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Detection and Analysis of Irregular Streaks
in Dermoscopic Images of Skin Lesions
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Abstract—Irregular streaks are important clues for Melanoma
(a potentially fatal form of skin cancer) diagnosis using der-
moscopy images. This paper extends our previous algorithm to
identify the absence or presence of streaks in a skin lesions, by
further analyzing the appearance of detected streak lines, and
performing a three-way classi cation for streaks, Absent, Reg-
ular, and Irregular, in a pigmented skin lesion. In addition, the
directional pattern of detected lines is analyzed to extract their
orientation features in order to detect the underlying pattern. The
method uses a graphical representation to model the geometric
pattern of valid streaks and the distribution and coverage of the
structure. Using these proposed features of the valid streaks along
with the color and texture features of the entire lesion, an accuracy
of 76.1% and weighted average area under ROC curve (AUC) of
85% is achieved for classifying dermoscopy images into streaks
Absent, Regular, or Irregular on 945 images compiled from atlases
and the internet without any exclusion criteria. This challenging
dataset is the largest validation dataset for streaks detection and
classi cation published to date. The data set has also been applied
to the two-class sub-problems of Absent/Present classi cation
(accuracy of 78.3% with AUC of 83.2%) and to Regular/Irregular
classi cation (accuracy 83.6% with AUC of 88.9%). When the
method was tested on a cleaned subset of 300 images randomly
selected from the 945 images, the AUC increased to 91.8%, 93.2%
and 90.9% for the Absent/Regular/Irregular, Absent/Present, and
Regular/Irregular problems, respectively.

Index Terms—Computer-aided diagnosis, dermoscopic struc-
tures, dermoscopy, graph, irregular streaks, melanoma, skin
cancer, streak detection, texture analysis.

I. INTRODUCTION

M ALIGNANT melanoma, a form of skin cancer arising
from the pigment-producing cells of the epidermis, is

most treatable when the disease is diagnosed early. However,
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effective therapies for metastatic melanoma are lacking, and the
ve year survival rate is only 15% for the advanced stage [1].
In conjunction with the fact that the incidence of the disease
has been increasing rapidly and steadily in the last 30 years [2],
there is an urgent need for early detection tools.
A popular in vivo noninvasive imaging tool among der-

matologists is dermoscopy, also known as epiluminescence
microscopy [3]–[5]. Specially trained dermatologists, dermo-
scopists, can use the tool to examine pigmented skin lesions
based on a set of complex visual patterns, such as streaks,
pigmented networks, blue white veil, dots, and globules [6].
According to the presence, absence and the degree of irregu-
larity of these visual patterns, a diagnosis can be derived by
following one of the dermoscopic algorithms [3], [5], [7]–[9].
Streaks, one of the important visual features, can be con-

sidered interchangeably with radial streaming or pseudopods
because of the same histopathological correlation [10]. Radial
streaming is a linear extension of pigment at the periphery of a
lesion as radially arranged linear structures in the growth direc-
tion, and pseudopods represent nger-like projections of dark
pigment (brown to black) at the periphery of the lesion [10].
Fig. 1(a) shows an example of a lesion with the radial streaming
pattern, enlarged in Fig. 1(b). Fig. 1(c) shows an example of a le-
sion with the pseudopods pattern. The enlarged image is shown
in Fig. 1(d). Streaks are local dermoscopic features of skin le-
sions, however when streaks appear symmetrically over the en-
tire lesion [as seen in Fig. 1(a)], the feature is referred as a star-
burst pattern.
Streaks are important morphologic expressions of malignant

melanoma, speci cally melanoma in the radial growth phase
[7], [11]. Irregular streaks are one of the most critical features
(included in almost all of dermoscopy algorithms) that show
high association with melanoma. In addition, Menzies et al. [7]
found pseudopods to be one of the most speci c features of su-
per cial spreading melanoma which is a subset of malignant
melanoma. Furthermore, symmetric streaks (starburst pattern)
are one of the speci c dermoscopic criteria to differentiate usu-
ally benign Spitz nevi (a dark nevus common in children) from
melanoma, thus increasing diagnostic accuracy for pigmented
Spitz nevi from 56% to 93% [12]. However, all lesions in adults
exhibiting a starburst pattern should be excised for histopatho-
logical evaluation [7]. Fig. 2 shows lesions with Absent, Reg-
ular, and Irregular streaks.
Based on the clinical de nitions in [3] Irregular streaks are

never distributed regularly or symmetrically around the lesion.
They also should not be clearly attached to pigment network
lines. These de nitions are used later in the paper to de ne dis-
criminative models towards automated Regular/Irregular clas-
si cations of streaks.

