_—— T —p— I

ASSOCIATION

.. L N\
usenix \.
.' THE ADVANCED
COMPUTING SYSTEMS

Zero-delay Lightweight Defenses against
Website Fingerprinting
Jiajun Gong and Tao Wang, Hong Kong University of Science and Technology

https://www.usenix.org/conference/usenixsecurity20/presentation/gong

This paper is included in the Proceedings of the
29th USENIX Security Symposium.
August 12-14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium
is sponsored by USENIX.

NERRNRNIRMIE

+

Zero-delay Lightweight Defenses against Website Fingerprinting

Jiajun Gong, Tao Wang
Department of Computer Science and Engineering
Hong Kong University of Science and Technology
{jgongac, taow} @cse.ust.hk

Abstract

Website Fingerprinting (WF) attacks threaten user privacy
on anonymity networks because they can be used by net-
work surveillants to identify the webpage being visited by
extracting features from network traffic. A number of de-
fenses have been put forward to mitigate the threat of WF,
but they are flawed: some have been defeated by stronger
WF attacks, some are too expensive in overhead, while oth-
ers are impractical to deploy.

In this work, we propose two novel zero-delay lightweight
defenses, FRONT and GLUE. We find that WF attacks rely
on the feature-rich trace front, so FRONT focuses on obfus-
cating the trace front with dummy packets. It also random-
izes the number and distribution of dummy packets for trace-
to-trace randomness to impede the attacker’s learning pro-
cess. GLUE adds dummy packets between separate traces so
that they appear to the attacker as a long consecutive trace,
rendering the attacker unable to find their start or end points,
let alone classify them. Our experiments show that with
33% data overhead, FRONT outperforms the best known
lightweight defense, WTF-PAD, which has a similar data
overhead. With around 22%—-44% data overhead, GLUE can
lower the accuracy and precision of the best WF attacks to a
degree comparable with the best heavyweight defenses. Both
defenses have no latency overhead.

1 Introduction

As people increasingly use the Internet for work and enter-
tainment, network surveillance has correspondingly grown
to become a pervasive threat against people’s privacy. Tor, an
anonymity network based on onion routing [21], has become
one of the most popular privacy enhancing technologies by
defending web-browsing users from network eavesdroppers.
To do so, it forwards user packets across multiple volunteer
proxies, so that network surveillants cannot see both the true
source and destination of the packets.

In the last decade, multiple studies [1, 7, 16, 17, 18, 20, 24,
25, 26, 29, 30] have shown that Tor is vulnerable to Website

Fingerprinting (WF), a kind of traffic analysis attack where
a local attacker passively eavesdrops on network traffic to
find out which webpage a client is visiting. WF attackers
succeed by observing packet patterns such as the number of
outgoing and incoming packets, packet rates, packet timing,
and the ordering of packets. (WF attacks do not need to break
encryption.) What makes WF attacks especially threatening
is that the local passive eavesdropper (which could be the
client’s ISP) is virtually impossible to detect.

To counter WF attacks, a number of defenses [2, 6, 11,
17, 19, 24, 27, 28] have been proposed over the years, but
none have been adopted by Tor or any other privacy enhanc-
ing technology. This is because their data overhead may be
too high; they may delay packets too much, hurting user ex-
perience; they may be too hard to implement realistically,
relying on extra infrastructure that cannot be provided; or
they may simply be ineffective against the best attacks. A
defense against the WF problem grows increasingly urgent
as more powerful attacks are found.

Our work makes the following contributions:

1. Emphasizing costlessness, practicality and usability, we
design two new defenses that can defeat the best WF
attacks: FRONT and GLUE. We call them zero-delay
lightweight defenses, meaning they do not delay the
client’s packets and they only add a small number of
dummy packets to real traffic.

e FRONT obfuscates the feature-rich front portion of
traces, which is crucial to the attacker’s success. It does
so using randomized amounts of dummy packets, dis-
rupting the attacker’s training process.

e GLUE adds dummy packets between traces to make
it seem as if the client is visiting pages consecutively
without pause. This forces the attacker to solve diffi-
cult splitting problems, which previous work finds that
even the best attacks fail to do [10].

2. We conduct extensive experiments to show the effective-
ness of our defenses. We show that FRONT is able to

USENIX Association

29th USENIX Security Symposium 717

outperform WTF-PAD (the previous best zero-delay de-
fense) with the same data overhead (33%) in terms of at-
tackers’ performance as well as information leakage anal-
ysis, while GLUE can reduce the TPR and precision of the
best WF attacks down to single digits with 22%—-44% data
overhead (overhead depending on user behavior).

3. As GLUE relies on the difficulty of the splitting problem,
we improve known solutions to splitting with a new frame-
work, CDSB, to evaluate GLUE fairly. To the best of our
knowledge, this is the first work that presents the perfor-
mance of WF attacks when more than two webpages are
visited consecutively.

We organize the rest of the paper as follows. We first dis-
cuss the related work in Section 2, and then we give some
preliminaries in Section 3. We present FRONT and its evalu-
ation in Sections 4 and 5 respectively, and we present GLUE
and its evaluation in Sections 6 and 7 respectively. Finally
we summarize our work in Section 8.

2 Related Work

Website Fingerprinting Attacks. WF attacks date back to
2002, when Hintz showed preliminary success in fingerprint-
ing webpages by the number of bytes received in each con-
nection [9]. Later, more studies successfully applied attacks
against single-hop systems (Stunnel, OpenSSH, CiscoVPN
and OpenVPN) in the closed-world scenario [8, 13]. (We
will define the closed-world scenario and the more realistic
open-world scenario in Section 3.) These attacks failed to
defeat Tor because of Tor’s cell-level padding [8]. In 2011,
Panchenko et al. [17] showed success against Tor (73% accu-
racy) with the use of a support vector machine (SVM) using
expert features; it was effective in a preliminary open-world
scenario as well. Further works [1, 4, 7, 16, 18, 20, 24, 25]
have been proposed since then that pushed accuracy higher
and false positive rate lower.

We pick four of the best, most recent attacks to evaluate,
all of which are highly effective in the open-world scenario:

e kNN [24]: Proposed by Wang et al. in 2014, this attack
uses a k-nearest neighbors classifier based on automati-
cally learning weights of different features. It is designed
to break WF defenses, as it adjusts to defensive feature
scrambling by lowering the weights of bad features.

e CUMUL [16]: Panchenko et al. proposed this SVM clas-
sifier that exploits the “cumulative representation” of a
trace in 2016. It is more accurate than kNN, and has an
excellent computation time.

e KFP [7]: In 2016, Hayes and Danezis proposed this attack
that jointly uses random forests and k-nearest neighbors.
It has high precision in the open-world scenario.

e DF [20]: DF is a recent attack using a deep Convolutional
Neural Network. It outperforms other deep learning at-
tacks [1, 18], achieving high precision and recall. It is
the first attack shown to be effective against WTF-PAD, a
lightweight WF defense [11].

Website Fingerprinting Defenses. To defend against lo-
cal, passive WF attackers, WF defenses can be deployed on
an anonymity network to modify how the client talks to the
network’s proxies. This is generally done by adding dummy
packets or delaying real packets according to some strategy;
the attacker cannot distinguish between dummy packets and
real packets. No modification to the web server is required.
Over the years, researchers have put forward a number of de-
fenses to protect privacy-sensitive clients against WF attacks.
We classify the strategies they use to defeat WF attacks into
three categories, roughly in order of overhead: obfuscation,
confusion, and regularization.

Obfuscation defenses seek to obfuscate specific features
WF attacks rely on. A number of early defenses obfuscate
packet lengths to defeat older WF attacks. These include
Traffic Morphing by Wright et al. [28], which pads and splits
packets, and HTTPOS [14], which does the same on specific
HTTP requests and responses. These two defenses are inef-
fective on Tor, where packet lengths already leak no infor-
mation because of constant-size cell-level padding. In 2016,
Juarez et al. [11] introduced WTF-PAD, which uses a sophis-
ticated token system to generate dummy packets and fill up
abnormal trace gaps.

Some defenses aim to achieve confusion: they make it
difficult for an attacker to determine which of a certain set
of given traces is loaded. Panchenko et al. suggested sim-
ply loading a Decoy page for every true page load [17], so
the attacker does not know which is the real page. Wang et
al. proposed confusing the attacker by sending two or more
traces under a Supersequence [24] that is created by adding
dummy packets at the right places and delaying user packets.

Much work has been done on regularization defenses re-
cently, which restrict how clients can send and receive pack-
ets in order to strictly limit the feature space available to
the attacker. Some of these defenses enforce a fixed packet
rate, with regular sequence end times, on the client: these in-
clude BuFLO (Buffered Fixed-Length Obfuscation) by Dyer
et al. [6], CS-BuFLO (Congestion-Sensitive BUFLO) by Cai
et al. [2], and the overhead-optimized Tamaraw by Cai et
al. [3]. Fixing the packet rate delays user traffic signifi-
cantly. In 2017, Wang and Goldberg [27] introduced Walkie-
Talkie, which forces the browser to communicate in half-
duplex mode to limit features. It achieves regularization at
a lower overhead if we can assume that the client has some
knowledge of webpage sizes.

