
Surakav: Generating Realistic Traces for a Strong
Website Fingerprinting Defense

Abstract—Website Fingerprinting (WF) attacks utilize size and
timing information of encrypted network traffic to infer the user’s
browsing activity, posing a great threat to privacy-enhancing
technologies like Tor; nevertheless, Tor has not adopted any
defense because existing defenses are not convincing enough to
show their effectiveness. Some defenses have been overcome by
newer attacks; other defenses are never implemented and tested
in the real open-world scenario.

In this paper, we propose Surakav, a tunable and practical
defense that is effective against WF attacks with reasonable
overhead. Surakav makes use of a Generative Adversarial Net-
work (GAN) to generate realistic sending patterns and regulates
buffered data according to the sampled patterns. We implement
Surakav and evaluate it on the live Tor network. Experiments
show that Surakav is able to reduce the attacker’s true positive
rate by 57% with 55% data overhead and 16% time overhead,
saving 42% data overhead compared to FRONT. In the heavy-
weight setting, Surakav outperforms the strongest known defense,
Tamaraw, requiring 50% less overhead in data and time to lower
the attacker’s true positive rate to only 8%. We also show that
two existing defenses, Walkie-Talkie and TrafficSliver, can be
fortified with our GAN-based trace generator.

Index Terms—Tor; privacy; website fingerprinting; traffic
analysis; generative adversarial network

I. INTRODUCTION

More and more people have been turning to privacy-
enhancing communication tools like Tor to access the internet,
so that they may be protected from an increasing threat of
network surveillance and censorship. Tor protects user privacy
by establishing a three-node path between the user and the
server where fixed-sized packets (also known as cells) are
encrypted and transmitted [1]. Any single node on this path
cannot simultaneously learn the identity of the user and the
server. However, a local eavesdropper can launch a traffic
analysis attack, known as Website Fingerprinting (WF), to
deanonymize the user. They train a classifier that exploits size
and timing information of network traces to guess which page
the user is visiting. WF attacks have shown increasingly high
success rates on attacking Tor [2]–[7].

Designing a usable defense is rather challenging. Defenses
solely relying on adding random noise are not sufficiently
strong against the best WF attacks [8], [9]. The highly-
effective ones, however, either require unreasonable assump-
tions or incur high overhead, significantly impeding their
adoption. Specifically, they use predefined patterns to send
packets that have the following limitations:
• Prior knowledge on webpages. Some defenses require

knowledge of how each page is loaded so that they
can compute a uniform sending pattern for a group

of pages [2], [10]. This assumption makes their de-
ployability questionable since most websites are up-
dated frequently. Moreover, maintaining and distributing
a database of real sending patterns could greatly burden
the Tor network.

• A fixed pattern for all pages. These defenses force
all pages to use the same pattern, sending packets in a
constant rate [11]–[13]. They ignore the different char-
acteristics of loading different pages, making it hard to
lower their overhead.

To solve these limitations, we propose a novel defense
Surakav that sends packets through various self-generated
sending patterns. 1 Surakav is practical to use in that it does not
require any prior knowledge on the webpages to be loaded. It
makes use of a generator that can output infinite non-repeated
sending patterns. We achieve this by training a well-designed
Generative Adversarial Network (GAN) to mimic realistic
traffic patterns of different webpages. To effectively reduce
the overhead, instead of using fixed sending patterns, we
dynamically adjust the patterns based on the size of buffered
data during a loading process. Our generated sending patterns
are highly realistic, such that they can be recognized as the
intended class with 90% accuracy. The diversity of sending
patterns and the randomness of real-time modifications make
each load appear different, even for the same webpage, largely
contributing to the effectiveness of our defense.

To show that our defense is fully deployable, we implement
it and test it on the live Tor network. Our results show that
for the first time, we are able to outperform the strongest
known defense, Tamaraw [13], but with much less overhead:
we require 50% less overhead in data and time to reduce
the true positive rate of DF [5] to 8% while Tamaraw only
reduces it to 13%. If we tune down the overhead of our
defense further, we outperform the state-of-the-art lightweight
defense, FRONT [9], with 42% less dummy data and a similar
protection rate.

We summarize the contributions of our paper as follows:

• We propose a GAN-based novel WF defense, Surakav,
based on trace generation. Surakav can be easily tuned
for different security levels.

• We conduct a full implementation evaluation for our
defense as well as the state-of-the-art defenses in the
real world. Results show that our defense outperforms the

1The Surakav, also known as Anna’s hummingbird, can repeatedly alter its
coloration with small movements.

Entry
Middle

Exit

Adversary

Fig. 1: The WF threat model.

other defenses in the open-world scenario. Our defense
also leaks less information than any other defense.

• We find that trace generation can also be used to fortify
other defenses, including TrafficSliver [14] and Walkie-
Talkie [10].

We organize the rest of the paper as follows. We introduce
background and related work in Section II and the preliminar-
ies in Section III. We propose our new defense in Section IV.
We evaluate our defense extensively in Section V. We further
explore how our defense could help fortify other defenses in
Section VI. Finally, we discuss relevant issues in Section VII
and conclude our work in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Threat Model

When a client uses Tor to load a webpage, each cell will
traverse three different nodes (Entry, Middle, and Exit) before
reaching the destination. As shown in Figure 1, we consider a
local attacker between the client and the entry node who tries
to infer the user’s browsing history. The attacker eavesdrops
on the wire and observes the traffic pattern. We assume the
attacker does not try to compromise the encryption of Tor
or modify any packets. We further assume that the client
visits one page at a time so that the attacker knows the start
and end of a page load. This creates a harder scenario for a
defense since attacking under a multi-tab browsing scenario is
considered to be difficult [9], [15].

To launch a WF attack, the attacker first trains a classifier
based on labeled network traces. Then, the attacker obtains
the user’s traces and queries the classifier. The attacker’s
performance can be evaluated in two different scenarios.

1) Closed-World Scenario: In this scenario, we assume the
client only visits webpages from a monitored list determined
by the attacker. The attacker’s goal is to classify the traces into
the correct webpages. Here, “accuracy” refers to the proportion
of correctly classified instances.

2) Open-World Scenario: In the open-world scenario, the
client visits not only monitored webpages, but also non-
monitored pages that the attacker may not have seen before.
The attacker tries to find out which specific monitored page
the client is visiting if any. The attacker’s success rate is
measured in True Positive Rate (TPR) and False Positive Rate
(FPR). TPR is defined as the percentage of correctly classified
monitored traces over the total number of monitored traces.
FPR is defined as the percentage of the non-monitored traces
that are misclassified as monitored ones.

B. WF Attacks

Early WF attacks used machine learning models with hand-
crafted features as input [2]–[4], [16]–[18]. Later, deep learn-
ing models with various architectures were proposed. They
take raw traces as input without doing feature engineering [5]–
[7], [19], [20]. We pick the four most effective attacks as our
benchmark in this paper:
• k-fingerprinting (kFP) [4]: kFP uses random forests to

generate a fingerprint for each trace. It compares dis-
tances between fingerprints and selects the k closest
fingerprints to decide the test instance’s label together. Its
k Nearest Neighbor mechanism helps achieve low FPR.

• CUMUL [3]: Panchenko et al. proposed to use a Support
Vector Machine (SVM) with the cumulative summation
of bytes from each direction as input features.

• Deep Fingerprinting (DF) [5]: DF is a deep Convolu-
tional Neural Network specially designed for website
fingerprinting. It takes raw cell sequences as input where
“+1” represents an outgoing cell and “-1” represents an
incoming cell. It is able to achieve higher accuracy than
any previous attack.

• Tik-Tok [7]: Tik-Tok improves upon DF by incorporat-
ing time information into training. It uses directional
timestamps to represent a trace: a positive real number
represents the timestamp of an outgoing cell, and a
negative real number represents that of an incoming cell.
It is currently the state-of-the-art attack.

C. WF Defenses

Existing works can be roughly categorized into three main
classes: Randomization, Regularization, and Adversarial Trace
Crafting. They either function at the network layer or the
application layer.

1) Randomization Defenses: These defenses emphasize
the use of randomness so that different traces from one
webpage do not have the same pattern [21]–[23]. They focus
on obfuscating (reordering, reshaping, and delaying) HTTP
requests and responses. The most effective defense, ALPaCa,
requires the web server’s cooperation [23], which may hamper
its deployability.

WTF-PAD [8] and FRONT [9] are two lightweight defenses
that introduce no delays to page loads. WTF-PAD tries to
hide distinctive time gaps in traces. It samples time gaps from
several pre-configured distributions and inserts dummy packets
at those time gaps if no real packets are in the buffer. However,
it was broken by DF [5] before it was ready to be deployed
on Tor. FRONT randomizes the shape of distributions used
for sampling the timing and number of dummy packets added,
and the dummy packets are concentrated near the front of a
trace. It only achieves partial effectiveness against DF [5] and
Tik-Tok [7] attack.

Since those defenses do not delay any real packets, their
ability to obfuscate time features is limited. By contrast,
Surakav samples a random time gap for every burst of data,
greatly restricting the time information leakage.

2) Regularization Defenses: This class of defenses aims
at fitting traces into deterministic patterns so that they can
be provably secure under certain assumptions. For example,
the BuFLO family of defenses [11]–[13] suggests using a
fixed sending rate on both sides and maintaining transmission
for some extra time after a page load finishes. Among them,
Tamaraw [13] achieves a good balance between overhead and
security. Their use of a uniform pattern for all webpages causes
high overhead. Compared to those defenses, Surakav makes
use of diverse sending patterns that are flexibly adjusted in
real time to reduce the overhead.

Two other defenses, Glove [24] and Supersequence [2],
proposed to group webpages into clusters and compute a
super-trace for each group so that visiting a page in this group
will always yield the same trace. But they both require prior
knowledge on the pages to be visited and are too expensive
to use. Walkie-Talkie [10] greatly optimized the overhead by
modifying the browser to talk in half-duplex mode. Still, it
assumes that we can know the burst patterns of each page in
advance, which is hard to achieve in reality. By comparison,
Surakav does not require any prior knowledge on the webpages
to be loaded, making it more realistic to deploy.

3) Adversarial Defenses: Adversarial traces represent a
new direction for WF defense design. These defenses are
based on the fact that deep learning models can be fooled
using small, carefully-crafted perturbations upon the original
inputs [25]–[27]. Mockingbird [28] used an optimization prob-
lem to find adversarial perturbations to the network traces.
Hou et al. proposed a GAN model to generate adversarial
traces [29]. However, both works require pre-knowledge of the
full trace to compute noise, which again leads to deployment
issues. Nasr et al. [30] proposed a new method to search for
perturbations without knowing the whole trace. They assumed
that the attack model was trained on undefended traces and
tested on defended traces, which does not fit our model; a
realistic attacker should be able to train on defended traces.
To show their inapplicability, we conducted a brief simula-
tion experiment in the open-world scenario using the same
methodology as our other experiments described in Section V.
We found their defense effectively reduced the TPR of the
attacker by over 94% if the attack model was only trained on
undefended traces, but the attacker’s TPR was reduced by only
4% if it was trained on defended traces.