0278-0062/$31.00 © 2013 IEEE
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Fig. 1. Examples of streaks. Images (a) and (c) are lesions containing radial streaming and pseudopods pattern, respectively. Images (b) and (d) are magni ed
images to show the linear structures. Images are taken with permission from [6].

Fig. 2. Examples of Absent, Regular and Irregular images. Image (a) shows a lesion without streaks (Absent). Image (b) illustrates a lesion with a complete
symmetric Regular streaks pattern called starburst, and in (c) a melanoma with Irregular streaks and partial distribution is shown. Images (b) and (c) are called
Present images. Image (a) is taken from [6], (b) and (c) are from [13] with permission.

Automating the recognition of streaks would help in building
a computer-aided system for melanoma detection. Such a
system would not only help physicians diagnose melanoma as a
second reader, it could also teach the technique of dermoscopy.
This paper presents a novel automated method, which builds
upon and extends the earlier work [14], [15] identifying the
presence of valid streak lines from the set of candidate streak
lines. This method analyzes further the orientation and spatial
arrangement of streak lines and classi es the lesion as a lesion
with Absent, Regular, and Irregular streaks.
The paper is organized as follows. Section II describes

previous work on streaks analysis in dermoscopy images.
Section III describes the new contributions in this paper, ana-
lyzing streak orientation, feature extraction and classi cation.
Section IV gives details of the experiments and evaluation, and
Section V presents the conclusion and future work.

II. PREVIOUS WORK
As a fundamental step towards computer-aided diagnosis

of skin cancers, automatic detection and analysis of local
dermoscopic structures [16]–[23] and global patterns [24]–[28]
have been frequently addressed in the literature. However,
even though the presence of Irregular streaks is highly sugges-
tive for malignancy of a lesion, the modeling, detection, and
analysis of streak lines and starburst pattern have very rarely
been used for automated skin lesion diagnosis. There have
been only a few previous studies directly on streak detection.
Fleming et al. [29] rst proposed and outlined a method to
detect streaks; they argued that the presence and absence of

radial streaming and pseudopods and their characteristics could
be tested from a skeleton of the pigment network. However,
they did not publish the details of their algorithm. Betta et al.
[30] developed a method in which streaks were detected by
simultaneously looking for occurrence of nger-like tracks
along the contour of a lesion, and brown pigmentation for the
corresponding region. Dividing an image into 16 sub-images,
they computed, in each sub-image, the irregularity of the lesion
border and also the hue component of the original color image
in the HSV color space [31]. The nal diagnostic decision was
made by a simple threshold on these computed values. Also in
a recent work, Mirzaalian et al. [32] combined a physics-based
ux model and machine-learning approach to classify streaks in
dermoscopic images. Although the methodology is interesting,
it has been tested on only 99 dermoscopic images with wide
exclusion criteria.
Our previous method for detecting the presence and absence

of streaks [14], [15] was tested on a large database of 300 skin
lesions. Because this paper’s algorithm to classify a lesion into
Absent, Regular, and Irregular is an extension of our previous
work [14], the previous algorithm which utilizes a ngerprint
recognition model is brie y outlined here.
The algorithm to locate streak lines is divided into four steps:

preprocessing, blob detection, feature selection, and two-class
classi cation. In the preprocessing step, lesions are segmented
using the Wighton et al. method [33]. Then lesions are oriented
with the major axis parallel to the x-axis and their sizes are stan-
dardized. Then the RGB skin images are converted to L*a*b*,
and L* is used for the rest of the analysis.
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In the blob detection step, linear structures with a Gaussian
cross-section pro le near the border are located by four Lapla-
cian of Gaussian (LOG) lters with different sizes,

such as

(1)

(2)

where is the intensity value at is the
Gaussian lter whose standard deviation is set to a small value
of 0.1, in order to achieve high sensitivity even to a small change
in intensity. 25 experiments with ve different sigmas and ve
lter sizes were performed, and the results show that the current
setting gives the best results. At the end, the union of the results
from the four scales were used to form a multi-scale result.
After nding linear structures, their orientation is estimated

using the averaged squared gradient ow (ASGF) algorithm
[34], a technique commonly used in ngerprint detection. A
squared gradient vector at the pixel is de ned from
a gradient vector by doubling its angle and squaring
its magnitude such as

(3)

where

(4)

The average directional ow for a block can be determined as

(5)

For each block the reliability of the local orientation (the coher-
ence of the squared gradients) is calculated as

(6)