Surveying the extensive work done on confusion and reg-
ularization defenses, we find that almost all of them have
either a high data overhead (requiring many dummy pack-

718 29th USENIX Security Symposium

USENIX Association

Table 1: Comparison of known WF defenses. For overhead, Low is a non-zero overhead up to 35%, Medium is roughly
35-70%, High is roughly 70-100%, and Very High is above 100%.

| Category | Defense | Latency overhead | Data overhead | Requires additional infrastructure | Defeated by known attacks |

Traffic morphing [28] None Low None Yes

Obfuscation HTTPOS [14] None Low None Yes
WTF-PAD [11] None Low None Yes

FRONT (this work) None Low None No

Decoy [17] None High None No

Confusion Walkie-talkie [27] Medium Low Knowledge of pages, half-duplex No
Supersequence [24] High Very High Knowledge of pages No

BuFLO [6] Very High Very High Fixed-rate network transfer No

Regularization | CS-BuFLO [2] Very High Very High Fixed-rate network transfer No
Tamaraw [3] High High Fixed-rate network transfer No

GLUE (this work) None Low None No

ets) or cause significant delays to user traffic; sometimes
both. These factors have stymied the adoption of all of these
defenses; Tor developers would not want to harm user ex-
perience of their anonymity network. Therefore, to create
zero-delay lightweight defenses, we decided to avoid confu-
sion and regularization defenses. Among our new defenses,
FRONT is an obfuscation defense, while GLUE is in its own
category as it forces the WF attacker to solve a different,
much more difficult problem.

Some other defenses also require extra infrastructure to
support, which is detrimental to their deployability. Superse-
quence and Walkie-Talkie both assume that the client knows
some information about the webpage they are about to visit.
This is generally impractical. The BuFLO-series of defenses
mandate fixed packet rates, which may require some modi-
fication to the network stack because otherwise network de-
lays could still reveal information. Walkie-Talkie requires
modification to how the browser loads webpages. Our objec-
tive is to create defenses that can be deployed as painlessly
and quickly as possible against the present threat of network
surveillance, so we do not use any extra infrastructure.

We summarize the above in Table 1. Our defenses share
the category of zero-delay lightweight defenses with only
WTF-PAD. Noting that WTF-PAD is defeated by DF [20],
we compare our work with theirs to show that our defenses
are effective against DF.

3 Preliminaries

3.1 Threat Model

Like previous works in WF, we consider a passive adversary
who is local to the user. Figure 1 illustrates the attack model.
The adversary sits between the user and the entry node of the
Tor network, eavesdropping on the network traffic over the
encrypted channel. The adversary will not delay, modify or
drop any packets.

We aim to deploy our defenses on Tor nodes to protect
its clients against WE. There are three nodes in a typical Tor
circuit: entry, middle, and exit. The middle node would serve

User

Defense
Proxy

Adversary

Figure 1: The threat model for WFE. The adversary sits be-
tween the user and the Tor network. The middle node of Tor
network will be a cooperating proxy to deploy our defense.

as the cooperating proxy enacting the defense with the client.
We use the middle node because the entry node is a possible
WEF attacker. Exit nodes and web servers would be entirely
unaffected by our defense, as the middle node would drop
dummy packets.

3.2 Classification

From the attacker’s perspective, WF can be regarded as a
classification problem. During webpage loading, a WF at-
tacker records network traffic traces (also known as packet
sequences). The attacker visits a certain set of monitored
pages in advance and trains a machine learning model on
these traces. Each webpage is a class, and a particular trace
belonging to this class is called an instance. Then, when ob-
serving the client’s traces, the attacker predicts which web-
page the trace belongs to, based on the trained model.

WF attacks may be evaluated in either the closed-world
or the open-world scenario. In the closed-world scenario,
we assume a user only visits a specific set of webpages,
also called monitored webpages. In the open-world sce-
nario, the client can also visit non-monitored webpages, so
the attacker must predict whether a trace is a monitored
one or a non-monitored one. If it is monitored, the at-
tacker has to further answer which one. The attacker never
trains on the same webpage the client visits; therefore, the
attacker has zero prior knowledge of the client’s behav-
ior. We focus on the more realistic open-world scenario.

USENIX Association

29th USENIX Security Symposium 719

While it is more difficult than the closed-world scenario, a
large number of attacks have recently shown open-world suc-
cess [7, 16, 17, 18, 24, 25, 30].

In the closed-world scenario, the attacker must achieve
high accuracy (true positive rate), while in the open-world
scenario, the attacker must achieve both high accuracy and
precision. Therefore, to prove the efficacy of our defense
against open-world attackers, we need to ensure that the at-
tacker has both low accuracy and low precision. We specifi-
cally define precision in open-world WF below.

3.3 Precision

The precision of a classifier is defined as the proportion of
positive (i.e. monitored) classifications that are correct. Re-
searchers have pointed out that the base rate (the proportion
of monitored webpages visited by the client) has been erro-
neously ignored in previous WF works when calculating pre-
cision [23]. This may lead to the base rate fallacy: an attack
that seems to be accurate (high true positive rate) is actually
highly imprecise when the base rate is low. If it is imprecise,
its classifications are useless to the attacker. The definition
of precision is somewhat atypical for WF because it is not a
two-class problem, so we explicitly define it as follows:

Definition 3.1. Positives. If the WF attacker classifies a
trace as belonging to a monitored webpage, it is a positive.
If the classification is correct, it is a true positive. If the clas-
sification is incorrect and the sequence actually belongs to a
different monitored webpage, it is a wrong positive. If the
classification is incorrect and the sequence actually belongs
to a non-monitored webpage, it is a false positive.

Definition 3.2. Precision. In an experiment, let Np and Ny
denote the number of positives and negatives respectively.
Let TPR and WPR denote the proportion of true positives
and wrong positives to Np. Let FPR denote the proportion
of false positives to Ny. Then the precision is:

_ TPR
" TPR+WPR+r-FPR’

T

In the above, r is the ratio between how often the client
visits non-monitored webpages to how often the client vis-
its monitored webpages. A higher r lowers precision, and
makes the open-world classification problem harder; previ-
ous attacks have shown success against clients up to r =
1000 [23]. We want to prove that our defense is effective
even for low-r clients that visit monitored webpages fre-
quently. Therefore, in our paper, we set r = 10, represent-
ing a client that visits one monitored webpage for every ten
non-monitored webpages. Hereafter we evaluate precision
for such a client.

We also present the Fj score, the harmonic mean of TPR
and precision, as a single combined metric for comparison
between different attacks.

3.4 Overhead

We define the overhead of defending a trace as follows.

Definition 3.3. Trace. A trace is a sequence of packets
collected during a page loading process, denoted as P =
((t1,L1), (2, L2),- -, (t|p|, Lip))) Where |P| is the total num-
ber of cells in the trace. ; is the timestamp of the i-th packet.
L; shows the direction and length of the i-th packet. Tor uses
its own datagrams called cells which are all padded to the
same length. Since Tor cells are of the same length, we sim-
ply use L; = +1 to represent a cell coming from the client
and —1 to represent a cell coming from the server. (We use
packets to refer to both types of datagram.)

Definition 3.4. /-trace. An (-trace comprises traces of con-
secutive visits to £ webpages, denoted as P = Py||P2|| - || P,

Let P denote the original trace and P’ denote the trace af-
ter implementing some defense D. We define latency and
data overhead on this trace as follows, which are the costs of
implementing the defense D:

Definition 3.5. Latency overhead. The latency overhead
T (D) of defense D on P is the extra time taken to transmit
real packets, divided by the original transmission time. De-
note the last real packet in P’ as #;, then we have:

h—tip
T(D) = TP\‘ |

Definition 3.6. Data overhead. The data overhead O(D) of
defense D on P is the total amount of dummy data divided
by the total amount of real data:

P[P
o(D) 7]

Generally, latency overhead affects users’ browsing expe-
rience while data overhead shows the extra burden laid on
the network. They should be considered together when eval-
uating a defense. Following previous works [3, 11, 24, 27],
we define these two metrics to be independent of each other,
to simplify the analysis and to more easily highlight how de-
fenses change each overhead. When bandwidth is a concern,
for example, increasing the bandwidth overhead will likely
delay page loading but will not change the time overhead.

Note that Definition 3.5 does not include the whole trace
P’, only the sequence up to the last real packet. That is be-
cause the client’s page would have fully loaded upon recep-
tion of the last real packet; extra dummy packets sent or re-
ceived after that point have no effect on the client’s experi-
ence. Our defenses, FRONT and GLUE, have zero latency
overhead (zero-delay) and little data overhead (lightweight).

720 29th USENIX Security Symposium

USENIX Association

4 FRONT

In this section, we first introduce the high-level idea behind
FRONT by pointing out our observations and intuition in
Section 4.1. In Section 4.2, we describe its design in de-
tail. Finally, in Section 4.3, we analyze the features of our
defense. We will evaluate FRONT in Section 5.

4.1 Overview

Learning from previous failures to implement WF defenses
on anonymity technologies like Tor, we believe three proper-
ties are necessary to achieve deployability: zero-delay (no la-
tency overhead), lightweight (small data overhead), and easy
implementation. This respectively ensures that the defense
has no effect on user experience, its extra data can be eas-
ily borne by the anonymity network, and its codebase will be
easy to understand and maintain. Seeing the failure of confu-
sion and regularization strategies to achieve these properties
in previous work, we turn to obfuscation, and create FRONT
(Front Randomized Obfuscation of Network Traffic).

The only known defense that shares these properties with
FRONT is WTF-PAD [11]. In WTF-PAD, the client and
server separately maintain two histograms where they sam-
ple inter-arrival time to generate dummy packets. To achieve
the best performance, they also suggest tuning the param-
eters by sampling inter-arrival time from the real dataset.
However, the tuning process is not user friendly and the
construction and maintenance of these histograms are non-
trivial. Pulls [22] also points out that the token mechanism
in WTF-PAD is unnecessary and should be abandoned.