Note that our defense does not fall into this category.
Surakav does not try to find adversarial perturbations that
can fool a trained classifier. Instead, it tunnels traffic through
various sending patterns generated from a GAN.

4) Other Defenses: Decoy covers each page by randomly
loading another page in the background [16]. Recent research
shows that its overhead is too high (100%) while its security is
not guaranteed due to variant base rates [31]. TrafficSliver [14]
proposed to split traffic over several “sub-circuits” in a highly
random manner. It is meant to defend against a malicious entry
node, which is slightly different from our threat model. Any
local attacker (e.g., someone under the same network) is still
able to see the complete traces, weakening the defense. We

will show how TrafficSliver can be augmented by our defense
in Section VI.

D. Trace Generation

Rigaki and Garcia showed the possibility to make mal-
ware traffic undetectable by mimicking normal traffic with
a GAN [32]. FlowGAN [33] trained a GAN to learn six
typical features of normal network traffic. Then, it dynamically
adjusted traffic to approach the feature patterns of normal
traffic generated by the GAN to resist censorship. GAN
Tunnel [34] similarly used a GAN to reshape the traffic of an
application by learning traffic features of a decoy application.
However, they need to train a separate GAN for each decoy
application, which is not scalable for our scenario.

We observed that these works all served the purpose of
evading censorship by changing general traffic features, such
as packet length, packet inter-arrival time, etc. Compared to
our work, none of those works generates burst sequences
directly. To the best of our knowledge, we are the first to
show that GANs can be used to create an effective defense
against website fingerprinting attacks.

III. PRELIMINARIES

A. Generative Adversarial Network

A Generative Adversarial Network (GAN) refers to a frame-
work in which two neural networks compete against each
other [35]. In this framework, one player G (Generator) tries
to generate synthesized data to fool its opponent, while the
opponent D (Discriminator) tries to distinguish between real
and synthesized data. Through this adversarial process, G
enhances its ability to generate realistic-looking data using
feedback from an improving D.

Vanilla GAN has several issues in training: the process is
usually unstable, and its loss function does not function well
as a stop condition [36]. Wasserstein GAN (WGAN) was
proposed to solve these limitations [37]–[39]. WGAN-div is
the state-of-the-art variant in the WGAN family and shown to
be stable in training [39]. WGAN-div formulates the model as
a min-max problem

min
G

max
D

Ex∼Pr [D(x)]− EG(z)∼Pf
[D(G(z))]

−kEx̂∼Pu
[||∇x̂D(x̂)||p],

(1)

where Pf is the distribution of fake data, Pr is the distribution
of real data, and x̂ is a linear interpolation of real and fake data
points (the corresponding distribution is denoted as Pu) [39].
The output of D is the logit of the probability that the input
is real, assigned by the discriminator, which we refer to as
the logit probability. The first two terms of (1) show that the
discriminator attempts to maximize the difference of the logit
probability between real and fake samples for each potential
generator, who attempts to minimize the same. The third
term of (1) is a regularization term to ensure that D satisfies
the Lipschitz constraint [39]. They show that k = 2 and
p = 6 yield the best results. We also use these values in our
implementation.

Incoming
Burst

Outgoing
Burst

Time

Outgoing cell
Incoming cell

<latexit sha1_base64="AMpMlZrGKo+UgUuc/Q0KB//2ETs=">AAADfnicbVLbbtNAEN0mXIq5NIVHXlakQUgoV1JoeYooDzwWRJtKcRStN5N4Fa/X7I7bRCt/Ca/wUfwNu64rkZaxLB3NbeecmShLhMFe789OrX7v/oOHu4+Cx0+ePttr7D8/NyrXHM64SpS+iJiBRKRwhgITuMg0MBklMI5WJz4+vgRthEq/4yaDqWTLVCwEZ+hcs8YezqwKTaw0oqKqmDWavU6vNHoX9CvQJJWdzvZr43CueC4hRZ4wYyb9XoZTyzQKnkARhLmBjPEVW8LEwZRJMFNbTl7QlvPM6UJp96dIS++/FZZJYzYycpmSYWxux7zzf7FJjoujqRVpliOk/PqhRZ5QR9LLQOdCA8dk4wDjWrhZKY+ZZhydWEHQ8ubGyTZ0oZWkMWJmPna7COuOQfcGrF16uoQOV7L7Iwfj5TTdd8fD46PDrlN80y5FbTOt1VXbc1BJ1dbTLYNUi2WMtEzZYmZQMr3R8y31LGoheSKyIghCyVbA3LbRzRuEn8FJr+GbinKDJ0pKls7tzVYL2wooDb1GGhJbgoyVpdcpI1Shi7B10Qp87xSu+FYPl1BMBtOqzwp0OpC5x36aSK2t7RyGV2Lud9HzX2EPQjnCuNkPLzOnEypp3xZVt5J0ybk4KHzL4oaOwtixaVXmTrF/+/DugvNBp/++M/w6bI4+VUe5S16SV+QN6ZMPZES+kFNyRjjJyU/yi/yuk/rrervevU6t7VQ1L8iW1Y/+Ak+KHI0=</latexit>

to�o

Fig. 2: Visualization of a burst sequence.

From (1), we can derive the loss functions of D and G to
minimize as follows,

LD = −Ex∼Pr
[D(x)] + EG(z)∼Pf

[D(G(z))]
+kEx̂∼Pu

[||∇x̂D(x̂)||p],
(2)

LG = Ex∼Pr
[D(x)]− EG(z)∼Pf

[D(G(z))]. (3)

Equation (3) is also known as the estimated Wasserstein
distance between Pf and Pr, providing a good indicator of
when training should stop.

In this work, we build a GAN based on the methodology
of WGAN-div. We train such a generator to generate burst
sequences that look like normal traces and use them to create
a WF defense. We will provide the details of design in
Section IV.

B. Trace Representation

A trace is usually represented as a sequence of +1’s and -1’s
since a Tor cell is of fixed length [1] and we only need to use
the sign to indicate the direction of the cell. To facilitate the
training of a generator, we transform such cell sequences into
burst sequences. As shown in Figure 2, several consecutive
cells from the same direction form a burst. Then a trace can
be represented as x = (b1, · · · , b`), where bi represents the
i-th burst of cells. When i is an odd number, bi represents an
outgoing burst; otherwise, it is an incoming burst. b1 is always
an outgoing burst since a loading process is always initiated
by a client request. We use |bi| to denote the size of burst
bi. We denote the time gap between two consecutive outgoing
bursts as to�o, defined as the time gap between the first cells
of these two bursts. A “trace” refers to a “burst sequence” in
the rest of the paper, unless otherwise stated.

IV. A NEW DEFENSE: SURAKAV

In this section, we introduce our new defense Surakav. We
first discuss the motivation and intuition behind the defense.
Then we give an overview of the workflow. Finally, we
describe the design for each component of Surakav in detail.

A. Motivation and Intuition

The failure of WTF-PAD [8] against DF [5] indicates that it
is hard for a defense to beat a strong attack with only dummy
packets and no packet delays. Regularization defenses, on the
other hand, provide a simple intuition on why they work: to
load webpages in their predefined sending patterns. Consider
Tamaraw [13], a regularization defense: it constructs a simple
sending pattern for all webpages, making the client and the

server send packets at different constant rates and stop sending
cells when the trace length is a multiple of a predefined integer.
However, since real packets are unevenly distributed during
the loading process, a constant sending strategy cannot fully
utilize the overhead budget. Moreover, Tamaraw users can only
choose to have either fewer delays or less dummy data, at the
cost of increasing the other.

Surakav reduces overhead while maintaining effectiveness
by tunneling packets through different sending patterns rather
than a constant pattern. These patterns capture the general
characteristics of a normal page load (e.g., more incoming
packets than outgoing ones). A naive way to create sending
patterns is to directly use pre-collected real traces. However,
maintaining and distributing real traces will again burden
the Tor network. Instead, we can use a generative model to
synthesize traces for us as sending patterns and distribute the
trained model directly to users. To distribute a model, we
only need to transfer several megabytes of data, which are
the trained weights of the model.

We choose to use a Generative Adversarial Network (GAN)
for trace generation since it has shown great success in
synthesizing graphics [35], [37], [39]. We design a GAN to
generate realistic sending patterns from various webpages. We
refer to these patterns as “reference traces”. When loading
a webpage, we randomly generate reference traces from the
trained generator and send packets based on them. We wait
for a randomly sampled time gap each time we are about to
send out a burst of data. The size of the defended burst is
determined together by the amount of data currently in the
buffer and the burst size suggested by the reference trace.

Our design leaks minimal time information and allows us to
control how much size information we are willing to sacrifice
to lower overhead. By using reference traces derived from a
generator, we ensure the patterns are never repeated, even if
the attacker uses the same generator as the victim.

B. Overview of Surakav

The main components of Surakav are a generator G that
generates reference traces (Section IV-C) and a regulator R
that uses reference traces to decide when and how many
packets should be sent onto the circuit based on two random-
ized mechanisms (Section IV-D). The workflow of Surakav is
illustrated in Figure 3.

Surakav first uses a GAN to train G on a dataset and samples
reference traces from G. The reference trace is a sequence
of bursts defined in Section III-B. Then, in each round, the
regulator R consumes two bursts from a sampled reference
trace, one for the client and another for the proxy server.
R learns the time gap distribution of outgoing bursts from
the dataset, and samples a time gap to�o from the learned
distribution in each round. After sleeping for time to�o, R
sends an outgoing burst whose size is based on both the real
data in the buffer and the reference burst size. A message
packet is attached to this burst instructing the proxy on how
much data to respond with. Client and proxy send bursts of
data in such a back-and-forth way until the page is loaded.