When all squared gradient vectors inside a block are pointing
in the exactly the same direction, Reliability is 1. On the other
hand, a value 0 indicates the vectors point in random directions.
Reliability is used to lter the gradient vectors; only those vec-
tors with Reliability greater than 0.5 are kept.
The ridge frequency, the frequency of the detected linear par-

allel structures, is determined by rotating the block so that the
ridges are vertical. The columns are projected down to nd the
peaks. The frequency of ridges is calculated by dividing the dis-
tance between the rst and last peaks by (number of peaks—1).
The candidate linear streak structures can then be enhanced by
a Gabor lter tuned with the ridges frequency and orientation
such as

(7)

(8)

Then 25 features are extracted from the candidate linear
streak structures and from the lesion to be used for the two-class
classi cation. One set of 12 features is based on properties of
the detected candidate streak lines. There are three structural,
six chromatic and three textural features. Another feature set
contains the 13 common color and texture features of the entire
lesion. These 25 features are fed to a SimpleLogistic classi er
implemented by Weka. Testing the two-class algorithm for the
absence and presence of streaks, using ten-fold cross-validation
on 300 dermoscopic images (105 Absent and 195 Present),
an accuracy of 0.85 (precision and recall )
was achieved. The accuracy for starburst pattern detection was
0.815.

III. METHOD FOR THREE-CLASS CLASSIFICATION
FOR STREAKS DETECTION

The method for recognizing partial and complete radial
streaming patterns builds upon and extends the earlier work
[14], [15], through identi cation of valid streak lines from the
set of candidate streak lines, to reduce false positive streaks
such as hairs and skin lines. The method also extends the
analysis to identify the orientation and spatial arrangement of
streak lines. These novel geometric features are used to identify
not only the presence of streak lines, but whether or not they
are Irregular or Regular; important for melanoma diagnosis.

A. Identifying Valid Streak Lines From Candidate Streaks

Skin lesions are mainly circular in dermoscopy images, but
they can be any shape. The lesion shape is generalized as an el-
lipse that has the same normalized second central moments as
the lesion region. Two foci and are computed using the
eccentricity of the ellipse. To test whether a line segment, for
example the red line segment with the angle with respect to
the horizontal direction and the centroid of in Fig. 3(a), is a
streak or not, is connected to and and the angle be-
tween and is computed and its bisector line
is found. It is expected that the orientation of a true streak line
segment will coincide with the bisector line . To test such
a condition, the angle between and the line joining the
foci is compared to the orientation angle of the
line. All orientations counterclockwise from the horizontal axis
are measured in the range of . By comparing to
a constant threshold of , nonstreak line segments are elimi-
nated from the set of detected lines, and reliable line segments
at every scale are found to form a multi-scale result to be used
for feature extraction. For example, in Fig. 3(a), the line seg-
ment with centroid will be kept, but the line segment with
the centroid will be removed. Reliable lines detected after
orientation enhancement are shown in Fig. 3(b), and the result
of valid streaks selection is illustrated in the Fig. 3(c). These
valid streaks are ordered in the direction of the red arrow from
0 to for feature extraction in the next step.
Based on the mathematical de nitions of streaks proposed in

[14], a new set of 18 features is proposed for streaks, called STR
(streaks), which includes three Structural, three Geometric, six
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Fig. 3. Validating streaks candidates. Images (a) illustrates how line segments
are ltered based on their orientation difference from the expected di-
rection. Image (b) shows the line segments detected after orientation estimation
and (c) shows valid streaks after removing false positives.

Orientation, and six Chromatic characteristics of valid streaks.
Common color and texture features [35], [18] of the lesion itself,
called LCT (lesion color texture) has also been used.

B. New STR Features

STR is a clinically inspired feature set, based on the mathe-
matical de nitions from [14] to model characteristics of Absent,
Regular, and Irregular streaks.
1) Geometric Graph Features (Three Features): Clinically,

there is an emphasis on the “uniformity” and smoothness of the
orientation change in streaks for irregularity detection. There is
also another important characteristic which is connectivity of
the structure that represents the completeness of the pattern. In
[17], Sadeghi et al. proposed the “Density Ratio” feature which
represents the density of the dermoscopy structure called pig-
ment network (PN). A similar concept has been used here with
some modi cations to measure the density of streaks on the
image. This feature is useful to discriminateAbsent images from
Present images. For geometric analysis, a graph of the valid
streak lines found in the previous section was created by re-
ducing each line to nodes, based on the average length
of streaks in the image. For lines, the total number of nodes
equals to