By contrast, FRONT is much simpler, uses less data over-
head, and achieves better performance against the best at-
tacks. It relies on two key intuitions:

e Obfuscating feature-rich trace fronts. The first few sec-
onds of each trace, which we call the trace front, leaks
the most useful features for WF classification. Some of
the best attacks explicitly use the trace front for classifi-
cation [7, 24]. We dedicate most of our data budget to ob-
fuscating the trace front, instead of spreading them evenly
over the trace.

o Trace-to-trace randomness. FRONT adds dummy pack-
ets in a highly random manner, ensuring different traces
of the same webpage look different to each other in total
length, packet ordering, and packet directions. To do so,
it randomizes the data budget and the region where we in-
ject dummy packets. Since we must allow the attacker to
train on defended traces instead of original traces, trace-
to-trace randomness hurts the attacker’s ability to find any
meaningful patterns for a webpage class. Most regular-
ization defenses suffer from trace-to-trace consistency.

Table 2: Defense parameters and variables in FRONT. De-
fense parameters set the overhead and behavior of FRONT,
while trace variables are drawn from corresponding defense
parameters for each trace separately to ensure trace-to-trace
randomness.

‘ ‘ Notation ‘ Parameter |

N Client’s padding budget
- . Ny Proxy’s padding budget
Parameters Winin Minimum padding time
Wax Maximum padding time

ne < U(1,N,) Number of outgoing dummy packets

Variables ns < U(1,Ny) Number ‘of 1{1com1ng dummy packets
we = U Wiin, Winax) Client’s padding window
ws <= U (Winin, Winax) Proxy’s padding window

4.2 Defense Design

There are three steps in using FRONT to defend a trace: sam-
ple a number of dummy packets, sample a padding window
size and schedule dummy packets. Its parameters are sum-
marized in Table 2.

Sample a number of dummy packets N, and N are two
parameters determining the data overhead of FRONT, re-
spectively representing the client’s padding budget and the
proxy’s padding budget. For each trace, the client samples
n. from the discretized uniform distribution between 1 and
N,, denoted as U (1, N,); the proxy samples n; from U (1, Nj).
n. and ng are the actual number of dummy packets they will
inject into that trace.

Sample a padding window FRONT spends most of its
budget obfuscating trace fronts. To do so, both client and
proxy will first generate a padding window, controlling
where most dummy packets are expected to be injected into
the original trace. For each trace, the client samples w. from
the uniform distribution between W,,;, and W,,,,, denoted as
U (Winin, Winax); the proxy samples wy from the same distri-
bution. The reason we set a lower bound W,,;,, instead of 0,
is to ensure that the generated padding window size is not too
small; if it is too small, the defense may require an extreme
bandwidth rate to support.

Schedule dummy packets After sampling the above vari-
ables, the client and proxy generate separate timetables to
schedule when their respective n. and ny dummy packets will
be sent. They generate the timestamps by sampling 7. and
ng times from a Rayleigh Distribution. Its probability density
function is:

Leftz/ZWZ t>0

f(t;w):{g r<0’

where w is w, for the client and w; for the proxy. True pack-
ets will be sent with no delays and dummy packets will be

USENIX Association

29th USENIX Security Symposium 721

w t

Figure 2: PDF of Rayleigh Distribution.

sent according to the timetables. When webpage loading fin-
ishes, the client will notify the relay with a packet and any
unsent packets left in the timetable are simply dropped.

4.3 Defense Analysis

FRONT makes use of a Rayleigh Distribution. The corre-
sponding PDF f(¢;w) is shown in Figure 2. The curve first
increases quickly, peaks at w and then gradually decreases.
This results in a burst of dummy packets at the start of a trace,
in accordance with our first intuition. Though our dummy
packet window has a nominal length of w, the window is
“soft”; we expect 40% of the dummy packets to lie in the
time interval [0, w]:

w
/ %eilz/z"’zdt ~ 0.40
Jo w

We sample the number of dummy packets and padding
window size so that they are different each time we load a
webpage, even if it is the same webpage. This eliminates
possible patterns that could be leveraged by an attacker, as
suggested by our second intuition.

In FRONT, the latency overhead is always 0 since it never
delays any real packets whereas the data overhead is propor-
tional to N, + Ns. The number of dummy packets in each
trace will be U(1,Ny) + U (1,N,) (unless they are cut off by
the end of a real trace), with a mean of (N;+N.)/2+ 1.

5 Evaluation of FRONT

In this section, we evaluate FRONT in several aspects. Af-
ter presenting our experimental setup, we evaluate FRONT
against the best attacks to show that it is able to defeat them,
and do so more efficiently than the state-of-the-art defenses.
We follow up with an analysis of our design decisions to
show why FRONT succeeds.

5.1 Experimental Setup

To conduct our experiments, we collect a new dataset (de-
noted as DS-19) between February and April 2019 with Tor
Browser 8.5a7 on Tor 0.4.0.1-alpha, driven by command-line
calls to Tor Browser. We visited the homepages of Alexa top
100 websites 100 times each as our monitored webpages and

Table 3: Defense settings and corresponding overheads.

Defense Parameters Overhead (%)
Latency | Data
No defense - 0 0
Tamaraw [3] Powr = 0.04,p;, =0.012,L =50 78.43 162.93
WTE-PAD [11] Normal rcv 0 32.71
FI-1 Ny = N, = 1700, Wypin = 18, Wypar = 143 0 33.01
FT-2 Ny = Ne = 2500, Wi, = 18, Wpar = 145 0 48.80

10000 other webpages as our non-monitored webpages, fil-
tering out pages that did not load (such as those inaccessible
through Tor). In doing so, we used a single machine con-
nected to a university network. Since all traces are collected
from an automated browser and none of them are from real
users, there are no ethical concerns regarding the dataset and
the following experiments.

We choose two defenses, WTF-PAD [11] and Tama-
raw [3], as competitors to our defense representing two ex-
tremes in design philosophy: WTF-PAD is a lightweight ob-
fuscation defense, while Tamaraw is a heavyweight regular-
ization defense with high latency and data overhead. Other
obfuscation defenses have been broken by known attacks,
while most confusion and regularization defenses are either
more expensive than Tamaraw, or impractical to implement.

We use kNN [24], CUMUL [16], kFP [7] and DF [20]
as benchmarks to evaluate the defenses. We use suggested
parameters in their papers for kNN, kFP and DF with one
exception: for DF, we set the maximum length of the traces
to 10000 (instead of 5000 suggested by Sirinam et al. [20]) to
accommodate our dummy packets. CUMUL uses an SVM,
which is heavily dependent on choosing the correct parame-
ters, so we first follow the paper to perform parameter tuning
on the candidate parameters and find the optimal parameters.

All the experiments are conducted in open-world setting.
For each attack, we apply 10-fold cross validation on the
dataset. We count true positives, wrong positives and false
positives on each fold and add them up together. Then we
calculate their corresponding TPR, WPR, FPR and precision.

5.2 Evaluation against Other Defenses

We start by showing that FRONT dominates WTF-PAD in
terms of effectiveness against the best attacks. We also
evaluate Tamaraw, a heavyweight defense, for comparison.
The overhead of each defense is shown in Table 3. We
choose two sets of parameters for FRONT: FT-1 represent-
ing a lightweight defense which has similar data overhead
as WTF-PAD and FT-2 representing a defense with slightly
higher overhead but greater effectiveness. N+ N, deter-
mines the data overhead while W,,;, and W,,,, decide the
padding window size. We put a more detailed discussion
about how to set these parameters in Appendix A.

722 29th USENIX Security Symposium

USENIX Association

Table 4: Defense performances on DS-19. A lower F| score represents a better defense.

Defense TPR (%) Precision (%) F

kNN \ CUMUL \ kFP \ DF kNN \ CUMUL \ kFP \ DF kNN \ CUMUL \ kFP \ DF
No defense 89.09 94.44 91.85 | 96.40 || 83.18 64.22 94.38 | 91.12 || 0.86 0.76 0.93 | 0.94
Tamaraw [3] 341 3.85 2.08 0.58 2.33 8.13 23.16 | 6.78 0.028 0.052 0.038 | 0.11
WTE-PAD [11] 9.35 55.55 52.97 | 81.99 || 51.52 18.53 70.69 | 60.92 || 0.16 0.28 0.61 | 0.70
FT-1 (This work) | 2.56 36.08 43.03 | 70.82 || 41.22 11.97 71.19 | 34.88 || 0.048 0.18 0.54 | 0.47
FT-2 (This work) | 0.83 26.19 34.31 | 58.95 || 37.22 8.52 68.33 | 30.59 || 0.016 0.13 0.46 | 0.40

FRONT performance on DS-19 Table 4 shows how well
WF attacks perform against our evaluated defenses. We
present TPR, precision and F; score of each attack under dif-
ferent defenses.

When no defense is implemented, all attacks achieve over
89% TPR. kFP and DF become the strongest attacks since
F is over 90% for both of them. Even though CUMUL’s
TPR is quite high (94%), it has the lowest precision (64%),
resulting in its low Fj. All attacks achieve a low F; score
against Tamaraw, but Tamaraw comes with a very high price
in terms of overhead. WTF-PAD is much cheaper at 32%
data overhead, and it defends against kNN and CUMUL
well. However, kFP and DF remain effective against WTF-
PAD, achieving 0.61 and 0.70 F; score.