…

Generator

label

…

…

Discriminator

Observer (DF)

+

label
+

…
…

…
…

Time Gap Modeling

Buffer

Time Scheduling

Real cell

Dummy cell

1) Burst Adjustment
2) Random Response

…

Trace Generation

Buffer
fake trace

real trace

(a) Generator Training (b) Packet Regulation

<latexit sha1_base64="RjNRUGay9tul46wZIZJRS/V3g9g=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUEFKIkVdFt24kgr2AU0ok+m0HTozCTMToYZs/BU3LhRx62e482+ctFlo64ELh3Pu5d57gohRpR3n2yosLa+srhXXSxubW9s79u5eS4WxxKSJQxbKToAUYVSQpqaakU4kCeIBI+1gfJ357QciFQ3FvZ5ExOdoKOiAYqSN1LMPHqGnKIceR3qEEUtu04pz6p707LJTdaaAi8TNSRnkaPTsL68f4pgToTFDSnVdJ9J+gqSmmJG05MWKRAiP0ZB0DRWIE+Un0wdSeGyUPhyE0pTQcKr+nkgQV2rCA9OZ3anmvUz8z+vGenDpJ1REsSYCzxYNYgZ1CLM0YJ9KgjWbGIKwpOZWiEdIIqxNZiUTgjv/8iJpnVXd82rtrlauX+VxFMEhOAIV4IILUAc3oAGaAIMUPINX8GY9WS/Wu/Uxay1Y+cw++APr8wfqRJVT</latexit>

z ⇠ N (0, 1)

<latexit sha1_base64="AMpMlZrGKo+UgUuc/Q0KB//2ETs=">AAADfnicbVLbbtNAEN0mXIq5NIVHXlakQUgoV1JoeYooDzwWRJtKcRStN5N4Fa/X7I7bRCt/Ca/wUfwNu64rkZaxLB3NbeecmShLhMFe789OrX7v/oOHu4+Cx0+ePttr7D8/NyrXHM64SpS+iJiBRKRwhgITuMg0MBklMI5WJz4+vgRthEq/4yaDqWTLVCwEZ+hcs8YezqwKTaw0oqKqmDWavU6vNHoX9CvQJJWdzvZr43CueC4hRZ4wYyb9XoZTyzQKnkARhLmBjPEVW8LEwZRJMFNbTl7QlvPM6UJp96dIS++/FZZJYzYycpmSYWxux7zzf7FJjoujqRVpliOk/PqhRZ5QR9LLQOdCA8dk4wDjWrhZKY+ZZhydWEHQ8ubGyTZ0oZWkMWJmPna7COuOQfcGrF16uoQOV7L7Iwfj5TTdd8fD46PDrlN80y5FbTOt1VXbc1BJ1dbTLYNUi2WMtEzZYmZQMr3R8y31LGoheSKyIghCyVbA3LbRzRuEn8FJr+GbinKDJ0pKls7tzVYL2wooDb1GGhJbgoyVpdcpI1Shi7B10Qp87xSu+FYPl1BMBtOqzwp0OpC5x36aSK2t7RyGV2Lud9HzX2EPQjnCuNkPLzOnEypp3xZVt5J0ybk4KHzL4oaOwtixaVXmTrF/+/DugvNBp/++M/w6bI4+VUe5S16SV+QN6ZMPZES+kFNyRjjJyU/yi/yuk/rrervevU6t7VQ1L8iW1Y/+Ak+KHI0=</latexit>

to�o

Fig. 3: Workflow of Surakav. The defense has two phases: (a) we first train a generator that is able to generate various reference
traces; (b) we sample reference traces from the trained generator and send bursts of data based on the reference traces.

+

FC + ReLU
FC + BN + ReLU
FC + BN + ReLU

FC
Sigmoid

Trace+

Trace+

FC

LeakyReLU

Dropout

x3

FC

Logit
<latexit sha1_base64="4dO+dl+Mtar58ds6JIJ/ot8nSuA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpf6KMSgWnPr7hxklXgFqUGB5qD61R9GLJGoLBPUmJ7nxtZPqbacCZxV+onBmLIJHWEvo4pKNH46v3VGzjJlSMJIZ6Usmau/J1IqjZnKIOuU1I7NspeL/3m9xIY3fspVnFhUbLEoTASxEckfJ0OukVkxzQhlmme3EjammjKbxVPJQvCWX14l7Yu6d1W/fLisNW6LOMpwAqdwDh5cQwPuoQktYDCGZ3iFN0c6L86787FoLTnFzDH8gfP5AxBUjkQ=</latexit>

`

<latexit sha1_base64="VcduhImtG31xtIwCRH/3qEwy95Y=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOwvjQc=</latexit>z <latexit sha1_base64="89J+JuC5FxMnvUsR7pwslvrJLdI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyVOM8A==</latexit>c

Generator Discriminator

<latexit sha1_base64="89J+JuC5FxMnvUsR7pwslvrJLdI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyVOM8A==</latexit>c

Fig. 4: The architecture of the Generator and the Discriminator.
(FC: fully-connected layer, BN: batch normalization, c: class
label, `: trace length, z: sampled noise vector.)

During the process, R may re-sample a new reference trace if
the previous one is used up. Burst sizes are reduced by holding
data in the buffer until the next round of sending, and they are
increased by adding dummy packets.

C. Training Trace Generator

We propose a novel GAN architecture for the purpose of
generating burst sequences.

1) Architecture: There are three components in the GAN,
that is, a generator G, a discriminator D, and an observer
O. We present the architecture of our GAN in Figure 4.
Detailed parameters of each layer in the GAN are shown in
Appendix A.

Generator. The generator G is a Multilayer Perceptron
(MLP). It takes a label c (in the one-hot representation) and
a noise vector z as input and outputs a vector representing a
generated burst sequence and a trace length `. The input vector
is normalized into [0,1] to facilitate the training process. The
key to being able to generate traces of different webpages
is that we include the label information in the input. This is
a trick used by conditional GANs to generate instances of
different classes [40]. Note that the size of different webpages
could vary a lot, leading to different trace lengths, while the

output of the generator is a fixed-length vector. Therefore,
we truncate the output trace in post-processing: we cut the
fixed-length vector at length ` (i.e., the learnt trace length for
this class) to get the final burst sequence. This helps us avoid
having a lot of empty bursts (i.e., 0’s) at the tail.

Discriminator. The discriminator D is also an MLP. Both
real traces and fake traces are fed into D. The output of
D is the logit of the probability that the input is a real
trace according to the discriminator’s belief. Similar to G, the
discriminator also includes labels as input.

Observer. We introduce a novel observer into our model to
improve the quality of fake traces. The observer O is a pre-
trained model that further provides feedback for G. It takes in
those fake traces that successfully fool the discriminator (i.e.,
predicted to be real traces) and determines which webpage
they come from. The observer uses a modified DF model [5]
that has the same architecture as the original DF and takes in
burst sequences (instead of cell sequences) since DF is shown
to be one of the strongest attacks.

In our model, we introduce an observer to check whether a
fake trace would be correctly classified into the expected class.
In original GAN, G gets limited binary information from D,
that is, whether the trace is fake or real. As network traces
are information-dense, the observer gives us more feedback to
capture the difference between traces from different classes.
We do not train the observer along with G and D from scratch,
as training a GAN is much harder than training a single model
since it involves adversity. As a preliminary experiment to
test whether the traces we generated with the observer were
realistic, we asked a DF classifier trained on real traces to
classify our fake traces as if their target websites were their
true labels. This led to a 90% accuracy on DF, compared to
13% without an observer.

2) Training Algorithm: Here we describe how we train
the generator and the discriminator. We extend the idea of
WGAN-div [39] and design a new loss function L∗G for our
generator G:

minimize L∗G = LG + αLO, (4)

where LG is the original loss of WGAN-div described in (3)
and LO is the cross entropy loss of our observer O on the

TABLE I: The parameters for regulator configuration.

Notation Description
ρ Maximum time gap between two outgoing bursts
δ Tolerance for burst size adjustment
q The probability of skipping a dummy burst

selected fake traces. We introduce a hyperparameter α to adjust
the weight of LG and LO since their magnitude could be differ-
ent. The first term in (5) minimizes the Wasserstein distance
between fake and real data, and the second term minimizes
the cross entropy loss so as to increase the confidence of fake
traces being accepted as the expected class. The loss function
of D is exactly the same as (2):

minimize L∗D = LD, (5)

except that the original input to D and G should be concate-
nated with label c.

We summarize the training process in Algorithm 1. In each
iteration, we sample a batch of real traces from the dataset and
generate a batch of fake traces. We update the weights of G and
D according to (4) and (5). In the training process, D is trained
for ncritic iterations each time G is trained for one iteration
(See Line 10-14), since WGANs require the discriminator to
be trained more often than the generator [38]. 2

Algorithm 1 Algorithm for GAN training

Input: Batch size m, critic iteration ncritic, burst sequence
length d, discriminator D, generator G, observer O and
other hyperparameters

Output: a trained G
1: i← 0
2: while training has not converged do
3: i← i+ 1
4: Sample real data (x1, c1), · · · , (xm, cm) from Pr

5: Sample noise z1, · · · , zm from N (0, 1)
6: Generate fake traces x̃j , `j ← G(zj ||cj)
7: Mask the tail of x̃j by zeroing the last d− `j elements
8: Generate interpolate points x̂j ← 1

2 (xj + x̃j)
9: Update the weights of D to minimize L∗D (Eq. (5))

10: if i mod ncritic = 0 then
11: Pick {(x̃k, ck)}k where D(x̃k||ck) > 0
12: Compute LO ← CrossEntropyLoss({x̃k, ck}k)
13: Update the weights of G to minimize L∗G (Eq. (4))
14: end if
15: end while
16: return G

D. Regulating Packets

We design a regulator R that is responsible for instructing
packet sending for both the client and the server with the help
of the trained generator. We list the necessary parameters for
configuring our regulator R in Table I.

2In a WGAN, the discriminator is also called a critic.

R first learns the distribution of to�o, the time gap between
two outgoing bursts defined in Section III-B. We use Kernel
Density Estimation (KDE), a common method used for proba-
bility estimation, to estimate such a distribution from a dataset.
To defend a trace, R samples a new time gap t∆, sleeps for
min(t∆, ρ), and sends out a burst of data. ρ is a parameter
for our defense that limits the maximum time gap allowed
between two outgoing bursts. When the proxy receives a burst
from the client, it immediately responds with a burst of data.
Therefore, the timing of the whole process is decided by R.

The burst size on each side is based on the output of the
GAN model. On top of that, we introduce two mechanisms to
provide a trade-off between overhead and security as well as
to add more randomness into the defense.

1) Burst Adjustment: When we are about to send a burst
of data bc on the client side, R first consumes two reference
bursts bfakec and bfakes from a sampled reference trace. Then
the size of bc is

|bc| =

max(1,⊥), |brealc | < ⊥,
|brealc |, ⊥ ≤ |brealc | ≤ >,
>, |brealc | > >,

(6)

where
⊥ = b(1− δ) · |bfakec |c,
> = b(1 + δ) · |bfakec |c,

(7)

brealc is the current buffered real data on the client side, and
δ is a parameter in our defense. Equation (7) defines soft
boundaries on how much we can change the burst based on
the sampled reference burst bfakec . If the current burst size is
within the range (⊥,>), then we directly send the real burst
without modification since the current burst size is close to the
fake one. Otherwise, we have to modify the burst (delay or add
packets) to snap the burst size towards one of the boundaries
based on (6). The proxy follows the same method to determine
|bs| according to the buffered real data breals and the reference
burst bfakes .

The Burst Adjustment mechanism provides an intuitive way
to control the amount of information leakage so that our
defense is able to tune between a lightweight setting and a
heavyweight setting.

2) Random Response: The Burst Adjustment mechanism
alone is not sufficient to ensure low data overhead. The
overhead could be high when a very large bfakes is required
by the generated trace while there is no real data in the buffer.
Therefore, we introduce the Random Response mechanism
in which the proxy is allowed to skip sending a burst with
probability q when breals = 0 (i.e., no data in the buffer) at
the time of receiving a client burst. We randomly sample a
new q value from a uniform distribution of range (0,1) for
each page load to add more randomness. Note that we do not
apply Random Response when there are any real packets to
send (breals > 0) because that would cause these packets to be
delayed, and we try to minimize delays.