(9)

where is the length of the line segment in the image
and denotes the average length of streaks. This
helps to increase the contribution of longer streak lines in feature
calculation while shorter streak lines (shorter than the average
length) will only have one node in the graph. Fig. 4 illustrates the
node placement on streak lines based on their size to create the
streak graph . Detected streaks on a sample image are shown
in Fig. 4(a) and corresponding nodes and graph lines for the
green box are shown on Fig. 4(b) where the arrows point to the
two streak lines longer than the average size of line segments
that contributemore than one node to the graph. Thewhite arrow
points to a streak line longer than the average length, and the
yellow arrow points to a streak line which is longer than two
times the average length. All of the other streaks are shorter than
the average length and contribute only one node each.
Density Ratio: A graph consists of pairs with

vertices (nodes) and edges . The standard
Density of graph is de ned in [36] as

(10)

which is the ratio of edges in to the maximum possible
number of edges , and is the number of vertices in graph
. Inspired by [17], the density measure of the graph of streaks

was de ned as following:

(11)

where is the size of the segmented lesion in pixels.
The density feature is useful in discriminating between the Ab-
sent and Present images, however it does not say much about
the regularity or irregularity of the streaks, nor the complete-
ness and coverage of the pattern.
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Fig. 4. Detected streaks are shown in (a) and corresponding nodes and graph
lines for the green box are shown on (b) where the arrows point to the two streak
lines longer than the average size of line segments that contribute more than one
node to the graph. The white (left) arrow points to a streak line longer than the
average length, and the yellow (right) arrow points to a streak line which is
longer than two times the average length. All of the other streaks are shorter
than the average length and contribute only one node each.

Often there is a complete pattern with a high graph density in
Regular streaks all over the lesion [Fig. 5(a), (c), (e)], whereas
in Irregular streaks, there may be a dense graph but over only
small parts of the lesion [Fig. 5(b), (d), (f)]. Therefore, another
measurement is needed to nd out if the dense pattern is dis-
tributed all over the lesion or if it is just partially covering the
lesion. Thus two new features called pattern coverage, and com-
pleteness are proposed.
Coverage: To measure the coverage of the streaks pattern,

the histogram of the number of streaks in different areas (arcs)
of the lesion is computed for bins of in the range of .
According to the mathematical de nition of streaks inspired by
the clinical de nitions from [6], streaks are three or more linear
structures co-radially oriented over the boundary of the lesion.
Therefore the graph coverage was de ned as the fraction of bins
withmore than two streak lines. Coverage ranges from 0 to 1 and
the perfect coverage is equal to one that often belongs to Reg-
ular streaks which are distributed symmetrically among the bins

[Fig. 5(g)]. Lesions with Irregular streaks often have a lower
Coverage because of the partial distribution pattern [Fig. 5(h)].
Fig. 5(a) shows a lesion divided by red arrows into 12 areas and
Fig. 5(g) shows the Coverage histogram of the lesion with Reg-
ular streaks. As shown in the gure, the number of streaks in
the horizontal bins , and are often higher than
other bins because of the growth pattern of the lesion in the hor-
izontal (major) axis.
Completeness: If each vertex in is reachable from the

other vertices , then is connected and a maximal connected
subgraph is the largest connected subset
of the vertex set for which no larger set containing is
connected. Based on the above de nitions Pattern Completeness
is equal to

(12)

where is equal to the number of disconnected subgraphs
(components) in the image.
2) Orientation Features (Six Features): The orientation in-

formation of valid streaks can also reveal valuable information
about the presence and regularity or irregularity of streaks. The
valid streaks are ordered in order to track the orientation change
to detect the underlying pattern, if any. The line segments are
ordered based on their location and their orientation from the
major axis starting from 0 to in the counter-clockwise di-
rection [Fig. 3(c)]. In Fig. 6(a), streaks are ordered in the axis
and their corresponding orientation in the axis are shown for a
typical lesion with Regular streaks (in red) and a lesion with Ir-
regular streaks (in green). Regular streaks tend to have smooth
orientation changes without major jumps between consecutive
data points, compared with Irregular streaks. After ordering the
line segments, based on the fact that they should be co-radi-
ally oriented, linear regression is applied to measure the error
from an expected perfect orientation change pattern, so that in-
formative features of regularity or irregularity of the orientation
change can be extracted. Assume that the ordered valid streaks
are indexed by the subscript , where ranges from 1 to

(the total number of valid streaks), and is the corresponding
orientation. In the linear regression, the predicted orientation
can be expressed as

(13)

where and are the intercept and slope of the regression
line. The residual, , is the difference between the
predicted orientation of the line segment by the model ,
and the true direction of line . The slope of the tted line,
, is used as one of the orientation features. Fig. 6 shows also

the linear regression on the orientation data of the Regular and
Irregular images. The slope for the Regular streaks and Ir-
regular streaks are 0.67 and 4.6, respectively.
The root mean square error (RMSE) of the model is calcu-

lated as (14)

(14)
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Fig. 5. Lesions with Regular (a) and Irregular (b) streaks. The red lines in (a) segment the lesion into 12 areas to calculate the coverage of streaks. (c) and (d) show
the results of multi-scale streak detection on (a) and (b). (e) and (f) illustrate the graphs of streaks plotted over the lesions. In (g) and (h) the coverage histograms
of (e) and (f) are shown, respectively. The histogram counts the number of streaks observations into each of the bins of in the range of . From the
histogram (g), Coverage is 1 (maximum) and in (h), the red arrows point to the bins with less than three line segments and Coverage is .

