¢y : daughter(X,Y) <

& (mary,ann) ® ny =2
(eve, tom) ® n{ =2
(tom, ann) & L, =parent(Y,Z)
(eve,ann) e ny® =2

Current clause ¢y : daughter(X,Y) < parent(Y, Z)

&y (mary,ann, mary) @ ny =4

(mary, ann, tom)
(eve, tom, eve)
(eve, tom,ian)
(tom, ann, mary)
(tom, ann, tom)
(eve,ann, mary)
(eve,ann, tom)

OO OO D DD
3
N0
Il
B

Table 4.2: The effect of new variables on the current training set of
tuples in FOIL.

then &1 C &, ndy < nf and ny,; < ny. However, if new variables
are introduced, it can happen that nf,, > ny and/or ny,; > ny. If
ny® of the positive tuples in &; are represented by one or more tu-
ples in &1, the information gained by selecting literal L; amounts
to Gain(L;) = WIG(ciy1,¢;) = nd® x (I(¢;) — I(ciy1)). The literal
with the highest gain is selected at each step. WIG(c¢;ii1,c¢;) stands
for weighted information gain, i.e., the information gain I(¢;) — I(ciy1)
weighted by the factor ny’®.

For the example, illustrated in Table 4.1, I(c;) = —lom(%) = 1.00,
I(ca) = —loga(3%7) = 0.58, and I(c3) = —loga(555) = 0.00. As ni® =
ny® = 2, we have Gain(L;) = 2 x (I(c;) — I(c3)) = 2 x 0.42 = 0.84,
and similarly Gain(Ls) =2 x 0.58 = 1.16.

The heuristic allows for efficient pruning, which is responsible for
the efficiency of FOIL. Let L; be a positive literal with Gain(L;) =
ny® x (I(¢;) — I(ciy1)). L; may contain new variables and their re-
placement with old variables can never increase ny’®. Moreover, such
replacement can at best produce a set &1 containing only @ tuples,

Sec.4.2] An overview of FOIL 73

ie., with I(c;y1) = 0. The maximum gain that can be achieved by
any literal obtained by substituting new variables in L; with old is
MazimumGain(L;) = n$® x I(c;). If this maximum gain is less than
the best gain achieved by a literal so far, no literals that can be obtained
with such replacement are considered.

To implement noise-handling, FOIL employs stopping criteria based
on the encoding length restriction, which limits the number of bits used
to encode a clause to the number of bits needed to explicitly indi-
cate the positive examples covered by it. If a clause ¢; covers n®(c;)
positive examples out of n,, examples in the current training set
Eeur, the number of bits used to encode the clause must not exceed
ExplicitBits(c;, Ecur) = l0ga(Newr) + lng((n%C@))) bits. The construc-
tion of a clause is stopped (the necessity stopping criterion) when it
covers no negative examples (is consistent) or when no more bits are
available for adding literals to its body (see Section 8.4). In the latter
case, the clause is retained in the hypothesis if it is more than 85%
accurate or is discarded otherwise. The search for clauses stops (the
sufficiency stopping criterion) when no new clause can be constructed
under the encoding length restriction, or alternatively, when all positive
examples are covered.

Improvements of FOIL, implemented in FOIL2.0 [Quinlan 1991], in-
clude determinate literals (an idea borrowed from GOLEM), types and
mode declarations of predicates, as well as post-processing of clauses.
Consider a partially developed clause which has some old variables and
a corresponding set of tuples. Determinate literals [Quinlan 1991] are
literals that introduce new variables for which each @ tuple has exactly
one extension and each © tuple has at most one extension in the new
training set (see Section 5.6 for the definition of determinacy). Un-
less a literal is found with gain close to the maximum, all determinate
literals are added to the body of the clause under development. Upon
completion of the clause, irrelevant literals are eliminated. Determinate
literals alleviate some of the problems in FOIL, which are due to its
short-sighted hill-climbing search strategy.