FT-1 outperforms WTF-PAD in defending against every
attack, especially kNN and DF. With nearly the same data
overhead as WTF-PAD, kNN performs just as poorly against
FT-1 as against Tamaraw, and DF performs half as well as be-
fore (by Fj score). FT-2 further decreases Fj of the strongest
attacks, kFP and DF, with only 48% data overhead.

We find that FRONT is especially effective against kNN,
even approaching Tamaraw’s performance. It is also effec-
tive at defeating DF, the strongest attack on the undefended
dataset: the precision of DF drops significantly against
FRONT, more so than kFP.

To explain why FRONT outperforms WTF-PAD, we eval-
uate how it embodies our two key intuitions (in Section 4.1)
compared to WTF-PAD. First, to show its obfuscation of
trace fronts, we calculate how much data budget FRONT and
WTF-PAD use in each portion of the trace. WTF-PAD dis-
tributes its budget evenly: it spends 24% of its budget in the
first quarter of the trace and 49% in the first half. In contrast,
FRONT uses 40% of its budget in the first quarter and 69%
in the first half. Second, to show trace-to-trace randomness,
we evaluate the coefficient of variation of dummy packets
injected in each webpage class. We find that FRONT has a
median coefficient of variation of 42% compared to 36% for
WTF-PAD over our dataset.

TPR on different websites We further investigate
FRONT’s webpage-to-webpage performance on DS-19. We
equally divide the monitored webpages into 4 groups based
on their webpage sizes, denoted as G, G», G3 and G4, where
G is the smallest quartile of webpages and Gy is the largest

quartile of webpages. The number of packets of each web-
page in those groups is up to 2039, 4368, 6611 and 28199,
respectively. We can see that the sizes of webpages vary
greatly, especially for Ga.

We choose the most precise attack, kFP, and compute the
recall. The recall on each group is 24%, 24%, 35% and 54%.
The performance of FRONT does not change much on first
three groups. The webpages in G4 are 10 times larger than
G1, and the recall rate increases by 30%.

FRONT performance on DS-14 We did a supplementary
experiment on Wang’s dataset [24] collected in 2014 (de-
noted as DS-14) which consists of 9000 monitored webpages
and 9000 non-monitored ones. The mean number of packets
is 2163 in DS-14 and 4444 in DS-19. Therefore, the web
pages of DS-14 are significantly smaller. The intent of this
experiment is to verify that FRONT works on different web-
sites. With 41% data overhead, FRONT greatly outperforms
over WTF-PAD (which has 44% data overhead) in all met-
rics, no matter which attack is used.

For the strongest two attacks, kFP and DF, FRONT re-
duces their Fj score to 0.30 and 0.41, compared with 0.48
and 0.63 against WTF-PAD. The most significant case is
kNN which relies greatly on trace FRONT information. Its
Fy is reduced to only 0.03 while WTF-PAD reduces it to
0.26. We also find that all the attacks perform better on
DS-19 than DS-14. The observation that larger websites are
easier to identify was also made by Overdorf et al. [15].

5.3 Information Leakage Analysis

Some recent works [5, 12] have pointed out that empiri-
cally evaluating a defense against state-of-art attacks may
not show the real security level of such a defense. WeFDE,
proposed by [12], quantifies the amount of information leak-
age for 3043 features, chosen from those exploited by known
state-of-the-art attacks. We use WeFDE to measure the
information leaked on undefended traces, WTF-PAD and
FRONT. The detailed methodology of WeFDE and the in-
troduction of feature set can be found in [12].

We plot the empirical cumulative distribution function
(ECDF) of information leakage for all features in Figure 3.
Generally speaking, the curve for FRONT increases much

USENIX Association

29th USENIX Security Symposium 723

1.0 1 "‘—'/’—‘ _____ _
77007 ? L / A\
0.8 g YRy
[i /'/ '/"/
5061 /
2 A — _—
041 / /./ Undefende
s WTF-PAD
o247 FT-1
y — FT22
0.0 , , |
1 2 3 A

Information Leakage (bit)

Figure 3: ECDF of information leakage on different datasets.
The 100th percentile points are marked.

faster than that for WTF-PAD and undefended Tor, indicat-
ing that most features leak less information under FRONT.
Specifically, no feature leaks more than 3.6 bits of informa-
tion on undefended Tor, 3.5 bits for WTF-PAD, 2.3 bits for
FT-1 and 2 bits for FT-2.

The information leakage analysis confirms again that
FRONT achieves a higher security level than WTF-PAD. We
include the full information leakage result in Appendix D.

5.4 Choosing Where to Pad

FRONT is built on the intuition that it helps to obfuscate
the trace front for defense effectiveness. We validate this
intuition here by delaying all dummy packets from Osto 10s
and measure the change in TPR and precision of each attack.
We set Wyin = 1s, Wyar = 148, N. = 1000 and N; = 1000
based on FT-2. Figure 4 shows the results. The larger the
delay, the less we will obfuscate the trace front (the same
padding budget is instead spent on the middle or the end).

We can see that for all attacks, both TPR and precision
grow as we increase the delay, thus leaking more of the trace
front. All attacks” TPR increase by 5-30%, among which
DF always achieves the highest TPR, increasing from 59%
to 71%. kFP’s TPR nearly doubles from 34% to 62%. In
terms of precision, there are some ups and downs due to its
sensitivity to false positives. But still, all attacks become 6—
15% more precise as we reveal the trace front by shifting
dummy packets later. This experiment indicates that trace
fronts do leak a lot of information.

5.5 Impact of Randomness

In FRONT, the client and proxy will sample the number of
dummy packets and the padding window from a range in-
stead of fixing them. We do two experiments to validate the
effectiveness of this design decision.

In the first experiment, we gradually shrink the range of
choices for the number of dummy packets and observe the

S

Precision (%)
RN
(=) S

(e

1 2 3 4 5 6 7 8 910
Delay (s)

Figure 4: Change in performance of WF attacks when all
dummy packets are delayed by 1 to 10 seconds.

change of TPR and precision for each attack. As before,
we have W,,;;, = 1s, Wur = 148, N. = Ny = 2500 based on
FT-2. Unlike previous experiments, here we sample n, from
U(B-N.,N,) and ng from U (B - Ny, N;). We vary 3, which
controls the degree of randomization, from 0 to 1 (0 being
maximal randomization).

As B increases, trace-to-trace randomness in the number
of dummy packets decreases. Figure 5 shows the results. We
see that increasing § weakens the defense, as all attacks ex-
cept DF increase in TPR, especially when § > 0.8. As for
DF, its TPR remains around 60%: increasing trace-to-trace
randomness does not weaken its attack ability. Note that in-
creasing 3 also increases data overhead linearly, doubling
the data overhead at § = 1.

We perform a similar experiment on randomizing padding
window size, using the same settings as the above experi-
ment. We keep Wy = 14s and set Wi, = B - Wyar. We
gradually increase 8 from O to 1. Figure 6 shows the results.
Just as before, when we decrease the randomness in padding
window size, TPR increases, especially for CUMUL and DF.

5.6 Evaluation of Data Overhead

In this part, we want to measure how an increase in the over-
head budget affects the attacker’s effectiveness. We focus on
kFP here because the extensive experiments in Section 5.2
to Section 5.5 show us that kFP is the strongest attack by Fj
score; DF is accurate but imprecise against FRONT, so its F}
score is lower. Setting Wi, = 1s and Wy, = 14s, we vary
N+ N, from 0 to 7200 packets in intervals of 200 packets.
We show TPR and F of kFP in Figure 7.

Without FRONT, kFP can achieve 92% TPR. Its TPR de-

724 29th USENIX Security Symposium

USENIX Association

"""""" kNN ------ CUMUL — kFP ——— DF
75
250 __/
o
0 ...

N
[}

)

Data overhead (%)
[N
S W

02 04 06 08 10
p

Figure 5: TPR and data overhead while varying 8 to change
the lower bound of padding budget.

100
80 1
60
40 1
20

TPR (%)

Figure 6: TPR while varying f3 to change the lower bound of
padding window size. Data overhead remains constant.

100
75 1
50 1
25 1

0
1.00

0.75 1
= 0.50
0.25 1
0.00

TPR (%)

10 20 30 40 S0 60 70
Data overhead (%)

Figure 7: kFP’s TPR and precision on protected traces given

different data overhead budgets. We mark with a cross the

data overheads of FT-1 and FT-2 on the figure.

creases quickly as we initially increase the size overhead.
With only 25% data overhead, its TPR is already lower than
50%. On the other hand, its F} score decreases from 93% to
38% as we increase the data overhead from 0% to 70%.

6 GLUE

Our second proposed defense, GLUE, exploits an entirely
new facet of website fingerprinting to achieve even greater
success than FRONT against known attacks. We start by
presenting the big picture of what GLUE exploits and how it
achieves success. Due to the novelty of GLUE, we carefully
elaborate our threat model and defense design.

6.1 Overview

Many WF attacks have been published in recent years, all
of them relying on the same assumption: that every trace
the attacker must classify corresponds to exactly one web-
page. We call these traces singleton traces. This is satisfied
if the client dwells on pages for some time before visiting
the next page; the attacker will notice the obvious time gap
and split the trace at that point. Even a second of inactiv-
ity will be enough. Conversely, when the client visits £ > 2
pages consecutively without an obvious time gap — for ex-
ample, by clicking a link before the page has fully loaded
— all known WF attacks cannot succeed in classifying the
{-trace thus generated, even if they are properly trained and
aware of such a possibility [10, 30].