Random Response provides a way to reduce the data over-
head while limiting information leakage by skipping sending

TABLE II: Search space for hyperparameter tuning and the
final values we choose. Each training process is conducted
over a dataset of 100 × 1000 instances.

Hyperparameter Search Space Final
Epoch num [20...1000] 600
Trace length [500...10000] 1400
Optimizer [Adam, Adamax, RMSProp] RMSProp
Learning Rate [0.0001...0.001] 0.0002
Batch Size [16...256] 64
z dim [50...1000] 500
G layer num [3...5] 4
D layer num [3...5] 4
Dropout [0.2...0.9] 0.2
Activation functions [ReLU, LeakyReLU, ELU] LeakyReLU
α [0.01...1.0] 0.02
ncritic [1...10] 3

in a random manner. We will further discuss the impact of q
in Section V-D.

E. Defense Initialization

There are two things we need to prepare before Surakav is
deployed: a generator G to generate traces and a distribution
to�o to generate time gaps between bursts. In this section, we
show our hyperparameter tuning process for the former and
how we model the time gap distribution for the latter.

1) Hyperparameter Tuning for the GAN: How well the
GAN is trained depends a lot on the hyperparameters. We
perform a search for the hyperparameters by trying out differ-
ent combinations of hyperparameter values. We observe the
change of LG , the estimated Wasserstein distance between
real and fake data, as well as the accuracy of the observer
O. A good-enough set of hyperparameters should make LG
smoothly decrease to near zero.

Dataset. We build our dataset DSgan for GAN training
based on Rimmer’s dataset [20], the largest known WF dataset
collected in 2018. The dataset has 900 classes, each with 2500
instances. We randomly pick 100 classes as our morphing
targets, and for each class, we only use 1000 instances to
reduce the training cost.

Tuning Results. Table II shows the search space and the
final values we choose for the model. The length of both
input and output burst sequences is fixed at 1400 since most
of the burst sequences have a length below this value in
DSgan. The learning rate for our model is fixed at 0.0002.
A small learning rate (e.g., 0.0001) fails to reduce LG (i.e.,
the estimated Wasserstein distance) to less than 0.1 even after
more than 1000 epochs. A large learning rate, on the other
hand, could make the training unstable where the loss curves
for L∗G and L∗D fluctuate wildly over epochs. α helps balance
the weights of the two losses in L∗G . In our case, we should
set α to a relatively small value since we observe that the
magnitude of LG is much smaller than LO. We only apply
dropouts and activation functions to D to avoid overfitting
problems. On the generator side, we find that adding batch
normalization in each hidden layer improves the performance.
ncritic adjusts the update frequency of D relative to that of
G. We find that ncritic = 3 yields the best results. The best

−60

−40

−20

0

20

-60

-40

-20

0

20

0 100 200 300 400 0 100 200 300 400

M
ea

n
B

ur
st

Si
ze

M
ea

n
B

ur
st

Si
ze

Burst Index Burst Index

real
fake

Fig. 5: Visualization of real and fake center traces. We only
show the first 400 outgoing and incoming bursts since the sizes
of the last 300 bursts are all close to 0. Incoming bursts are
represented in negative values.

generator we get can lead to an estimated Wasserstein distance
of 0.016 and a 90% accuracy on the observer; higher accuracy
indicates that the fake traces are convincing.

Visualization. Besides observing a low Wasserstein dis-
tance, we want to confirm that our trained generators are
effective using visualization to show the similarity between
trained and generated traces. To do so, we compare the
center traces of the same webpage for real and fake data.
A center trace is computed by taking the mean of each burst
in the trace over a group of traces. The center trace for this
class should be relatively stable since it reveals the sizes of
objects in the webpage. Using center traces rather than single
traces for visualization better reflects generator quality because
individual traces even of the same webpage can be very
different from each other due to network and page randomness.

We randomly pick four classes (webpages indexing 80, 84,
33, and 81 in our dataset) for illustration. Their center traces
are shown in Figure 5. We use positive values to represent
outgoing bursts and negative values to represent incoming
bursts. We only show the first 400 outgoing and incoming
bursts since the sizes of the last 300 bursts are all close to 0.
As we can see, in each class, the real and fake center traces
are shown to be quite close to each other, indicating that our
generator successfully learns the unique features.

Fitting Other Datasets. To show that our GAN can eas-
ily adapt to mimicking different webpages, we train a new
generator with another widely-used dataset DS95 collected
by Sirinam et al. [5]. The dataset has 95 classes, each with
1000 instances. The large number of instances for each class
guarantees fast convergence for our trace generation task. We
use the same hyperparameters in Table II to train the model.
We find that the model converges after only 253 epochs on
DS95, leading to an estimated Wasserstein distance of 0.023
and a 90% accuracy on the observer. We also investigate the

0

0.2

0.4

0.6

0.8

1

−4 −3 −2 −1 0 1 2

Time Gap (seconds, in log scale)

Fig. 6: Probability Density Function of to�o.

center traces for real and fake data and find that they are all
very close to each other, showing that the generator is well-
trained. We include some examples to show the quality of
generated traces in Appendix B.

2) Time Gap Modeling: In our defense, we let R sample
time gaps (i.e., to�o) from a time gap distribution between
bursts. To correctly capture the characteristics of to�o, we learn
such a distribution from real data. We collect over 25,000,000
time gaps from DSgan and estimate the data distribution using
FFTKDE which is one of the fastest implementations of KDE.
To avoid sampling a negative to�o, we instead model the dis-
tribution of log to�o. Figure 6 shows the distribution we learnt
from DSgan. We observe that log to�o roughly follows a normal
distribution. The mean gap sampled from this distribution is
about 42ms.

V. DEFENSE EVALUATION

In this section, we evaluate Surakav in several aspects.
We first describe the experiment setup and the datasets we
collected. Then we compare Surakav with the state-of-the-
art defenses to show its effectiveness. We also analyze the
overhead required to deploy our defense onto the Tor network.
Lastly, we explore the impact of setting different parameter
values on Surakav.

A. Experiment Setup

We evaluate Surakav using implementation instead of sim-
ulation because implementation is more accurate than simula-
tion in evaluating the effectiveness of a defense. Many of the
mechanisms in Surakav cannot be accurately simulated with
current methods. We compare our defense with two state-of-
the-art defenses of two different categories, Tamaraw [13] and
FRONT [9], using real defended traces.

1) Implementation Overview: We extended WFDef-
Proxy [41], a framework for WF defense evaluation, and im-
plemented Surakav as a pluggable transport (PT). Gong et al.
have already successfully implemented several WF defenses
such as FRONT [9], Tamaraw [13] and Random-WT [10] (a
variation of Walkie-Talkie) in the framework. Each defense
serves as a PT that obfuscates the traffic between the client
and the entry node according to the defense protocol. The
implementation excludes the entry node as a potential WF
attacker; we will discuss this limitation in Section VII.

2) Deployment Details: We rent three servers on Microsoft
Azure to conduct the experiments. One server is used as our
private bridge (i.e., the entry node) on which we deploy the
defenses. On the other two servers, we create in total ten
docker containers acting as ten independent clients to visit
webpages in parallel. They will all connect to our private
bridge as the first node of their circuits. The client servers
and the bridge server are placed at two different areas in the
world; the exact locations are scrubbed for blind review.

The bridge is configured to have 1 CPU core (2.3 GHz) and
2 GB memory. The Tor version running on the bridge is 0.4.4.5
in Debian 9.11. The client servers are configured to have 4
CPU cores (2.3 GHz) and 16 GB memory, running on Ubuntu
18.04.4 LTS, to support multiple client processes. For each
client, we use a customized Tor Browser to visit webpages. It
is based on version 10.0.15 and incorporates three WF defense
PTs. It has an initial user profile to avoid being detected as
a bot by web servers. To visit a webpage, every client will
launch a new instance of this Tor Browser so that no browser
caches are kept. Each trace is collected over a different circuit.
Each visit is given at most a 80 s session to load the page, and
we wait for an extra 5 s on the page after a loading process
finishes and then terminate the browser.

To allow Tor Browser to run on Azure servers, we set the
variable MOZ_HEADLESS to True, so that Tor Browser runs
in headless mode while still rendering the webpage. Since
Azure servers could have unlimited bandwidth and may not
correctly represent a normal Tor user at home, we further limit
the connection bandwidth for each client at 120Mbits, accord-
ing to the global average bandwidth estimated by Speedtest in
July 2021 [42].

3) Dataset: We collected open-world and close-world
datasets. Each open-world dataset contains in total 70,000
instances with 100 monitored sites (each loaded 100 times) and
60,000 non-monitored sites (each loaded once). Each closed-
world dataset only contains 10,000 monitored instances. To
compare between different defenses, we directly evaluate
the defenses with open-world datasets (Section V-B). We
use closed-world datasets instead of open-world datasets for
parameter tuning to reduce the otherwise prohibitive amount
of time to collect datasets (Section V-D) as each parameter
setting requires a new dataset. In total, we had 15 closed-
world datasets and 5 open-world datasets.

We collect data on the Tranco top 1 million [43] sites. The
list was generated on 21st January 2021. Duplicated URLs
directing to the same page or related to website localization
are removed in advance. The first 100 URLs in the list are
the monitored sites. The 60,000 URLs starting from the 201st
are the non-monitored sites. We crawl the monitored sites in
a Round-Robin fashion as prior works do [5], [18], [41]. Data
collection lasted for over two months.

4) Ethical Considerations: Since large-scale data collec-
tion may have some impact on the Tor network, we try to
mitigate the adverse effects on the Tor network. Firstly, the
bridge we run is private, and we do not accept any connections
from real users. Secondly, we only add dummy packets and

TABLE III: Attack results on the implemented defenses in the open-world scenario. Each dataset (100 × 100 + 60,000) is
collected in the live Tor network. All values are in percentages.

Defense Overhead kFP CUMUL DF Tik-Tok
Data Time TPR FPR TPR FPR TPR FPR TPR FPR

None 0 0 73.62 0.18 74.23 3.50 96.24 0.54 96.68 0.70
FRONT [9] 97 0 0.92 0.01 3.78 9.55 43.00 4.66 42.63 3.02
Tamaraw [13] 121 26 0.36 0.03 1.91 8.99 15.21 1.17 12.99 0.53
Surakav-light 55 16 0.85 0.02 11.24 8.79 39.40 5.81 39.68 4.41
Surakav-heavy 81 17 0.01 0 2.74 7.63 8.14 2.70 6.28 1.04

time delays between our own clients and the bridge, so the
other entities in the network remain unaffected. We also limit
the number of clients in parallel (10 in our setting) to minimize
the burden to Tor and the web servers.

We use the command line to directly drive the Tor Browsers,
so none of those visits come from real users. We only keep
the minimal information (i.e., the timestamp and size of each
packet) that is necessary for our experiments.