Experiments show that images with Regular streaks have
lower and RMSE which is because of the large number
of streaks in the axis with smooth orientation change in

. The bottom part of Fig. 6 shows the residuals of the
regression corresponding to the ordered streaks above. In
this example, the RMSE of the Irregular streaks (green plot)
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Fig. 6. Linear regression of features extracted from the orientation pattern. The top gure shows the ordered line segments in the axis with their corresponding
orientation in axis . The red (circle) data points show the orientation data for the regular lesion shown in Fig. 5(c) and the green (square) data points illustrate
the orientation of streaks of the Irregular lesion shown in Fig. 5(d). The bottom gure illustrates the corresponding t error (residuals) of the linear regression.
The RMSE of Irregular streaks (in green) is 47.68 where the RMSE error of the Regular streaks (in red) is 13.21. All residuals outside of the blue box in the bottom
gure are counted and normalized by the number of line segments as the outliers feature.

is 47.7 and the RMSE of the Regular streaks (red plot) is
13.2.
Another feature involving residuals is the RMSE of the rst

derivative of orientations as

(15)

where and are the derivative of and .
Another is a normalized count of outlier streak lines, where

outliers are de ned as lines which are oriented more than
outside the de ned range. These outliers can be seen outside the
blue box in Fig. 6. All residuals outside of the blue box in the
bottom gure are counted and normalized by the number of line
segments.
The entropy of the lines orientations and residuals are also

used, to characterise the randomness or existence of a speci c
pattern in the orientation change. The entropy is a statistical
measure of randomness and the motivating idea behind the en-
tropy is that Irregular streaks with unpredictable orientation
change have a high entropy while Regular streaks with a spe-
ci c smooth orientation change show a relatively low entropy.
For with lines , entropy is denoted by

, and is de ned as

(16)

where is the probability function of and contains the
histogram counts of bins where .
3) Chromatic Features of Streaks (Six Features): The color

features of streaks include the mean and standard deviation of
intensity values in S and V channel of HSV color space as well
as the choice of the color channel for luminance image (L* in

the experiment) used for streak detection over segmented streak
lines.
4) Structural Features (Three Features): Diagnostically im-

portant characteristics of streaks include the shape, length, and
variability of lines. Therefore, the length of each line is com-
puted, which is the number of pixels of the line segment. The
features are the mean of the lengths of streaks, and the total
number of line segments in the image. The ratio of the streak
size to the lesion size (# of streak pixels/# of pixels in the lesion
area) is also included.

C. Lesion Color Texture Features: LCT (13 Features)

LCT includes the following 13 features: The mean, standard
deviation and reciprocal of coef cient of variation (mean/stdev)
of the values in S andV fromHSV and L* of L*a*b*, and four of
the classical texture measures; energy, contrast, correlation, and
homogeneity [37], [18]. These textural features are calculated
from a grey level co-occurrence matrix (GLCM). The GLCM,
constructed over the entire lesion, is a tabulation of how often
different combinations of pixel brightness values (gray levels)
occur in a pixel pair in an image.
The streak detection algorithm and the validation procedure

outlined in the paper likely miss and/or exclude some “true”
streak lines. In addition, the streak-speci c features reported
in Section III-B may not cover “all” streak properties. Thus
the LCT feature set was constructed, in order to capture the
“missing” information globally from the entire lesion. (As seen
in the quantitative results in Section IV-B, combining LCT and
STR features achieved the highest accuracy and con rmed our
hypothesis). Potentially, the LCT set could include other der-
moscopic features such as border asymmetry, irregularity and
the color counts. However, the LCT set was restricted to the
color and texture information that is more obviously useful for
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Fig. 7. Examples of each of the Absent, Regular, and Irregular classes are shown. (a) illustrates an Absent image from the experiments with streak lines and
graphs in the second and third columns, respectively. (d) and (g) show two Regular (Spitz nevus) images with radial streaming and pseudopods, respectively, and
two lesions (melanomas) with Irregular streaks are shown in (j) and (m).

modeling streak patterns. In future, these streak features will be
compared with other dermoscopic features to determine the pre-
dictive power of each of them.