Since known WF attacks can only classify singleton traces
(¢ = 1), there are two difficult problems the attacker must
solve to classify ¢-traces correctly for £ > 2. First, the at-
tacker must correctly determine ¢; we call this the split deci-
sion problem. Secondly, the attacker must find ¢ — 1 points
to split the ¢-trace into ¢ separate singleton traces; we call
this the split finding problem. Then, the classifier can in-
put these singleton traces into a powerful WF attack. There
are some works suggesting that the latter problem could be
solved for £ =2 [26, 29], but no solution is known in general;
the former problem has never been solved.

We leverage the difficulty of solving these problems to
create a new defense, GLUE. Whenever the client is dwelling
on a webpage, GLUE adds dummy packets to make it seem
as if the client is visiting new pages consecutively. GLUE
will stop sending dummy packets when the client loads a
new page, thus hiding the true start of the next page. In other
words, GLUE tries to glue together singleton traces into /-
traces for large values of /. Unable to solve either the split
decision or finding problem, attacks are very likely to fail if
they split traces wrongly. This is especially true if the re-
sultant singleton traces have extra packets in the trace front,
which is critical for correct classification.

USENIX Association

29th USENIX Security Symposium 725

Loading the first webpage

Run FRONT, sample

Loading a glue trace
inter-arrival times

Start a timer

‘ Finish loading

wait for ta, send request to proxy Glue
™ (/ Front Mode
Mode

‘ Time out ‘

Stop loading glue trace

Loading another webpage

Sample inter-arrival times

‘ Click another webpage before time out ‘

Stop loading glue trace

Back
Mode ‘

Finish loading

wait for ta, send request to proxy

Figure 8: Client’s state machine. Starting from Front Mode,
it will switch between Glue Mode and Back Mode until
dwell time becomes too long. “Glue traces” are padded in
Glue Mode. The client keeps sampling inter-arrival times in
both Front and Back Mode.

6.2 Defense Design

Suppose a client visits £ webpages in a time period and then
stops. GLUE tries to make sure that the attacker will see
a seemingly consecutive (-trace P = Py||P2||---||P;. With-
out GLUE, they may have dwell time gaps between them,
allowing the attacker to split them trivially.

Denote the dwell time on P; as d;. GLUE pads for a max-
imum duration d,,,,,. For GLUE to create an ¢-trace, let us
suppose d; < dygy fori=1,....0—1 and dy > dyyq. While
the client dwells on webpages, the client and the proxy will
send each other dummy packets. Figure 8 gives the state ma-
chine of a client, and the proxy’s state machine is similar.
GLUE also uses FRONT noise to defend the first of ¢-traces.

Front Mode Starting in Front Mode, our defense waits for
the client to visit a webpage. When the client does so, we
will add dummy packets according to our FRONT defense,
as described in previous sections. We will also sample those
inter-arrival times between incoming packets and outgoing
packets to obtain some distribution /. After the client finishes
visiting the webpage, we sample 74 according to (described
below), wait for time z5, then switch to Glue Mode.

Glue Mode In Glue Mode, the client and proxy send each
other dummy packets in such a way that it looks as if the
client decided to visit a new, random webpage. (The person
behind the client is actually dwelling on the previous web-
page.) They will do so for at most time d,,;,. They imme-

diately stop doing so if the client actually decides to visit a
webpage before d,,,, has passed: the client will notify the
proxy to terminate Glue Mode as well. If the client dwells
on the webpage for longer than d,,,, the algorithm will con-
sider the client inactive and return to Front Mode. Otherwise,
it will go to Back Mode. We call the dummy packets added
here “glue traces”.

Back Mode In Back Mode, the client is visiting another
webpage. This is like Front Mode, except we add zero
dummy packets. We still sample packet inter-arrival times
and switch back to Glue Mode after waiting for 4.

GLUE incorporates FRONT in Front Mode, ensuring that
the first trace of any /-trace will be padded with FRONT.
This is because we found that GLUE alone does not protect
the first trace well (shown in Section 7.6), but achieves ex-
cellent protection of all other traces. We need to add a bit of
overhead to protect the first trace.

In the above, I is the inter-arrival time distribution only
with those time gaps between an incoming and an outgo-
ing packet. f5 is the sampled inter arrival time. We choose
ta € U(Iy, Igy) where Iy, and Iy, are the 20 percentile and 80
percentile of the inter-arrival time distribution / respectively.
We intentionally create such a small gap to simulate a time
interval when the client sends out some request after receiv-
ing data from the server during a webpage loading. By doing
so we connect real traces with glue traces together naturally
without any abnormal gaps in between. We also randomize
dmax by sampling from a uniform distribution so that the at-
tacker could not trivially remove the noise on the tail.

We illustrate how GLUE works with Figure 9. Suppose a
client visits three webpages with real traces P;, P>, and P3,
then stops, with time gaps di,d> < dj,y after the first two
pages respectively. The attacker will collect a 3-trace, P/ =
P{||Ps||P;. P{ contains P; with FRONT noise, followed by a
glue trace of duration d;. P contains P, followed by a glue
trace of duration d,. P} contains P; followed by a glue trace
of duration d,;,,. Of course, the attacker cannot know where
each trace starts or ends. In fact, the attacker will not even
know how many traces there are. If the attacker tries to split
the combined trace incorrectly, some or all of the split traces
will be contaminated by dummy packets in their beginning
or end, which greatly affects WF attack performance.

6.3 Distributing Glue Traces

To make sure glue traces look like real traces, the client needs
to have a database which contains real webpage loads. We
propose that the client will retrieve such a database along
with the list of Tor nodes at Tor startup from Tor directory
servers. Then the client will ask for more after some certain
period of time. During Glue Mode, the client instructs the
proxy when to send a dummy packet.

726 29th USENIX Security Symposium

USENIX Association

P
pdp tda b dias

. ' ' '
' ' ' h

Original trace P ‘ Py

Defended trace P’ | P} ‘ P

N

Figure 9: A toy example of what traffic looks like with
GLUE. The white boxes are real traces while the grey boxes
are glue traces (made with dummy packets). Glue traces re-
move time gaps between real traces to exploit the difficulty
of the split decision and finding problems.

Note that glue traces contain no real data, only timestamps
of when dummy packets are sent and received. Therefore, we
do not expect the traces to cause much extra data overhead.
We estimate the data overhead for distributing glue traces as
follows. On average a trace has 4441 packets in our dataset.
Therefore, the average web page size is 2.3 MB. Suppose
a timestamp takes up 2 bytes, then one glue trace takes up
4441 x 2 = 0.008 MB. Hence, on client side, the data over-
head in the long run will be 0.008 /2.3 ~ 0.003 if the number
of glue traces downloaded is the same as the number of web
pages visited; and it will be 0.03 if the client downloads 10
times more glue traces than actually needed ones.

On the directory server side, we estimate the distribution
cost as follows. Taking statistics from November 2018 to
November 2019, we found that the average bandwidth spent
on answering directory requests is 172 MB/s and the average
number of Tor users is 2.1 million per day. If the average user
downloads 200 glue traces per day, the average bandwidth
for distributing glue traces is about 39 MB/s. Therefore, the
directory server is expected to have about 39/172 = 23%
data overhead. To obfuscate user activity, we can require
users to download a randomized number of glue traces reg-
ularly even if they do not need to, using padding to hide the
number of glue traces downloaded from an eavesdropper.

6.4 Solving Split Decision and Split Finding

To break down an ¢-trace, the attacker pursues the follow-
ing strategy: determine ¢ (split decision problem) and then
find £ — 1 points to split the /-trace (split finding problem).
To the best of our knowledge, there is no prior work on split
decision, and only two studies looking into split finding for
2-traces. Wang and Goldberg [26] put forward a split finding
algorithm using kNN with a score system. Xu et al. [29] sug-
gested using XGBoost to output the outgoing packet with the
highest probability to be the split. They show that their algo-
rithm could achieve better performance than kKNN. Neither
work considers /-traces for £ > 3.

Since GLUE relies on these problems being difficult, we
want to make a sincere best effort at solving both problems
for general ¢ so that future work will not be likely to break

lhttps://metrics.torproject.org/

GLUE. To do so, we put forward a new framework: Coarse-
Decided Score-Based (CDSB). CDSB performs better than
both previous algorithms for any general £.

Split decision We use a Random Forest classifier with 511
features extracted by expert knowledge to decide how many
splits there are. Intuitively, the more webpages we visit, the
longer an {-trace’s transmission time will be. Since splits
are time-sensitive, we include rich time information in our
feature set. We also exploit volume information such as the
number of packets and the number of outgoing packets in our
feature set. Refer to Appendix B for a detailed feature list.

Split finding We extend Xu et al.’s XGBoost to score each
outgoing packet in the trace; a higher-scoring packet is more
likely to be the true split. However, the algorithm does not
simply choose all the highest-scoring packets. Because usu-
ally all the packets around a true split score highly, but only
one of them is the true split. If we chose all of them, we
would have many false positives. Instead, we choose the
highest-scoring packet as a split in each round, and we elim-
inate nearby packets from consideration as splits for future
rounds. By this score decoding processing, we generate pre-
dicted splits. We put the pseudocode in Appendix C.