B. Defense Performance

We first present the performance of four state-of-the-art
attacks in the open-world scenario. For each dataset, we
perform 10-fold cross validation.

1) Defense Configuration: For Tamaraw, we set ρc =
14ms, ρs = 4ms, and L = 100, as suggested by the original
paper [13]. 3 For FRONT [9], we set Nc = Ns = 6000,
Wmin = 1 s, and Wmax = 14 s. We slightly increase the
strength and overhead of FRONT to make a better comparison
with Surakav. For Surakav, we present two different settings,
denoted as Surakav-light (δ = 0.6) and Surakav-heavy (δ =
0.4). The parameter ρ is fixed at 100ms by default.

2) Overhead Metrics: Following the methodology of pre-
vious works [2], [9], [10], [13], we evaluate the overhead
of a defense by data overhead and time overhead. The data
overhead is measured as the total number of dummy packets
divided by the total number of real packets over the whole
dataset. The time overhead is measured as the total extra time
divided by the total loading time in the undefended case over
the whole dataset.

3) Attack Results: Table III shows the results. When there
is no defense applied, two deep learning attacks, DF and
Tik-Tok, achieve over 96% TPR at a low level of FPR (<
0.7%). kFP and CUMUL achieve a 74% TPR. kFP has the
lowest FPR (0.18%) among all the attacks due to its k-Nearest
Neighbor mechanism. The results indicate, as seen in previous
work, that WF attacks are highly effective when no defense is
implemented, even in a large open-world scenario.

FRONT is highly effective against kFP and CUMUL. With
97% data overhead, the TPR of kFP is reduced to less than
1%. The FPR of CUMUL is increased to 10%. However, DF
and Tik-Tok still achieve 43% TPR with an FPR at 3-5%. By
contrast, Surakav-light, with 42% less data overhead and 16%
more time overhead, achieves a slightly better protection rate

3ρc and ρs are adjusted since the payload size is 750 bytes in the original
paper while the payload size in our case is 514 bytes (a Tor cell size).

0

0.2

0.4

0.6

0.8

1

0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

E
C

D
F

Information Leakage (Bit)

Undefended
FRONT

Tamaraw
Surakav-light

Surakav-heavy

Fig. 7: Empirical Cumulative Distribution Function (ECDF) of
top 100 informative features for each dataset. Surakav leaks
the least amount of information.

against the strongest attacks. It reduces the TPR of both DF
and Tik-Tok to 40% and further increases the FPR of both
attacks by 1%.

In the strong defense category, Tamaraw can degrade the
performance of kFP and CUMUL close to random guessing.
DF achieves the highest TPR (15%) at a 1% FPR among all the
attacks. However, Tamaraw also requires the highest overhead
in both data (121%) and time (26%) among all the defenses.
In comparison, Surakav-heavy incurs 40% less data overhead
and 9% less time overhead than Tamaraw, but offers an even
stronger protection rate. The TPR of DF is sharply reduced
from 96% to only 8% with a 3% FPR. The TPR of Tik-Tok
is only 6%. For kFP and CUMUL, they perform as poorly as
against Tamaraw. If we compare Surakav-heavy with FRONT,
they have similar overhead in total. However, the TPRs of the
strongest attacks (DF and Tik-Tok) are both further reduced
by more than 35%.

4) Information Leakage Analysis: We have shown that
Surakav can effectively defend against modern WF attacks. In
this section, we show that Surakav is also the most effective
defense from the perspective of information leakage. We make
use of the WeFDE framework [44] to conduct an information
leakage analysis for each defense. The idea of WeFDE is
to estimate the amount of information learnt from a specific
feature f about a webpage w by computing the mutual
information of w and f . Following their methodology, we
compute the information leakage for all the features used in
the WF literature (in total 3043 features). We exclude all
the redundant features that share the same information with
any other features. Then we pick the top non-redundant 100

TABLE IV: Defense performance against kFP attack under
the one-page setting. Surakav-heavy outperforms all the other
defenses. All values are in percentages.

Defense Overhead TPR FPRData Time
None 0 0 98.29 ± 1.91 1.48 ± 1.63
FRONT [9] 97 0 85.20 ± 6.83 14.41 ± 7.07
Tamaraw [13] 121 26 87.07 ± 5.12 13.24 ± 5.05
Surakav-light 55 16 86.11 ± 7.27 12.88 ± 5.90
Surakav-heavy 81 17 82.77 ± 7.27 19.43 ± 7.35

features that leak the most bits of information. The results are
shown in Figure 7.

As a baseline, the most informative feature leaks 2.85
bits of information on the undefended dataset. Tamaraw and
FRONT leak at most 1.78 bits and 1.83 bits of information.
Surakav leaks the least information, that is, 1.65 bits in the
lightweight setting and 1.59 bits in the heavyweight setting,
respectively. We find that the median leakage for Surakav-
heavy is only 1.09 bits. The median leakage for Surakav-
light and FRONT is both 1.22 bits. Surprisingly, the median
leakage for Tamaraw is the highest among all the defenses
(1.41 bits). This matches our above analysis that Surakav-
heavy is stronger than Tamaraw.

Surakav successfully reduces the information leakage by
sending data at random time gaps so that little information is
leaked by the timings. Most of its information leakage comes
from the burst sizes, which is controlled by δ.

5) One-page Setting Analysis: Wang suggested that de-
fenses should be evaluated under a harder setting where the
attacker only monitors a single webpage [31]. In such a
one-page setting, all the defenses were shown to be more
vulnerable to the kFP attack than expected. To show the
effectiveness of our defense, we conduct the same analysis on
our datasets. For each dataset, we repeatedly label instances
from one monitored page as positive and the rest (including
non-monitored instances) as negative and perform the binary
classification with kFP. Then we compute the mean and the
standard deviation of TPR and FPR over all the webpages (in
total 100 pages). Table IV shows the results.

On the undefended dataset, kFP achieves over 98% TPR
with only 1.5% FPR on average, showing it is highly effective
in identifying single pages. Tamaraw does not outperform
FRONT, even though it incurs much more overhead both
in data and time than FRONT. This is because the padding
mechanism of Tamaraw fails to group negative instances and
positive instances into the same anonymity sets [31]. FRONT
performs slightly better than Surakav-light by further reducing
TPR by 1% and increasing FPR by 1.5%. However, as have
shown before, FRONT incurs 42% more data overhead than
Surakav-light. Surakav-heavy is the most effective defense. At
a similar level of overhead as FRONT, Surakav-heavy further
reduces kFP’s TPR by 15% (98% → 83%) while increasing
kFP’s FPR by 18% (1.5%→ 19.5%).

0

2

4

6

8

10

10 30 50 70 90 110

D
is

tr
ib

ut
io

n
C

os
t

(%
)

Update Frequency (days)

0.64M
1.28M
2.56M
5.12M

Fig. 8: The distribution cost for updating generator param-
eters under different update frequencies. The percentage is
calculated over the current bandwidth consumed by directory
servers. Each line represents a different number of users (in
millions).

C. Training and Distribution Cost Analysis

Since Surakav requires a generator to launch the defense,
besides the data and time overhead incurred during the de-
fense, we also need to consider the training and distribution
cost of the generator. As a reference, it takes 6 hours to train
the GAN on a GeForce RTX 2080 Ti with 100,000 instances.
The training set is around 78 MB. The training process took
on average 39% GPU and 1.9 GB out of 11.6 GB memory.
We tested the CPU and memory usage of trace generation on
a MacBook Pro (Intel i9 2.4 GHz, 2019). We sampled one
million traces from the generator and found that it took 5ms
to generate one trace, using 2.5ms CPU time and 95 KB RAM
on average. This should be affordable for a normal client.

We propose that Tor directory servers help train and dis-
tribute the generator since they are semi-trusted entities in the
Tor network. The clients will retrieve the model parameters
at Tor startup and update the model from time to time. We
estimate the distribution cost as follows.

To reduce the cost of distributing the generator, we
performed model quantization [45], which converts model
weights from floating point values to integers. This reduced the
generator’s size from 23 MB to 3.4 MB. We compared several
generated traces from the quantized model and the original
model by fixing the random seeds and found no difference in
them. According to the statistics from October 2020 to October
2021 [46], the directory servers spent 245 MB/s bandwidth
on average answering queries. We define the distribution cost
as the bandwidth for transferring the generator to the clients,
divided by the average bandwidth consumed by the directory
servers.

As shown in Figure 8, the distribution cost grows with
more clients downloading the generator. It decreases if the
generator gets updated less frequently. For example, Surakav
incurs only 4% distribution cost when there are 2.56 million
users who update G every ten days. This cost is hyperbolically
reduced to 1.3% if they choose to update G every 30 days.
Note that Surakav scales better than Tor itself, as the directory
consensus file will increase in size with a larger network while

TABLE V: Surakav performance with different ρ. We choose
ρ = 100ms for our defense by default (marked in bold font).

ρ (ms) Overhead (%) Attack Accuracy (%)
Data Time DF Tik-Tok

120 65 30 28.74 31.05
100 67 27 28.82 31.15
80 79 23 28.14 29.5
60 92 23 26.80 28.45

0

25

50

75

100

0 0.2 0.4 0.6 0.8 1

0

30

60

90

120

0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y
(%

)

δ

DF
Tik-Tok

O
ve

rh
ea

d
(%

)

δ

Data
Time

Fig. 9: Surakav performance with different δ. With a larger δ,
both the time overhead and data overhead are reduced while
attack accuracy is increased.

the generator will not.

D. Parameter Tuning

We discuss the effect of each parameter in this section. To
reduce data collection time, we use closed-world datasets for
the experiments. We present the attack accuracy of the two
strongest attacks, DF [5] and Tik-Tok [7].

1) Choosing a Suitable ρ: ρ defines the maximum possible
time gap in our defense to avoid sampling an unreasonably
large time gap. We increase ρ from 60ms to 120ms. δ is
fixed at 0.4 and q is randomly sampled from (0,1) for each
load. As shown in Table V, the time overhead is reduced by
only 7% when we decrease ρ from 120ms to 60ms. However,
the data overhead increases by 27%. There is a sharp increase
in data overhead (+25%) when we adjust ρ from 100ms to
60ms. The increase of overhead does not bring much benefit,
though; the accuracy of Tik-Tok only drops by 3% (31% →
28%), and the time overhead is only reduced by 4%. Therefore,
we set ρ = 100ms by default since it achieves the best balance
between overhead and attack accuracy.