D. Classi cation
Finally, these 31 features are fed into the SimpleLogistic [38]

classi er implemented in Weka (a general data mining tool de-

veloped by University of Waikato in New Zealand) which uses
a powerful boosting algorithm, LogitBoost [39]. Boosting is a
method for combining the performance of many weak features
to produce a powerful classi er [39]. SimpleLogistic ts logistic
models by applying LogitBoost with simple regression func-
tions as base learners. This choice of classi er was better than
others such as Logistic, and BayesNet [40].
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Fig. 8. Qualitative results on challenging examples. (a) shows a dif cult image labeled by 40 experts with 33.3% inter-expert disagreement favoring Present and
26.8% disagreement favoring Irregular diagnosis. The method assigns a label of Irregular with 68% probability. Detected streak lines are shown in (b) in green.
(c) shows an Absent image that has co-radial linear pigmented structures which belong to clods and maple leaf structures of the lesion called pigmented Basel Cell
Carcinoma. A challenging lesion with a strong pigment network is shown in (e) and the result of streak detection is shown in (f) with a very few false positive
lines. The method classi ed (c) and (e) correctly because of the low number of detected streak lines, and the low density and coverage of the graph. (g) shows one
of the Absent images that the method failed to classify it correctly (missclassi ed as Irregular) due to the linear co-radial blood stuctures in the lesion boundary.

IV. EVALUATION AND RESULTS

In the following section, results for three sets of features
(LCT, STR, and ) are reported in classifying
lesions into three-classes of streaks Absent/Regular/Irregular,
two-classes of streaks Absent/Present, and the two-classes of
streaks Regular/Irregular.
In these experiments, two image sets with 945 and 300 im-

ages (a subset of the 945) were used to evaluate the proposed
method. First, to evaluate the method on an inclusive image
set, 945 images from different resources were used, without ex-
cluding any. Some of these images were challenging due to the
acquisition parameters such as lighting andmagni cation, being
partial (entire lesion was not visible), or due to the presence of
an unreasonable amount of occlusion by either oil or hair. These

TABLE I
CORRECT CLASSIFICATION RATES (ACCURACY) OF VARIOUS IMAGE
TRANSFORMATIONS FOR MULTI-SCALE THREE-CLASS STREAKS

CLASSIFICATION ON 945 IMAGES (SET1)

challenging images are usually discarded from test sets in pre-
vious work, but we kept these images in the test set. work, but
these images were kept in this test set. The method was applied
to this set of 945 dermoscopic images (570 Absent, 245 Irreg-
ular, and 130 Regular) taken from three different resources. The
rst subset included 745 images from [13] where each image
was labeled as (Absent, Regular, or Irregular) representing the
presence and regularity of streaks in the image. For the second
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TABLE II
EVALUATION OF THE PROPOSED METHOD ON THE TWO SET WITH (INCLUSIVE) AND (SELECTED HIGH RESOLUTION
AND “CLEAN”) IMAGES. TWO-CLASS EXPERIMENT INCLUDES THE ABSENT/PRESENT AND REGULAR/IRREGULAR CLASSIFICATIONS AND IN THE

THREE-CLASS IMAGES ARE CLASSIFIED INTO ABSENT/REGULAR/IRREGULAR. LCT FEATURE SET AND THE PROPOSED STR FEATURE SET HAVE BEEN
EVALUATED SEPARATELY AND COMBINED. HIGHLIGHTED NUMBERS SHOW THE EVALUATION RESULTS USING ALL FEATURES
COMBINED. THIS TABLE REPORTS THE SUMMARY OF THE RESULTS OF 12 EXPERIMENTS IN TERMS OF WIGHTED AVERAGE PRECISION,

RECALL, F-MEASURE, ACCURACY, AND AUC FOR THE MULTI-SCALE ANALYSIS ON THE L* CHANNEL OF L*A*B*

subset, 100 images reported as streak Regular or Irregularwere
collected from the web, and for the third subset 100 images with
Absent, Regular, or Irregular labels were taken from [6]. By
adding all these three subsets, a set of 945 images (Set1) was
used for the rst experiment to demonstrate the strength of the
proposed method over a large number of dermoscopic images
from different imaging devices.
In the second experiment, a set of 300 “clean” and high res-

olution images were randomly selected (105 Absent, 110 Irreg-
ular, and 85 Regular) with a complete lesion and without arti-
facts such as hair or oil bubbles (Set2).