7 Evaluation of GLUE

In this section, we evaluate the performance of GLUE. We
first present the experimental setup. GLUE creates ¢-traces,
but the exact value of ¢ is determined by client behavior;
therefore, we evaluate GLUE on a range of values of ¢, from
2 to 16. Finally, we investigate the overhead of GLUE, which
is dependent on how long clients dwell on webpages.

7.1 Experimental Setup

We use DS-19 to evaluate GLUE. We divide it into three
parts: ATTACKTRAIN (9000 instances), SPLITTRAIN (2000
instances) and EVALUATION (9000 instances). We use AT-
TACKTRAIN to generate training data for WF attacks and
split decision; SPLITTRAIN to generate training data for split
finding; and EVALUATION to generate test data.

Due to its novelty, GLUE requires a new methodology to
evaluate. The split decision problem is entirely unexplored,
and although we make a good-faith attempt to solve it, we
want to show that GLUE is still effective even if the attacker
“cheats” by being given ¢ directly. While ¢-traces are much
harder to classify for large ¢, the exact value of ¢ is dependent
on user behavior. We want to show GLUE is powerful even
for the minimal ¢ = 2.2 The split finding problem has been

%For ¢ = 1, GLUE simply reduces to FRONT with some extra dummy
packets at the end.

USENIX Association

29th USENIX Security Symposium 727

explored more and GLUE relies on its difficulty. Therefore,
our evaluation is divided into two cases:

e (-traces without split decision. We evaluate for ¢ € [2,16],
and the attacker is told the value of /.

e (-traces with split decision. We evaluate for ¢ € [2,16],
and the attacker must find £.

7.2 (-traces without Split Decision

We start with an investigation of ¢-traces without split de-
cision: the client visits ¢ pages with a moderately short
dwell time between them. We tell the attacker what / is, al-
lowing the attacker to cheat by skipping the split decision
problem. We use a lightweight setting for FRONT noise
(Ns = N, = 1100). We sample d,4y, the maximum duration
of glue traces, from U(10s,15s). We assume the client’s
dwell time between webpages is a uniform distribution be-
tween 1s and 10s. The client visits ten times more non-
monitored webpages than monitored webpages.

We randomly generate 4000 split points and 4000 non-
split points from SPLITTRAIN as split training data. We ran-
domly generate [9900/¢| ¢-traces for £ € [2,16] from EVAL-
UATION as test data so that we have 900 monitored webpages
and 9000 non-monitored webpages in each test dataset.

The attacker will find £ — 1 split points, split a /-trace into £
singleton traces, and use a standard WF attack on each trace.
Alternatively, the attacker could also find 2(¢ — 1) splits and
discard all packets between all odd and even splits, thus re-
moving glue traces; however, we found that this strategy per-
forms extremely poorly since it forces the attacker to find
more traces accurately, so we do not present this strategy.
Note that since the first singleton trace has some FRONT
noise, the attacker should train two WF models: one “noisy
model” trained on traces with FRONT noise to classify the
first singleton trace; the other “clean model” trained without
FRONT noise to classify the other singleton traces.

Figure 10 shows the performance of WF attacks after im-
plementing GLUE. Increasing ¢ decreases both TPR and pre-
cision. In terms of TPR, DF performs the best at first (54%
TPR at £ = 2), but when more and more traces are glued to-
gether, it weakens quickly. When ¢ = 16, all attacks achieve
less than 5% TPR. We can see that despite being told ¢ and
using our improved split finding procedure, the best WF at-
tacks still cannot defeat GLUE.

7.3 {(-traces with Split Decision

In this experiment we tackle a more realistic scenario: the
attacker does not know how many splits are in an ¢-trace
and thus needs to do split decision first. The client and the
datasets are the same as in Section 7.2. We also generate
9000 ¢-traces for ¢ € [2,16] using ATTACKTRAIN to train
for the split decision problem.

To evaluate the performance of WF attacks correctly, if
the attacker guesses more than ¢ times for an ¢-trace (due to
incorrect split decision), we discard all the extra guesses and
use only the first £ guesses.

Figure 11 shows the results. We can see that with split
decision, WF attacks perform even worse, and their perfor-
mance decreases more drastically with larger /. When ¢ in-
creases to 16, all WF attacks have less than 1% precision.

7.4 Undefended /-traces

To show how attackers’ performance are degraded by GLUE,
we also test attack performance on the undefended dataset.
We find that the best WF attack is kFP and it achieves 96%
TPR at ¢ =2 down to 82% TPR at ¢ = 16. It achieves 97%
precision at £ = 2 and 82% at £ = 16. Split finding proce-
dure has nearly no effect on kFP when ¢ is small and only
a slight effect when ¢ is large. This is due to the high ac-
curacy (> 92%) of our split finding algorithm. Even if split
decision is required, kFP still achieves 45%—75% TPR and
41%—77% precision. We put the detailed experiment results
in Appendix E.

7.5 Analysis of Data Overhead

GLUE’s data overhead consists of three parts: Of incurred
by FRONT noise, Og incurred by glue traces except the last
one and Oy incurred by the tail, i.e. the last glue trace. To
estimate GLUE’s data overhead, let the mean time taken to
load a webpage be dp. We take the average over user dwell
times that are short enough to be glued, and denote it as dg.
The mean time of the tail is d;, > dg. (dr is the mean of the
distribution from which we sample d,,,,,.) For simplicity, we
can assume that real and glue traffic have the same uniform
packet rate b. Then,

O(GLUE) = O0r + 0+ Oy,
1 [Ny+N.+2

= Ubdp 2
_NetNe+2 ((=Ddg dr

" 2Ubdp {dp ldp
—_— Y—— =~

Glue trace Tail

+ (€~ 1)bdg +bdy,

FRONT noise

We can see that the O(GLUE) increases with users’ dwell
time and the duration of the tail while it decreases with /,
the number of pages glued together. Note that we only add
FRONT noise for the first trace and the cost for that is shared
by all the traces in an /-trace, thus Op is inversely proportion
to £. This is also the case for Oy. Since £ has little impact on
O¢ when it is large, we can reduce GLUE’s data overhead
with a large /.

With Ny = 1100, N, = 1100, the FRONT noise in our
dataset has a mean of 24%. We also calculate the mean time

728 29th USENIX Security Symposium

USENIX Association

60

TPR (%)
w S
fen) (9

—_
W
1

(=]

— Pt [y} N
S Wn O W
L I 1

Precision (%)

W
1

o

Figure 10: WF attack performance without split decision
against GLUE on /-traces.

~ 60

S

ol N dowdm
f‘; d=55,d=125
° 201

S d,=25,d=5

Figure 12: Data overhead with respect to different ¢, dg and
dr. Data overhead increases when dg and dj, are larger.

to load a page based on our dataset and get dp = 27.30s.
Thus, the data overhead of GLUE is

024 (-1
O(GLUE) = ==+ 57 350°

1
do+ 57307 4 (D

We use three different settings to represent different client
behaviors: dg = 2.5s, d;, = 55 as a strict version of GLUE,
dg =5.5s,d;, = 12.5s as normal GLUE and dg = 10s,d;, =
20s as lenient GLUE.

We apply these settings to our real datasets and show the
results in Figure 12. The data overhead is 3% to 13% for
strict GLUE, 22% to 44% for the normal GLUE, and 35%
to 53% for lenient GLUE. The actual value within this range
is dependent on ¢, where larger ¢ reduces the overhead; we
cannot determine ¢ because it depends entirely on client be-
havior. The values we found in Figure 12 are about 5-10%
lower than equation (1) because most glue traces have un-
even bandwidth density in reality.

60

45 - \

30 A N

TPR (%)

15 A — T~

25
20 1
15 1
10 1
5 -

Precision (%)

Figure 11: WF attack performance with split decision
against GLUE on ¢-traces.

7.6 Impact of FRONT Noise

In our defense design, we introduced some FRONT noise in
the beginning. We evaluate FRONT noise separately here to
show how it helps GLUE.

We use the same experiment setting as in Section 7.2 (WF
attack on 2-traces to 16-traces without split decision), except
that this time we do not add FRONT noise. We calculate
TPR for only the first traces of ¢-traces, and plot the results
in Figure 13. Where there is no FRONT noise, all attacks
could achieve 40%—-80% TPR on the first traces; with little
FRONT noise added, their TPR drops to 20%—60%.

Our observation is consistent with our discussion in Sec-
tion 4. Even if the split for the first webpage is wrongly
determined, the front portion is clean, leaking useful infor-
mation to the attacker. Thus, it is necessary to protect the
trace front.

8 Conclusion and Future Work

In this paper, we present two novel zero-delay lightweight
defenses that are effective against the best WF attacks and
easy to deploy on anonymity networks like Tor.

The first defense, FRONT, utilizes highly random noise
to obfuscate traces. Instead of spreading dummy packets
evenly, it focuses on obfuscating trace fronts. We also ran-
domly sample the number of dummy packets and the packet
padding window to ensure trace-to-trace randomness. With
similar data overhead, it beats the best known lightweight
defense, WTF-PAD, using a much simpler scheme.

We tested FRONT on two datasets collected five years
apart, and on subsets defined by page sizes, and found that

USENIX Association

29th USENIX Security Symposium 729

kNN CUMUL

100
~ 50 "\\/’ TN T e AT BN
& 251 —— e~
4 8 12 16 4 8 12 16
100 kFP DF
SIS N B B
by 50{ - P “ M/\/
3 I
0 . . , .
4 8 12 16 4 8 12 16
t L

Figure 13: TPR on classifying the first page of ¢-traces be-
fore and after adding FRONT noise. We use broken lines
to show the result with no FRONT noise and full lines with
FRONT noise.