2) Varying δ: δ limits the maximum change the regulator
can make on the required burst size based on the real burst size.
The heavy and light settings for Surakav differ only by their
choice of δ (0.4 and 0.6 respectively). We further investigate

TABLE VI: Surakav performance with different q. Our default
setting (Random) is close to the result of setting q at 0.5.

q
Overhead (%) Attack Accuracy (%)
Data Time DF Tik-Tok

0.1 98 28 21.20 22.66
0.3 84 28 29.14 28.24
0.5 73 30 28.80 30.02
0.7 55 29 34.45 36.79
0.9 42 30 52.63 53.26

Random 67 27 28.82 31.15

how other δ values would affect the performance by varying δ
from 0 to 1. Figure 9 shows the results. As before, ρ is fixed
at 100ms and q is random. When δ is reduced from 1 to 0, the
time overhead gradually increases from 20% to 36%. The data
overhead is more sensitive to the change of δ, increasing from
8% to 120%. On the other hand, lowering δ means stricter
control on burst size modification, which increases the fidelity
of the regulator to the generated trace; we see that Surakav
shows a high protection rate when δ < 0.4. The strongest
attack, Tik-Tok, only achieves 13% accuracy against Surakav
when δ = 0.2. By comparison, it still achieves 22% accuracy
against Tamaraw with even a slightly higher overhead (99%
in data and 42% in time) in the same setting.

We can also tune Surakav for a better user experience. When
δ is between 0.6 and 0.8, the accuracy of DF and Tik-Tok is
within 56% to 76%. Accordingly, the data overhead ranges
from 21% to 44%. It is not recommended to choose a δ > 0.8
since it almost allows no modification on burst sizes. As a
result, the attack accuracy for DF and Tik-Tok only drops by
2% when δ = 1.

3) Impact of q: q is the probability of skipping a fake
burst on the proxy side. To figure out how different values for
q could affect the defense, we fix q at different values and
analyze the overhead and attack accuracy. Table VI shows the
results. ρ is fixed at 100ms and δ is fixed at 0.4 for this
experiment. “Random” represents the default setting where
we sample a new q from (0,1) each time we load a new
webpage. The time overhead remains around 28%, while the
data overhead decreases when we increase q from 0.1 to 0.9.
This is because the probability of skipping a fake burst is
increased with a larger q. Accordingly, the accuracy values
of both attacks also increase. We find there is a big jump in
attack accuracy when q > 0.7, so it is not recommended.

The expected value of q is 0.5 when we randomly sample
it from a uniform distribution between 0 and 1. Therefore, the
performance of Surakav when q is random should be close to
that when q is 0.5. This is validated by our results; both cases
yield similar data overhead and attack accuracy. To simplify
the configuration, we choose to set q at random and let only
δ decide how much overhead budget we want to use.

VI. FORTIFYING OTHER DEFENSES

Using a generator, we can obtain realistic traces without
performing large-scale traffic crawling. In this section, we
show that the trace generator not only brings about a new

TABLE VII: Evaluation of GAN-WT in the open-world sce-
nario. It greatly outperforms Random-WT, a variant of Walkie-
Talkie. All values are in percentages.

Defense Overhead DF Tik-Tok
Data Time TPR FPR TPR FPR

None 0 0 96.24 0.54 96.68 0.70
GAN-WT 86 22 38.37 4.12 37.93 2.66
Random-WT∗ 88 23 83.41 2.81 - -
∗The results for Random-WT are taken from [41].

strong defense in Surakav, but also strengthens the existing
ones. We study two defenses, Walkie-Talkie [10] and Traffic-
Sliver [14], their limitations, and how we improve them with
a trace generator.

A. Walkie-Talkie

Walkie-Talkie [10] proposes to mold two traces into a
super-trace so that it yields the same traffic pattern whichever
webpage is visited. Walkie-Talkie requires two parties to talk
in half-duplex mode. Therefore, a defended trace will be a
sequence of large bursts. Walkie-Talkie is able to guarantee a
maximum attack accuracy of 50% for any attack with moderate
overhead (31% data overhead and 34% time overhead on their
dataset). However, this result is built upon two prerequisites
that are hard to meet. Firstly, communicating in half-duplex
mode requires modifications on both the application layer
(to change browser behavior) and the network layer (to add
dummy packets). Cross-layer communication is necessary for
the modified browser to tell Tor when a burst ends. Such
design increases the deployment complexity. Secondly, it as-
sumes the burst sequences of webpages are known in advance.
However, webpages change quickly, and it is very hard to
maintain and update such a database of burst sequences.

We can fix the first problem by enforcing half-duplex mode
on the network layer: we buffer data from the application layer
for at most ttalkie time before releasing the burst onto the
wire and force both parties to take turns to send bursts so that
the defense is fully deployed on the network layer. We set
ttalkie = 500ms in our experiments. For the second problem,
we train a new generator Gwt that can generate burst sequences
that look like real ones collected in half-duplex mode. When
we load a page, we randomly sample a burst sequence from
Gwt and mold the sequence with the real one. This creates a
new version of Walkie-Talkie that is more realistic to deploy,
which we call GAN-WT.

1) Training Gwt: To train a Gwt, we collect a new closed-
world dataset in half-duplex mode that contains 100 monitored
pages (each 500 instances). Since traces collected in half-
duplex mode are shorter than those collected in full-duplex
mode, we reduce trace length from 1400 to 1000 (95% per-
centile for our training set). In addition, we adjust learning rate
to 0.0003, α to 0.1, and the dimension of the noise z to 100
since they yield the best generator. The other hyperparameters
remain unchanged as presented in Table II.

2) Evaluation: To evaluate GAN-WT, we collect another
undefended dataset in half-duplex mode and simulate the

defense on it. The dataset is of the same size (70,000 instances)
as those in Section V. The results are shown in Table VII. With
86% data overhead and 22% time overhead, GAN-WT reduces
the TPR of both DF and Tik-Tok from 97% to 38%. The FPR
of Tik-Tok is increased from 0.7% to 2.7%.

We also include the results for Random-WT for comparison.
Random-WT [10] is a variant of Walkie-Talkie that requires
no prior knowledge on burst sequences. It works by adding
a random number of dummy packets to each burst and
inserting fake bursts randomly. Gong et al. [41] gave the first
implementation evaluation for Random-WT in the open-world
scenario. Since we use the same web list, we directly take their
results for reference. With a similar overhead, Random-WT is
far less effective than GAN-WT. It reduces the TPR of DF
by only 13%, while GAN-WT is able to reduce that by 58%.
However, Surakav is still far more efficient than GAN-WT.
With slightly lower overhead (81% in data and 17% in time),
Surakav is able to reduce the TPR of DF by 88% (96%→ 8%)
(see Table III).

The results indicate that Random-WT wastes a lot of over-
head budget, and the random padding fails to make the original
pattern of bursts less distinguishable. By contrast, GAN-WT
successfully implements the original idea of molding traces
from one class with another class by generating realistic
decoy traces. Although it leads to a higher data overhead
compared with vanilla Walkie-Talkie, GAN-WT bypasses the
two assumptions of Walkie-Talkie and is fully deployable.

B. TrafficSliver

TrafficSliver [14] is designed to defend against malicious
entry nodes. The main idea is to route network traffic onto
several sub-circuits between the client and the middle node
so that any malicious entry node will fail to fingerprint the
client since it only sees part of the trace. 4 To further limit the
information leakage by any sub-trace on a sub-circuit, Traffic-
Sliver uses a “batched weighted random (BWR)” split strategy
that randomly dispatches data onto the sub-circuits in small
batches. TrafficSliver is effective against single malicious entry
nodes and uses little overhead, especially when we open up
as many sub-circuits as possible. However, the protection of
TrafficSliver would be weakened if the attacker controls more
than one entry node along all the sub-circuits [14]. In the worst
case where the attacker controls all the entry nodes, there will
be nearly no accuracy loss in fingerprinting the webpages.
Similarly, TrafficSliver will fail against a local attacker who
is able to see the complete traffic before splitting.

To fix the vulnerability, we can combine Surakav with
TrafficSliver to create a hybrid WF defense, which we call
GAN-TS. GAN-TS utilizes Surakav to obfuscate the traffic
while splitting it with the BWR split strategy. The splitting
itself incurs no data overhead and little time overhead, so the
overhead of GAN-TS is close to that of Surakav.

4There are two versions of TrafficSliver: one works on the application layer
and the other works on the network layer. We only discuss the network-layer
defense since it is shown to be much more effective.

Entry

Middle

Exit

Local network Sub-circuit

<latexit sha1_base64="Wb8p2CjQHjpONME41dSbOIOp46I=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWakqMuqG5cV7APaoWTSTBuayYxJplCGfocbF4q49WPc+Tdm2llo64HA4Zx7uSfHjwXXxnG+UWFtfWNzq7hd2tnd2z8oHx61dJQoypo0EpHq+EQzwSVrGm4E68SKkdAXrO2P7zK/PWFK80g+mmnMvJAMJQ84JcZKXi8kZkSJSG9mfbdfrjhVZw68StycVCBHo1/+6g0imoRMGiqI1l3XiY2XEmU4FWxW6iWaxYSOyZB1LZUkZNpL56Fn+MwqAxxEyj5p8Fz9vZGSUOtp6NvJLKRe9jLxP6+bmODaS7mME8MkXRwKEoFNhLMG8IArRo2YWkKo4jYrpiOiCDW2p5ItwV3+8ippXVTdy2rtoVap3+Z1FOEETuEcXLiCOtxDA5pA4Qme4RXe0AS9oHf0sRgtoHznGP4Aff4AoLqSBA==</latexit>

A1

<latexit sha1_base64="g4JL2YOdnUZ/FO/0H0sNN1FusTs=">AAAB9HicbVBNTwIxFHyLX4hfqEcvjcTEE9klRD2iXjxiIkgCG9ItXWhou2vbJSEbfocXDxrj1R/jzX9jF/ag4CRNJjPv5U0niDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVCbCmnEnaMsxw2okVxSLg9DEY32b+44QqzSL5YKYx9QUeShYygo2V/J7AZkQwT69n/Vq/XHGr7hxolXg5qUCOZr/81RtEJBFUGsKx1l3PjY2fYmUY4XRW6iWaxpiM8ZB2LZVYUO2n89AzdGaVAQojZZ80aK7+3kix0HoqAjuZhdTLXib+53UTE175KZNxYqgki0NhwpGJUNYAGjBFieFTSzBRzGZFZIQVJsb2VLIleMtfXiXtWtW7qNbv65XGTV5HEU7gFM7Bg0towB00oQUEnuAZXuHNmTgvzrvzsRgtOPnOMfyB8/kDoj6SBQ==</latexit>

A2

Fig. 10: Threat model for TrafficSliver. We consider two
different attackers: A1 is an attacker under the same local
network with the victim that can see the complete trace; A2

is a malicious entry node who only sees one of the sub-traces.

TABLE VIII: Performances of GAN-TS with different secu-
rity levels against two attackers in the open-world scenario.
“None” represents original TrafficSliver. All values are in
percentages.