A. Evaluation-Qualitative Results

Fig. 7 illustrates ve examples of qualitative results with
streak lines overlaid on the images, and associated streak
graphs. The rst row of Fig. 7 shows an Absent image, with a
few lines detected as potential streak lines in the second column
and very sparse and low density graphs in the third column. The
second and third rows illustrate results of streak detection and
graphs on two images with Regular streaks in which Fig. 7(d)
has the radial streaming streaks and Fig. 7(g) shows pseudopod
streaks, demonstrating how the method successfully detects
pseudopods. The last two rows of Fig. 7 show melanomas,
with Irregular streaks. The high difference in graph densities
and spatial arrangements and distribution is clear for different
classes.
Streaks on dermoscopy images usually are dif cult to de-

tect since they are not perfect linear structures, but often fuzzy
and low-contrast oriented intensities. Furthermore, streaks may
have unpredictable spatial distribution (partial pattern) with just
a few streak lines in a small region of a lesion. Therefore, it
is not easy to detect them using general oriented pattern anal-
ysis. Detection and diagnosis of Absent, Regular, and Irregular
streaks is challenging even for experts. According to [6] there
was an average disagreement of 24.5% on two-class problem
(Absent/Present) between 40 Experts. The dif culty and dis-
agreement is even more on the three-class problem for detecting
Irregular streaks. Fig. 8 shows three examples of challenging
images from the dif cult image set with 945 images.

Fig. 8(a) shows the result of streak detection on a dif cult
case [6, case 43, p. 150] that is labeled as: Absent (33.3%), Reg-
ular (17.9%), and Irregular (48.7%). The proposed method as-
signs a label of Irregular with 68% probability. Detected streak
lines are shown in Fig. 8(b) in green. Fig. 8(c) shows an Absent
image that has co-radial linear pigmented structures which be-
long to clods and maple leaf structures in a pigmented basal cell
carcinoma. The method classi ed the image correctly because
of the low number of detected streak lines and the low density
and coverage of the graph. Another challenging lesion with a
strong pigment network is shown in (e) and the result of streak
detection is shown in (f) with a very few false positive lines in
green, and correctly classi ed as Absent. Fig. 8(g) shows one of
the missclassi ed images. It is an Absent image with unspeci c
patterns that was diagnosed to be excised, but due to the linear
co-radial stuctures in the boundary area of the lesion, it is miss-
classi ed as Irregular.

B. Evaluation-Quantitative Results
To evaluate the generalizability of the method, a ten-fold

cross-validation was conducted in the rst experiment on Set1
with ve scales (four scales of and union
of these scales) in four color channels, in total 20 settings.
The color channels used as the luminance image for streak
detection are B and G channels of RGB, L of L*a*b*, and Y
from YIQ . Table I shows
the results on Set1 with 945 images, using different color
transformations on the multi-scale three-class classi cation
(Absent/Regular/Irregular) in which the L channel of L*a*b*
outperformed the others. The best setting is used in the second
experiment on Set2 with images and Recall (i.e.,
Sensitivity, TP/(TP FN)), Precision (i.e., Positive Predictive
Value, TP/(TP FP)), / , and AUC
(the Area Under ROC Curve) are reported.
Table II summarizes the evaluation of the method for

the two-class (Absent/Present and Regular/Irregular), and
three-class (Absent/Regular/Irregular) classi cations in
Set1 and Set2 using different feature sets: LCT, STR, and

. The highlighted numbers in the table show the
evaluation results using all features combined.
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Fig. 9. ROC curves of multi-scale streak detection using the LCT, STR, and feature sets in Set1 with images. (a), (b), and (c) show the
AUC and F-Measure of the three-class classi cation for the Absent, Regular, and Irregular classes, respectively. (d) and (e) present the performance of the approach
for Absent/Present classi cation for the Absent and Present classes, respectively. The ROC curves on Regular/Irregular classi cation are shown in (f) and (g) for
the Regular and Irregular classes, respectively. In all of the plots except (b), the proposed feature set STR outperforms the LCT set and using all features together

results in a signi cant improvement in AUC and F-Measure of all classi cations.

This table reports the results of 12 experiments in terms of
Precision, Recall, F-measure, Accuracy and weighted average
area under curve (AUC) for the multi-scale analysis on the
L channel of L*a*b*. The weighted average AUC is a good
performance measure in imbalanced data sets with unequal
numbers of observations in each class such as Set1 because it
illustrates the behavior of the classi er without regard to class
distributions or error costs [41].
A ten-fold cross-validation is used to evaluate the method.

As shown in Table II, by combining the new features and

the common color and texture features, an accuracy of 76.1%
and AUC of 85% was achieved for classifying streaks into
Absent, Regular, and Irregular, on images (Set1)
without any exclusion criteria. The method was also validated
on a “clean” sub-set of Set1 with images with high
contrast and no artifacts. The classi cation accuracy for the
three-class problem on the second set is 80.3% with AUC of
91.8%. The method also works well on discriminating Reg-
ular streaks from Irregular ones with AUC of 88.9% on Set1
with images.
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Fig. 10. ROC evaluation for different scales and classi ers. (a) shows the re-
sults of different scales and union of these scales in
Absent/Regular/Irregular classi cation of streaks in the L* and (b) presents the
performance of different classi ers using all features in the L*
channel with multi-scale settings).