FRONT’s performance was generally not sensitive to either
condition except that it performed worse on very large web
pages. It could be true, however, that FRONT’s performance
may be affected if the client has poor network conditions
(such that their own network serves as a bottleneck compared
to Tor). We did not explore this situation; making FRONT
automatically self-adjusting to poor network conditions is a
potential future direction in this work.

The second defense, GLUE, forces WF attacks to con-
front two difficult problems, split decision and split finding,
by gluing singleton traces into ¢{-traces. At large enough
¢, GLUE can even outperform heavyweight defenses like
Tamaraw. The overhead of GLUE varies, in the range of
3%-53%, depending on client behavior.

A web-browsing client is able to enlarge ¢ by simply in-
creasing the maximum padding time. In fact, with a large
enough maximum padding time, the client can consecutively
visit webpages non-stop, and all the current best attacks will
fail completely. Alternatively, we could implement a timer in
the browser UI to remind the client not to dwell too long on a
webpage: particularly privacy-sensitive clients could benefit
from such a feature.

We propose that Tor’s directory servers should maintain
large databases of glue traces, and clients should load glue
traces from them when necessary. We think it is a feasible
scheme by showing that the extra distribution cost is quite
low. It is worth investigating whether the client can generate
glue traces “on the fly” that look like real web page traffic to
eliminate this extra overhead and to ensure that the attacker
cannot see the same traces as the client.

In this paper, we allow the attacker to know the entire
database of glue traces. There are several reasons our at-
tacker currently cannot pursue a strategy of simply identify-
ing glue traces in the client’s traffic. First, congestion and
latency will perturb the glue trace, so that its instructions on
when to send packets will not be exactly realized in the net-
work trace, thwarting a simple matching attack. Second, glue

traces are expected to be stopped prematurely by the client.
Third, glue traces look like real web page loads, and the di-
rectory servers should maintain a large database of them; in
other words, glue traces would look like real web page vis-
its. As we cannot prove the impossibility of identifying glue
traces in traffic, we leave the question open as future work;
better counter-measures against it (such as limiting the at-
tacker’s knowledge of glue traces) are also possible.

Some other defenses can promise a certain level of guaran-
teed success against any WF attack, even future ones: among
the practically deployable ones, Tamaraw has the lowest
overhead, though it delays packets by 78% and almost dou-
bles the bandwidth consumed. Considering the seemingly
unavoidable overhead required, we did not design our de-
fenses to guarantee future success. For example, we cannot
prove that split decision and split finding are unsolvable, dif-
ficult as they are even with our improved CDSB. Many other
practical defenses also cannot guarantee future success, in-
cluding WTF-PAD and Tor Browser’s randomized pipelin-
ing (which has recently been disabled). It remains to be seen
whether future developments in the theory of traffic analy-
sis can show what degree of guaranteed success FRONT and
GLUE can achieve.

Acknowledgments

This work was partly funded by the Hong Kong Research
Grants Council ECS Project Number 26203218.

Availability

We publish the simulation code used in this paper, including
WF attacks we used and WF defenses we propose and evalu-
ate in this paper. We also provide code used in split decision
and finding. All the code and datasets are available via

https://github.com/websitefingerprinting/
WebsiteFingerprinting/

730 29th USENIX Security Symposium

USENIX Association

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

ABE, K., AND GOTO, S. Fingerprinting Attack on Tor Anonymity
Using Deep Learning. Proceedings of the Asia-Pacific Advanced Net-
work (2016).

CAI, X., NITHYANAND, R., AND JOHNSON, R. CS-BuFLO: A Con-
gestion Sensitive Website Fingerprinting Defense. In Proceedings of
the 13th Workshop on Privacy in the Electronic Society (2014), ACM.

CAl, X., NITHYANAND, R., WANG, T., JOHNSON, R., AND GOLD-
BERG, I. A Systematic Approach to Developing and Evaluat-
ing Website Fingerprinting Defenses. In Proceedings of the 21st
ACM SIGSAC Conference on Computer and Communications Secu-
rity (2014), ACM.

CAl, X., ZHANG, X. C., JoSHI, B., AND JOHNSON, R. Touching
from a Distance: Website Fingerprinting Attacks and Defenses. In
Proceedings of the 19th ACM Conference on Computer and Commu-
nications Security (2012), ACM.

CHERUBIN, G. Bayes, not Naive: Security Bounds on Website Fin-
gerprinting Defenses. Proceedings on Privacy Enhancing Technolo-
gies (2017).

DYER, K. P., COULL, S. E., RISTENPART, T., AND SHRIMPTON,
T. Peek-a-boo, I Still See You: Why Efficient Traffic Analysis Coun-
termeasures Fail. In 33rd IEEE Symposium on Security and Privacy
(2012), IEEE.

HAYES, J., AND DANEZIS, G. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In USENIX Security Symposium
(2016).

HERRMANN, D., WENDOLSKY, R., AND FEDERRATH, H. Website
Fingerprinting: Attacking Popular Privacy Enhancing Technologies
with the Multinomial Naive-Bayes Classifier. In Proceedings of the
16th ACM Workshop on Cloud Computing Security (2009), ACM.

HINTZ, A. Fingerprinting Websites Using Traffic Analysis. In In-
ternational Workshop on Privacy Enhancing Technologies (2002),
Springer.

JUAREZ, M., AFROZ, S., ACAR, G., DIAZ, C., AND GREENSTADT,
R. A Critical Evaluation of Website Fingerprinting Attacks. In Pro-
ceedings of the 21st ACM SIGSAC Conference on Computer and Com-
munications Security (2014), ACM.

JUAREZ, M., IMANI, M., PERRY, M., Diaz, C., AND WRIGHT,
M. Toward an Efficient Website Fingerprinting Defense. In European
Symposium on Research in Computer Security (2016), Springer.

L1, S., Guo, H., AND HOPPER, N. Measuring Information Leakage
in Website Fingerprinting Attacks and Defenses. In Proceedings of
the 25th ACM SIGSAC Conference on Computer and Communications
Security (2018), ACM.

LIBERATORE, M., AND LEVINE, B. N. Inferring the Source of En-
crypted HTTP Connections. In Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security (2006), ACM.

Luo, X., ZHOoU, P., CHAN, E. W., LEE, W., CHANG, R. K., AND
PERDISCI, R. HTTPOS: Sealing Information Leaks with Browser-
side Obfuscation of Encrypted Flows. In Network & Distributed Sys-
tem Security Symposium (NDSS) (2011), Citeseer.

OVERDOREF, R., JUAREZ, M., ACAR, G., GREENSTADT, R., AND
Diaz, C. How Unique is Your. onion?: An Analysis of the Fin-
gerprintability of Tor Onion Services. In Proceedings of the 24th
ACM SIGSAC Conference on Computer and Communications Secu-
rity (2017), ACM.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

PANCHENKO, A., LANZE, F., PENNEKAMP, J., ENGEL, T., ZIN-
NEN, A., HENZE, M., AND WEHRLE, K. Website Fingerprinting at
Internet Scale. In Network & Distributed System Security Symposium
(NDSS) (2016), Citeseer.

PANCHENKO, A., NIESSEN, L., ZINNEN, A., AND ENGEL, T. Web-
site Fingerprinting in Onion Routing Based Anonymization Networks.
In Proceedings of the 10th Annual ACM Workshop on Privacy in the
Electronic Society (2011), ACM.

RIMMER, V., PREUVENEERS, D., JUAREZ, M., VAN GOETHEM,
T., AND JOOSEN, W. Automated Website Fingerprinting through
Deep Learning. In Network & Distributed System Security Sympo-
sium (NDSS) (2018), Citeseer.

SHMATIKOV, V., AND WANG, M.-H. Timing Analysis in Low-
latency Mix Networks: Attacks and Defenses. In European Sympo-
sium on Research in Computer Security (2006), Springer.

SIRINAM, P., IMANI, M., JUAREZ, M., AND WRIGHT, M. Deep
Fingerprinting: Undermining Website Fingerprinting Defenses with
Deep Learning. In Proceedings of the 25th ACM SIGSAC Conference
on Computer and Communications Security (2018), ACM.

SYVERSON, P., DINGLEDINE, R., AND MATHEWSON, N. Tor: The
Second Generation Onion Router. In USENIX Security Symposium
(2004).

TOBIAS PULLS. Adaptive Padding Early (APE).
www.cs.kau.se/pulls/hot/thebasketcase-ape/, 2016.
line; accessed 25-August-2018].

https://
[On-

WANG, T. Optimizing Precision for Open-World Website Fingerprint-
ing. arXiv preprint arXiv:1802.05409 (2018).

WANG, T., CAI, X., NITHYANAND, R., JOHNSON, R., AND GOLD-
BERG, 1. Effective Attacks and Provable Defenses for Website Fin-
gerprinting. In USENIX Security Symposium (2014).

WANG, T., AND GOLDBERG, I. Improved Website Fingerprinting
on Tor. In Proceedings of the 12th ACM Workshop on Privacy in the
Electronic Society (2013), ACM.

WANG, T., AND GOLDBERG, I. On Realistically Attacking Tor with
Website Fingerprinting. Proceedings on Privacy Enhancing Technolo-
gies (2016).

WANG, T., AND GOLDBERG, I. Walkie-Talkie: An Efficient Defense
against Passive Website Fingerprinting Attacks. In USENIX Security
Symposium (2017).