Strength
Attacker A1 Attacker A2

DF Tik-Tok DF Tik-Tok
TPR FPR TPR FPR TPR FPR TPR FPR

None 96.05 0.76 96.37 0.70 11.57 1.39 22.81 1.97
δ = 0.6 26.17 4.37 27.47 3.55 2.97 4.66 5.31 3.17
δ = 0.4 2.28 1.18 1.46 0.27 0.33 1.01 0.65 0.44

1) Evaluation Setup: To evaluate GAN-TS, we consider
two types of attackers in the open-world scenario, as shown in
Figure 10. A1 is a local attacker under the same local network
with the client trying to monitor the client’s activities. Since
A1 is able to see the complete trace before the packets are dis-
patched onto the sub-circuits, he launches the attack following
the conventional methodology. A2 is a single malicious entry
node that is chosen by the client. A2 can only see packets that
come across their own sub-circuit. To increase attack success
rate,A2 will act like a normal client to collect all the sub-traces
over multiple sub-circuits as a training set. Then A2 will use
the trained classifier for WF. The Tor Project has already made
a proposal to split traffic into two sub-circuits [47]. Therefore,
we evaluate TrafficSliver under only two sub-circuits since
this is the most likely case for its deployment. We simulate
the BWR splitting strategy on our collected datasets.

2) Results: Table VIII shows the results in the open-world
scenario. As we can see, when the attacker is A1, DF and
Tik-Tok can still achieve a TPR of over 96% with a 0.7%
FPR. This is not surprising, as the attacker is able to see the
complete trace. The TPR of the attacks quickly drops to around
27% if a lightweight version of Surakav (δ = 0.6) is applied.
The FPR of DF is increased to 4% while that of Tik-Tok is
3.6%. When we incorporate TrafficSliver with Surakav in the
heavyweight setting (δ = 0.4), the performance of GAN-TS
is even better. The attacker’s best TPR is only 2%, which is
close to random guessing.

On the other hand, A2 achieves 12% TPR and 1.4%
FPR with DF. However, Tik-Tok greatly outperforms DF in
this case, doubling the TPR value (12% → 23%) with a
similar FPR (2%). One possible reason for the difference in

performance is that timestamps used by Tik-Tok may be more
informative than the packet sizes in this data-limited attack
scenario. GAN-TS is shown to be rather effective against A2.
When it is in the lightweight setting (i.e., δ = 0.6), the best
TPR of A2 is only 5% using Tik-Tok. When δ is set to 0.4,
the TPR of both attacks is lower than 1%. The split strategy
used by GAN-TS significantly limits the information A2 can
learn from the sub-traces. The use of Surakav further reduces
the time information leaked on each sub-circuit.

To counter an attacker like A2, we only need to use a
lightweight setting to save some overhead. If we want to
defend against any potential attacker between the client and
the middle node, then we can choose to use a heavyweight
setting by decreasing δ.

VII. DISCUSSION AND LIMITATIONS

Simulation or implementation to evaluate a defense?
Simulation allows us to quickly evaluate a defense, while

implementation requires the collection of a new dataset for
every setting, including comparison with other defenses. How-
ever, previous work has shown that simulation can be inaccu-
rate [41]. Assumptions made for simulation can significantly
affect evaluation results. Therefore, we decided to evaluate
fully implemented defenses, including our defense and its
competitors.

Ideally, we should deploy the defenses on the middle node
since the entry could be a potential WF attacker. However, we
have to modify Tor’s source code and change its protocols
to do so. Currently, Tor is not in favor of delaying real
packets due to the potential risk of out-of-memory errors on
relays [48]. Due to this technical limitation, we instead deploy
defenses on the entry node. Using WFDefProxy [41], we
are able to implement most existing defenses as pluggable
transports, leaving Tor unaffected. We believe that placing
Surakav onto the middle node will not worsen Surakav’s
performance compared to what it achieves on the entry node.

In our experiments, we use a private bridge as our
cooperating proxy and let a fixed number of ten clients
connect to it in parallel to speed up the crawling process. In
the real-world scenario, the number of clients connecting to
a Tor relay could vary over time, causing variable amounts
of congestion which affects packet scheduling and thus the
resultant defended traces. Our overhead values should be
considered representative for a low congestion setup and
further work would be needed to investigate other setups.

Trace generation for website fingerprinting defenses.
Trace patterns are commonly used in WF defenses. Walkie-

Talkie [10] and Supersequence [2] assume that trace patterns
are known in advance, while Tamaraw [13] uses a fixed pattern
for all the webpages. In this work, we try to provide a new
solution to obtain flexible trace patterns: synthesizing traces
with a GAN. To the best of our knowledge, we are the
first to use a GAN to generate traces for a WF defense.
There are several benefits for having such a generator. Firstly,
distributing a generator is much cheaper than distributing

traces directly. Secondly, we can generate as many traces as
we want without worrying about creating duplicates.

Surakav chooses to generate a trace of a randomly selected
webpage, no matter which webpage the client is visiting. It
is possible to further reduce the overhead by using a more
sophisticated strategy. For example, we can give the generator
some prior knowledge on the page the client is going to visit
so that it may compute an optimal decoy page and return a
fake trace of that page. The strategy must be well-designed so
that the correlation between the real page and the decoy page
is weak. We leave this as future work.

VIII. CONCLUSION

In this paper, we presented Surakav — a tunable, practical
defense that is effective against the best website fingerprint-
ing attacks. Surakav makes use of a Generative Adversarial
Network (GAN) to generate sending patterns and regulates
buffered data according to the generated patterns. The architec-
ture of the GAN is specially designed for our trace generation
task. We also introduce two mechanisms to dynamically adjust
the sending patterns in real time in order to achieve a balance
between security and overhead. Surakav succeeds by using
random time gaps to send bursts and limiting the burst size
information with randomly-generated trace patterns.

To show the effectiveness of our defense, we implemented
and analyzed our defense on the live Tor network. We com-
pared our defense with the state-of-the-art defenses extensively
under both the multi-page setting and the harder one-page
setting. We showed that Surakav outperformed FRONT against
the strongest attacks with 42% less data overhead. At a
similar overhead as FRONT, the TPR of the strongest attack
was further reduced by 35%. In the strong defense category,
Surakav required 50% less overhead in total than Tamaraw
to defeat all the attacks, showing that it is highly effective
in thwarting website fingerprinting attacks. We also showed
that we can fortify existing defenses with the trace generator;
both Walkie-Talkie and TrafficSliver were strengthened with
the help of trace generators.

AVAILABILITY

We publish our code used in this paper as follows:
• Source code to train the generator can be found at

https://github.com/websitefingerprinting/wfd-gan.
• Source code for the modified WFDefProxy which imple-

ments Surakav and other defenses can be found at
https://github.com/websitefingerprinting/surakav-imp.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th USENIX Security
Symposium. USENIX Association, 2004, pp. 303–320.

[2] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting,” in Proceedings
of the 23rd USENIX Security Symposium. USENIX Association, 2014,
pp. 143–157.

[3] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website fingerprinting at internet scale,” in Proceedings
of the 23rd Annual Network and Distributed System Security Symposium.
The Internet Society, 2016.

[4] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website
fingerprinting technique,” in Proceedings of the 25th USENIX Security
Symposium. USENIX Association, 2016, pp. 1187–1203.

[5] P. Sirinam, M. Imani, M. Juárez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
Proceedings of the 25th ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 1928–1943.

[6] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-CNN: A data-efficient
website fingerprinting attack based on deep learning,” Proceedings on
Privacy Enhancing Technologies, vol. 2019, no. 4, pp. 292–310, 2019.

[7] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara, and
M. Wright, “Tik-Tok: The utility of packet timing in website finger-
printing attacks,” Proceedings on Privacy Enhancing Technologies, vol.
2020, no. 3, pp. 5–24, 2020.

[8] M. Juárez, M. Imani, M. Perry, C. Dı́az, and M. Wright, “Toward an
efficient website fingerprinting defense,” in European Symposium on
Research in Computer Security, vol. 9878. Springer, 2016, pp. 27–46.

[9] J. GONG and T. Wang, “Zero-delay lightweight defenses against website
fingerprinting,” in Proceedings of the 29th USENIX Security Symposium.
USENIX Association, 2020, pp. 717–734.

[10] T. Wang and I. Goldberg, “Walkie-Talkie: An efficient defense against
passive website fingerprinting attacks,” in Proceedings of the 26th
USENIX Security Symposium. USENIX Association, 2017, pp. 1375–
1390.

[11] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
I still see you: Why efficient traffic analysis countermeasures fail,” in
IEEE Symposium on Security and Privacy. IEEE Computer Society,
2012, pp. 332–346.

[12] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A congestion
sensitive website fingerprinting defense,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society. ACM, 2014, pp. 121–
130.

[13] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in Proceedings of the 21st ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 227–238.

[14] W. D. la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter, J. Filter,
T. Engel, K. Wehrle, and A. Panchenko, “TrafficSliver: Fighting website
fingerprinting attacks with traffic splitting,” in Proceedings of the 27th
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2020, pp. 1971–1985.

[15] T. Wang and I. Goldberg, “On realistically attacking tor with website
fingerprinting,” Proceedings on Privacy Enhancing Technologies, vol.
2016, no. 4, pp. 21–36, 2016.

[16] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in onion routing based anonymization networks,” in Proceedings
of the 10th Workshop on Privacy in the Electronic Society. ACM, 2011,
pp. 103–114.

[17] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proceedings of
the 19th ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2012, pp. 605–616.

[18] T. Wang and I. Goldberg, “Improved website fingerprinting on tor,” in
Proceedings of the 12th Workshop on Privacy in the Electronic Society.
ACM, 2013, pp. 201–212.

[19] K. Abe and S. Goto, “Fingerprinting attack on tor anonymity using deep
learning,” Proceedings of the Asia-Pacific Advanced Network, vol. 42,
pp. 15–20, 2016.

[20] V. Rimmer, D. Preuveneers, M. Juárez, T. V. Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” in Proceed-
ings of the 25th Network and Distributed System Security Symposium.
The Internet Society, 2018.

[21] M. Perry. (2011, Oct.) Experimental defense for
website traffic fingerprinting. https://blog.torproject.
org/experimental-defense-website-traffic-fingerprinting.

[22] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and
R. Perdisci, “HTTPOS: Sealing information leaks with browser-side
obfuscation of encrypted flows,” in Proceedings of the 18th Network
and Distributed System Security Symposium. The Internet Society,
2011.

[23] G. Cherubin, J. Hayes, and M. Juárez, “Website fingerprinting defenses
at the application layer,” Proceedings on Privacy Enhancing Technolo-
gies, vol. 2017, no. 2, pp. 186–203, 2017.

[24] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke website
fingerprinting defense,” in Proceedings of the 13th Workshop on Privacy
in the Electronic Society. ACM, 2014, pp. 131–134.

[25] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in Proceedings of the 2nd International Conference on Learning Rep-
resentations, 2014.

[26] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proceedings of the 3rd International Confer-
ence on Learning Representations, 2015.

[27] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2017, pp. 39–57.

[28] M. S. Rahman, M. Imani, N. Mathews, and M. Wright, “Mockingbird:
Defending against deep-learning-based website fingerprinting attacks
with adversarial traces,” IEEE Transactions on Information Forensics
and Security, vol. 16, pp. 1594–1609, 2021.