As mentioned before, Table II reports the weighted average
of the performance measures. To show the class speci c results
on Set1, Figs. 9 and 10 illustrate a detailed evaluation on the
three-class (Absent/Regular/Irregular) and the two-class (Ab-
sent/Present and Regular/Irregular) problems. Fig. 9(a), (b),
and (c) show class speci c results of the method in more details
for the Absent, Regular, and Irregular classes, respectively, for
Set1 with 945 images. ROC curves of classi cations using STR,
LCT, and are shown to demonstrate the strength
of the proposed features in discriminating between Absent, Reg-
ular, and Irregular streaks. Fig. 9(d) and (e) illustrates the ROC
curves of Absent and Present labels in the two class problem of
Absent/Present classi cation, and results of the Regular/Irreg-
ular classi cation are shown in Fig. 9(f) and (g) for the Reg-
ular and Irregular labels, respectively. In almost all of the plots
[except Fig. 9(b)] the proposed feature set STR outperforms
the LCT set and using all features together re-
sults in a signi cant improvement in AUC and F-Measure of all
classi cations.
As explained earlier, four different scales are used for streak

detection and then the responses are com-
bined to achieve the nal multi-scale result. Fig. 10(a) shows the
ROC curves of different scales for the class Absent in the three-

class classi cation of streaks in the L* channel on Set1. The
multi-scale analysis outperforms the single scales with AUC of
84%.Results of classi cation on Set1 using ROC curves of three
different classi ers, Simple Logistic, Logistic, and Bayes Net in
Figs. 10(b) have also been reported.
It is not possible to compare these results directly with

previous work by others, because it is not known which images
were used in their experiments. However, a dif cult dataset
of 945 images was deliberately created, by not excluding
oily, hairy, low-contrast, and partial images to demonstrate
the strength of the method. Images used in [32] are from the
same source used in these experiments. Assuming the dif culty
level of the images in [32] is similar to those of Set2 with 300
images, this approach achieves an AUC of 93.2% compared
with 83% reported in [32] for the two-class Absent/Present
classi cation on 99 images. Finally, the result for the two-class
Absent/Present classi cation using Set2, is compared with our
previous work [14]. Both experiments analyzed the same 300
images, but [14] uses only three STR, six chromatic features,
and three texture characteristics. Results show Precision, Re-
call, F-Measure, Accuracy, and AUC of 0.85, 0.87, 0.86, 0.85,
and 0.905 for [14] compared with 0.893, 0.893, 0.893, 0.893,
and 0.932 for the current work, respectively.

V. CONCLUSION AND FUTURE WORK
This paper has presented an automatic approach for detec-

tion of Absent, Regular, and Irregular streak patterns on 945
dermoscopic images, by extending our previous techniques of
detecting streak line candidates [14]. Orientation estimation and
correction is applied to detect low contrast and fuzzy streak
lines and the detected line segments are used to extract clini-
cally inspired feature sets for orientation analysis of the struc-
ture. A graph representation is used to analyze the geometric
pattern of the structure over the lesion with new features de-
signed to model the distribution and coverage of the structure.
WThese results demonstrate that the proposed approach can lo-
cate, visualize, and classify streaks as Absent, Regular, and Ir-
regular in dermoscopy images. Therefore, it can be used in com-
puter-aided melanoma diagnosis using scoring methods. Fur-
thermore, since the proposed method locates streaks and pro-
vides a qualitative analysis, it can be used to highlight suspicious
areas for experts’ diagnosis and for visualization and training
purposes.
The method has been successfully applied in the speci c case

of automatic detection and classi cation of streaks, which are
represented by linear radial patterns. These oriented patterns,
produced by propagation, accretion, and deformation in radial
phase, are common in nature and also in different elds of com-
puter vision, and they are an important class for visual analysis.
Our approach may help to understand such patterns, by anal-
ysis of co-radial linear structures in low contrast and low res-
olution images, in other applications such as video capsule en-
doscopy, mammography, iris detection in retina images, sunspot
modeling, industry, and manufacturing.
The current algorithm generalizes the lesion shape to an el-

lipse (Section III-A). Despite the fact that many skin lesions
are circular, this generalization may reduce the detection accu-
racy due to the fact that a skin lesion can be any shape. Also
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to make sure that irregular streaks are not removed (as much as
possible) in the false positive removal by orientation analysis, a
threshold of 30 has been used for the difference from the de-
sired orientation.
In future work, the segmented line segments will be investi-

gated more locally to deal with this problemmore accurately, by
carefully analyzing the lesion shape and tting multiple ellipses.
In such cases, as many streaks as possible would be captured.
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