WRIGHT, C. V., COULL, S. E., AND MONROSE, F. Traffic Mor-
phing: An Efficient Defense Against Statistical Traffic Analysis. In
Network & Distributed System Security Symposium (NDSS) (2009),
Citeseer.

XU, Y., WANG, T., L1, Q., GONG, Q., CHEN, Y., AND JIANG, Y. A
Multi-tab Website Fingerprinting Attack. In Proceedings of the 34th
Annual Computer Security Applications Conference (2018), ACM.

ZHUO, Z., ZHANG, Y., ZHANG, Z.-L., ZHANG, X., AND ZHANG,
J. Website Fingerprinting Attack on Anonymity Networks Based on
Profile Hidden Markov Model. IEEE Transactions on Information
Forensics and Security (2018).

USENIX Association

29th USENIX Security Symposium 731

A How to Set FRONT Parameters

There are four main parameters in FRONT, namely, N, N,
Winin and Wy,,... Obviously, N, + N determines the data over-
head. It is worth considering how to set the ratio between
them two, given a fixed data overhead. We also investigate
how to set Wi, and W, in the following.

A.1 Impact of Padding Budget Ratio

We want to investigate the optimal ratio between N, and N;
given a fixed total data overhead. We define a padding bud-
get ratio & = N../(N, + Ny), which is the proportion of total
padding used by the client. We set Wi, = 15, W0 = 145,
and N; + N, = 5000 based on FT-2. This results in a data
overhead of 49%.

Figure 14 shows attack performances with different oc. In
the figure, each line represents an attack. Each attack’s per-
formance has an inflection point as we increase ¢¢; we mark
the optimal o using a black dot, i.e. the value at which each
attack is least effective.

The upper figure shows how TPR changes for the three at-
tacks based on &. The TPR achieved by each attack greatly
decreases under FRONT, especially for kNN and CUMUL.
We found that the optimal o values are 0.32, 0.32, 0.5 and
0.24 in terms of TPR for the three attacks. The lower fig-
ure shows the change of precision. Precision curves exhibit
greater fluctuation. The optimal o values are still around 0.5
except for KFP. Combining these results, we find that the op-
timal « is around 0.25-0.5. This suggests that we should set
N; to be equal to or a bit smaller than N,.

Precision (%)
ST NECN
S S

(==}
L

o

02 04 06 08 10
Client's padding ratio a

Figure 14: Three WF attacks’ performances with different o.
The upper figure shows attack results in terms of their TPR.
The lower figure shows precision. We point out the optimal
ratio for our defense using a black dot in each subfigure.

N
S

TPR (%)
(e}
()

Figure 15: TPR of kFP with different 7. The full line shows
TPR on the full dataset while the dotted line shows TPR on
small webpages with mean loading time less than 20s.

60 — ALL
/;\ SMALL
< 40+ I
=
o —
= 2090 RET T

o L ‘ | | | | |

8 12 16 20 24 28 32 36
Wnlax

Figure 16: TPR of kFP with different W,,,,. The full line
shows TPR on the full dataset while the dotted line shows
TPR on small webpages with loading time less than 20s.

A.2 Set the Padding Window Parameters

In our design, the padding windows for both client and server
are sampled from U (Wiin, Winax). We introduce W,,;, to en-
sure that the real padding window is not too small to satisfy
the network bandwidth. So how do we set W,,,;,? Intuitively,
with a larger W,,,,, the range of possible padding window
size is larger, resulting in more randomness. However, this
may also cause a “long tail” of Rayleigh distribution — more
dummy packets are scheduled to the end of the trace or even
dropped due to FRONT design. This may reduce the security
level of FRONT, especially for small webpages. We did two
experiments to validate this.

Enlarge W,;, and W,,,, In this experiment, we try to in-
vestigate the impact of enlarging padding window size. We
set Ny = N, = 2500 based on FT-2. Varying t from 1sto 11s,
we set Wy,;, =t and Wy, = 13 4+¢. This means that we are
enlarging the expected window size under the same random-
ness since the maximum change of sampled padding win-
dow size is always within W,,,, — Wi, = 13s. We use kFP
as the attacker since it consistently achieves the best perfor-
mance against FRONT, as is shown in Section 5. We show
TPR on the full dataset as well as on small webpages whose
mean loading time is less than 20s. The small webpages ac-
count for 16% in our dataset and the mean loading time on
the whole dataset is 27s. Figure 15 shows the result. Both
lines keep increasing when the expected window size is en-
larged. This again validates our intuition that it is better to

732 29th USENIX Security Symposium

USENIX Association

Table 5: Feature set of split decision.

[No. | Feature description
1 Transmission size
2 Transmission time
3 Number of outgoing packets
4-5 Mean, std of inter-arrival times
6-105 Top 100 inter-arrival times
106-107 | Mean, std of top 100 inter-arrival times
25, 50, 75 and 100 percentile of
108-111 . . .
top 100 inter-arrival times

have more packet padded in the trace front as well as avoid
packet dropping in the trace end.

Enlarge W,,,. only In the second experiment, we try to
find out how to set W, after we decide W,,;,. We fix
Winin = 1s but vary W4, from 14s to 36s. Figure 16 shows
the result. On the full dataset, TPR decreases from 45% to
33% at 15s and then bounce back to 40%. However, TPR
on small webpages keeps increasing from 8% to 30%. This
indicates that for small webpages, most dummy packets are
left unused in the end since their timestamps are too large,
resulting in the increase in TPR. As for other webpages, the
randomness accounts for the decrease first while the drop of
dummy packets dominates the randomness after W, > 15,
leading to the increase in TPR.

To conclude, we should set W,,, reasonably large to
achieve good randomness. But we can not make W, too
large to avoid dropped dummy packets. For simplicity of
our design, we set a global W,,,, for all webpages. (There-
fore, we set W,,,,x = 145 in our experiments.) But if we are
allowed to have some information about webpages, it will be
better to have a dynamic W,y

B Split Decision Features

Features used in split decision. Feature 1 and 3 are volume
information while the others are time information of a trace.
The first 3 features help us determine how many webpages
in an /-trace by the length of the trace. Feature 4—111 ex-
tract information from large gaps in an ¢-trace. They help
determine how many splits are in the trace.

C Score Decoding Algorithm

Algorithm 1 shows the pseudocode of score decoding pro-
cess. The inputs are scores for all outgoing packets, the num-
ber of splits to be found and a parameter neighborhood r. We
find one split in each round by picking out the highest score
while masking all outgoing packets in the “neighborhood”.
In other words, neighbor packets will not be considered in
the following rounds. We set r = 40 in our experiments.

Algorithm 1 Score Decoding

Input:
A list containing each outgoing packet’s location and
score;
A parameter: Neighborhood r;
The number of splits #;
Output:
Set of predicted splits L;
1 L+ {}
2: fori=1ton do
3: Find the packet p with highest score and add it into L;
4 Set p.score <— —oo;
5: for every other packet g do
6 if |g.loc —p.loc| < r then
7 g.score <— —oo;
8 end if
9: end for
10: end for
11: return L;

D Information Leakage Analysis Result

In Section 5.3, we show the ECDF of information leakage.
Here we present the detailed result of information leakage
analysis. We estimate information leakage for 3043 features
on both undefended and defended traces. These features are
grouped into 14 different categories and they have covered
all the features WF attacks use in the literature [12]. Figure
17 shows the information leakage for each feature on our
datasets in the open-world scenario.

FRONT results in less information leakage in most of the
categories compared to WTF-PAD, especially for features
like Pkt. Count, Time, NGRAM, Pkt. Distribution and CU-
MUL. WTF-PAD outperforms FRONT in category Interval-
I, II and III. This result makes sense since WTF-PAD is
based on obfuscating time features while FRONT focuses
mainly on obfuscating volume features as well as bringing
in more randomness.

E Evaluation on Undefended /-traces

Figure 18 and 19 shows the attack TPR and precision on un-
defended /-traces, without and with split decision, respec-
tively. When ¢ is known (i.e., without split decision), all
attacks achieve similar TPR under all the ¢ values. But pre-
cision varies. kFP has the highest precision all four attacks
all the time, ranging from 82% to 97%. When ¢ is unknown
(i.e., with split decision), TPR and precision of all attacks ex-
cept kNN drop by 20-30%, but still share the same trend as
when without split decision. kNN’s performance is greatly
affected by split decision when ¢ > 9.

USENIX Association

29th USENIX Security Symposium 733

Interval-I

Pkt. Count A Time

"I;RANSPOSITION

= 38 161 162 765 766 1365
) .
g Burst First20
80 4 4
£
< 37
Q
— 24
=
.S 1775 ~
= 0]
g 1968 2553 2790 2809
4=
=
- ‘%ast30 Pkt. Count
3 £ AR SR— A - . Undefended
2 | 2 _— F“"]rTf‘_PAD
14 (B I———]
..................................... — FT-2
0 0 0 0
2810 2811 2812 2813 2814 2939 2940 3043
Feature Index
Figure 17: Information leakage for individual features.
---------- KNN ----- CUMUL —— kFP ——- DF v KNN - ===== CUMUL ~ —— kFP ——- DF
100 100
751 751
&3 &3
~ 501 ~ 501
= (=
251 251
0 0
100 100

~1

W
1

~1

W
1

N
W
1

Precision (%)
W
S
5
Precision (%)
Wi
S
!

N
W
1

o
o

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Figure 18: WF attack performance without split decision
on clean /(-traces.

Figure 19: WF attack performance with split decision on
clean (-traces.

734 29th USENIX Security Symposium

USENIX Association