[29] C. Hou, G. Gou, J. Shi, P. Fu, and G. Xiong, “WF-GAN: Fighting
back against website fingerprinting attack using adversarial learning,” in
Proceedings of the 25th IEEE Symposium on Computers and Commu-
nications. IEEE, 2020, pp. 1–7.

[30] M. Nasr, A. Bahramali, and A. Houmansadr, “Defeating DNN-based
traffic analysis systems in real-time with blind adversarial perturbations,”
in Proceedings of the 30th USENIX Security Symposium. USENIX
Association, 2021, pp. 2705–2722.

[31] T. Wang, “The one-page setting: A higher standard for evaluating web-
site fingerprinting defenses,” in Proceedings of the 28th ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2021,
pp. 2794–2806.

[32] M. Rigaki and S. Garcia, “Bringing a GAN to a knife-fight: Adapting
malware communication to avoid detection,” in Proceedings of the 39th
IEEE Security and Privacy Workshops. IEEE Computer Society, 2018,
pp. 70–75.

[33] J. Li, L. Zhou, H. Li, L. Yan, and H. Zhu, “Dynamic traffic feature
camouflaging via generative adversarial networks,” in Proceedings of
the 7th IEEE Conference on Communications and Network Security.
IEEE, 2019, pp. 268–276.

[34] S. F. Kazerooni and R. Rojas-Cessa, “GAN tunnel: Network traffic
steganography by using GANs to counter internet traffic classifiers,”
IEEE Access, vol. 8, pp. 125 345–125 359, 2020.

[35] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems, 2014, pp. 2672–
2680.

[36] M. Arjovsky and L. Bottou, “Towards principled methods for training
generative adversarial networks,” in Proceedings of the 5th International
Conference on Learning Representations, 2017.

[37] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proceedings of the 34th International Conference
on Machine Learning, vol. 70. PMLR, 2017, pp. 214–223.

[38] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein GANs,” in Advances in Neural
Information Processing Systems, 2017, pp. 5767–5777.

[39] J. Wu, Z. Huang, J. Thoma, D. Acharya, and L. V. Gool, “Wasserstein
divergence for GANs,” in Proceedings of the 15th European Conference
on Computer Vision, vol. 11209. Springer, 2018, pp. 673–688.

[40] M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” CoRR, vol. abs/1411.1784, 2014. [Online]. Available: https:
//arxiv.org/abs/1411.1784

[41] J. Gong, W. Zhang, C. Zhang, and T. Wang, “Wfdefproxy: Modularly
implementing and empirically evaluating website fingerprinting
defenses,” CoRR, vol. abs/2111.12629, 2021. [Online]. Available:
https://arxiv.org/abs/2111.12629

[42] Speedtest Intelligence. (2021, Jul.) Speedtest global index. https://www.
speedtest.net/global-index.

[43] V. L. Pochat, T. V. Goethem, S. Tajalizadehkhoob, M. Korczyński, and
W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” in Proceedings of the 26th Annual Network and
Distributed System Security Symposium. The Internet Society, 2019.

[44] S. Li, H. Guo, and N. Hopper, “Measuring information leakage in
website fingerprinting attacks and defenses,” in Proceedings of the 25th
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2018, pp. 1977–1992.

[45] Pytorch. (2021, Nov.) Quantization recipe. https://pytorch.org/tutorials/
recipes/quantization.html.

[46] The Tor Project. (2021, Oct.) Tor metrics. https://metrics.torproject.org/
dirbytes.html.

[47] D. Goulet and M. Perry. (2020, Nov.) Overcoming Tor’s bottlenecks
with traffic splitting. https://gitlab.torproject.org/mikeperry/torspec/-/
blob/ticket40202 01/proposals/329-traffic-splitting.txt.

[48] N. Mathewson, M. Perry, and D. Goulet. (2019, Dec.) Circuit
padding developer documentation. https://github.com/torproject/tor/blob/
main/doc/HACKING/CircuitPaddingDevelopment.md.

APPENDIX A
DESIGN DETAILS FOR OUR GAN

In this section, we present the detailed design for the
generator and the discriminator in our generative adversarial
network.

Generator. The generator is a Multilayer Perception (MLP)
that takes in the random noise and the label of the webpage we
want to generate. It outputs a fake burst sequence together with
`, the real trace length used for truncating the output trace.
It has four blocks, as shown in Figure 11a. The first block
consists of a fully-connected layer and an activation function
to transform the input into a hidden space whose dimension is
512. The activation function we use for the generator is ReLU
function since it yields the best results in our parameter tuning
process. The second and the third block consist of a fully-
connected layer, a batch normalization layer, and an activation
function. The dimension of the feature vector doubles each
time it is fed into a block. After the third block, the dimension
of the feature is 2048. The last block transforms the feature
vector into the final output with a fully-connected layer. To
ensure the final output values are within the range of (0,1),
we use a Sigmoid function as the activation function.

Discriminator. The discriminator is an MLP that takes in
a trace together with its label and outputs one single value as
the logit of its confidence that the input trace is real. It has
four blocks, as shown in Figure 11b. The first three blocks all
consist of three layers: a fully-connected layer, an activation
function layer, and a dropout layer to avoid the overfitting
problem. Each block halves the dimension of the feature vector
except the first block which transforms the input of size 1500
into a feature vector of size 2048. The activation function we
use for each block is LeakyReLU, which outperforms ReLU
in our experiments. After the fourth block, we get a single
value that is the logit of predicting the input as a real trace.
Note that WGANs are different from vanilla GANs here since
they directly use this value to compute the discriminator loss
without adding another Sigmoid layer.

APPENDIX B
TRACE VISUALIZATION

In this section, we visualize the generated traces from G
trained on Sirinam’s dataset DS95. We randomly sample four
classes (webpages indexing 80, 84, 33, and 81 in the dataset)
and plot the center traces for real and fake data as described
in Section IV-E. As shown in Figure 12, the center traces for
each class are close to each other, showing that our generator
learns the patterns of these webpages well.

+

FC

BN

FC
Sigmoid

Trace+
<latexit sha1_base64="4dO+dl+Mtar58ds6JIJ/ot8nSuA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpf6KMSgWnPr7hxklXgFqUGB5qD61R9GLJGoLBPUmJ7nxtZPqbacCZxV+onBmLIJHWEvo4pKNH46v3VGzjJlSMJIZ6Usmau/J1IqjZnKIOuU1I7NspeL/3m9xIY3fspVnFhUbLEoTASxEckfJ0OukVkxzQhlmme3EjammjKbxVPJQvCWX14l7Yu6d1W/fLisNW6LOMpwAqdwDh5cQwPuoQktYDCGZ3iFN0c6L86787FoLTnFzDH8gfP5AxBUjkQ=</latexit>

`

<latexit sha1_base64="VcduhImtG31xtIwCRH/3qEwy95Y=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOwvjQc=</latexit>z<latexit sha1_base64="89J+JuC5FxMnvUsR7pwslvrJLdI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyVOM8A==</latexit>c Input dim: 100 + 500

In_features: 600
Out_features: 512

FC In_features: 512
Out_features: 1024

In_features: 2048
Out_features: 1+1400

Output dim: 1+1400

Activation ReLU

Activation ReLU

BN
FC In_features: 1024

Out_features: 2048
Activation ReLU

Input

Block 1

Block 2

Block 3

Block 4

Output

(a) Generator

Trace+<latexit sha1_base64="89J+JuC5FxMnvUsR7pwslvrJLdI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyVOM8A==</latexit>c
Input

Input dim: 100 + 1400

FC In_features: 1500
Out_features: 2048

Activation

Block 1

Dropout
LeakyReLU: = 0.2 <latexit sha1_base64="yPjr8iSHp9qyMPzymHFbkHBrKcI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUCbbTbt0swm7G6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmd7nfeWJK81g+mmnC/AhHkoecorFSp48iGWNlUK25dXcOskq8gtSgQHNQ/eoPY5pGTBoqUOue5ybGz1AZTgWbVfqpZgnSCY5Yz1KJEdN+Nj93Rs6sMiRhrGxJQ+bq74kMI62nUWA7IzRjvezl4n9eLzXhjZ9xmaSGSbpYFKaCmJjkv5MhV4waMbUEqeL2VkLHqJAam1Aegrf88ippX9S9q/rlw2WtcVvEUYYTOIVz8OAaGnAPTWgBhQk8wyu8OYnz4rw7H4vWklPMHMMfOJ8/xOePNQ==</latexit>↵
Rate = 0.2

FC In_features: 2048
Out_features: 1024

Activation

Block 2

Dropout
LeakyReLU: = 0.2 <latexit sha1_base64="yPjr8iSHp9qyMPzymHFbkHBrKcI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUCbbTbt0swm7G6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmd7nfeWJK81g+mmnC/AhHkoecorFSp48iGWNlUK25dXcOskq8gtSgQHNQ/eoPY5pGTBoqUOue5ybGz1AZTgWbVfqpZgnSCY5Yz1KJEdN+Nj93Rs6sMiRhrGxJQ+bq74kMI62nUWA7IzRjvezl4n9eLzXhjZ9xmaSGSbpYFKaCmJjkv5MhV4waMbUEqeL2VkLHqJAam1Aegrf88ippX9S9q/rlw2WtcVvEUYYTOIVz8OAaGnAPTWgBhQk8wyu8OYnz4rw7H4vWklPMHMMfOJ8/xOePNQ==</latexit>↵
Rate = 0.2

FC In_features: 1024
Out_features: 512

Activation

Block 3

Dropout
LeakyReLU: = 0.2 <latexit sha1_base64="yPjr8iSHp9qyMPzymHFbkHBrKcI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUCbbTbt0swm7G6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmd7nfeWJK81g+mmnC/AhHkoecorFSp48iGWNlUK25dXcOskq8gtSgQHNQ/eoPY5pGTBoqUOue5ybGz1AZTgWbVfqpZgnSCY5Yz1KJEdN+Nj93Rs6sMiRhrGxJQ+bq74kMI62nUWA7IzRjvezl4n9eLzXhjZ9xmaSGSbpYFKaCmJjkv5MhV4waMbUEqeL2VkLHqJAam1Aegrf88ippX9S9q/rlw2WtcVvEUYYTOIVz8OAaGnAPTWgBhQk8wyu8OYnz4rw7H4vWklPMHMMfOJ8/xOePNQ==</latexit>↵
Rate = 0.2

FC In_features: 512
Out_features: 1

Block 4

Logit Output dim: 1
Output

(b) Discriminator

Fig. 11: The architecture of our generator and discriminator. (FC: fully-connected layer, BN: batch normalization, c: class
label, `: trace length, z:sampled noise vector.)

−30

−20

−10

0

10

-30

-20

-10

0

10

0 100 200 300 400 0 100 200 300 400

M
ea

n
B

ur
st

Si
ze

M
ea

n
B

ur
st

Si
ze

Burst Index Burst Index

real
fake

Fig. 12: Visualization of real and fake center traces. We only
show the first 400 outgoing and incoming bursts since the sizes
of the last 300 bursts are all close to 0. Incoming bursts are
represented in negative values.

