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ABSTRACT
In this paper, we propose new website fingerprinting techniques
that achieve a higher classification accuracy on Tor than previous
works. We describe our novel methodology for gathering data on
Tor; this methodology is essential for accurate classifier compari-
son and analysis. We offer new ways to interpret the data by using
the more fundamental Tor cells as a unit of data rather than TCP/IP
packets. We demonstrate an experimental method to remove Tor
SENDMEs, which are control cells that provide no useful data, in
order to improve accuracy. We also propose a new set of metrics
to describe the similarity between two traffic instances; they are
derived from observations on how a site is loaded. Using our new
metrics we achieve a higher success rate than previous authors. We
conduct a thorough analysis and comparison between our new al-
gorithms and the previous best algorithm. To identify the potential
power of website fingerprinting on Tor, we perform open-world ex-
periments; we achieve a recall rate over 95% and a false positive
rate under 0.2% for several potentially monitored sites, which far
exceeds previous reported recall rates. In the closed-world experi-
ments, our accuracy is 91%, as compared to 86–87% from the best
previous classifier on the same data.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Security
and protection; K.4.1 [Computers and Society]: Public Policy
Issues—Privacy

General Terms
Measurement, Security

Keywords
Website fingerprinting; Tor; anonymity

1. INTRODUCTION
When browsing the web, clients inadvertently reveal their desti-

nation websites to a number of routers along the way. These routers
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may passively observe and collect information on client behaviour
(such as an ISP who may wish to sell this data to marketers), and
they may aggressively attack the client’s communication by mon-
itoring specific sites or certain types of behaviour [3]. Anony-
mous communication networks can protect the client from such
threats by preserving the client’s privacy. Tor is a popular anony-
mous communication network used by around 500,000 people per
day [15]. To disassociate the client’s identity from her destination,
Tor routes her communication through a number of volunteer re-
lays using multiple layers of encryption. The client’s identity and
her destination will not both be revealed to any single relay. How-
ever, an attacker can still attempt to compromise a web-browsing
client’s privacy by observing patterns in her sequence of packets,
even assuming that the encryption leaks no extra information, us-
ing a technique known as website fingerprinting. A site may prove
to be uniquely identifiable from the order, direction, and size of the
packets used to load the site, allowing a client-side observer to iden-
tify a Tor web client’s destination server, thus violating the privacy
one might expect from Tor. The objective of this paper is to demon-
strate that these techniques may be more powerful against Tor than
previously thought. Our strong open-world experimental results
demonstrate that an attacker can potentially monitor accesses to a
specific site in Tor with very high accuracy.

To attack a Tor-using client, the attacker gathers traffic infor-
mation about sites the client might visit by accessing these sites
over Tor and recording the resulting packet sequences. We call the
traffic record corresponding to a single visit to each site a “traffic
instance”. The attacker then taps the encrypted connection of the
client and compares the client’s traffic instance with the attacker’s
recorded traffic instances. In this paper, we focus on distance-
based metrics the attacker can use to compare traffic instances.
A distance-based metric is a function, which, given two traffic in-
stances, produces a value that describes how similar those two in-
stances are. This measure of similarity can be used in Support Vec-
tor Machines (SVMs) to classify traffic instances into classes corre-
sponding to the site from which they were collected [2,12]. We fo-
cus on distance-based metrics because in previous works, distance-
based metrics offered better results than non-distance-based met-
rics [5]; we compare previous results using these two types of met-
rics in Section 2.

Tor has proven to be relatively resilient to website fingerprint-
ing [7] as compared to other privacy technologies such as IPsec and
SSH tunnels. The following factors contribute to Tor’s defenses.
First, Tor transfers data in units of 512 bytes, called cells, and Tor
always pads all data transfers up to a cell boundary. This covers
up identifiable packet lengths that are often unique to a given web-
site [8]. Second, Tor clients transfer information on randomly cho-
sen, short-lived circuits of three relays. Clients using different cir-
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cuits may experience significantly different performance, in terms
of latency, congestion, and bandwidth capacity [15]. These factors
induce different sequences of packets for the same site, lowering
fingerprinting accuracy. Third, Tor performs a number of back-
ground activities, such as circuit construction, circuit speed testing,
flow control using SENDME packets, and so on. These activities
may pollute the data if not filtered out. Finally, Tor uses pipelin-
ing and order randomization to add variance to the network traffic
from a site. We give an overview of Tor, focusing on the aspects
that impact website fingerprinting, in Section 3.

Our contributions
Improved data gathering. We describe how we collect our data

in a much more thorough manner than previous works. We
take precautions to collect the data in the same way a real-
istic attacker would. We collect a new set of data that offers
a fair comparison for classifier analysis. We describe how
we modify the Tor Browser specifically to ensure that our
data set is analyzed fairly and accurately in Section 4.1. Our
methodology and modifications are novel and we argue that
they are essential to website fingerprinting analysis.

New data processing. We make the key observation that we can
exploit knowledge of Tor’s inner workings in order to ana-
lyze its traffic more accurately than previous works. Instead
of using TCP/IP packets, which are merely capsules used to
transport Tor cells, we parse the packet data to obtain the un-
derlying Tor cells. We are able to achieve better accuracy by
using Tor cell sequences instead of TCP/IP packet sequences
to train a classifier. We also attempt to identify the SENDME
cells in Tor, which provide no extra information, and remove
them to decrease noise. This is described in Section 4.2.

New website fingerprinting metrics. We achieve better accuracy
with metrics that incorporate important observations on web-
site fingerprinting. The observations include: dynamic con-
tent such as advertisements may cause a variation in incom-
ing packets but not outgoing packets, and dynamic content
is often loaded last in a website. We propose a new met-
ric that reduces error rate significantly and another metric
that reduces training time by several orders of magnitude;
we present them in Section 5.

We conduct a series of open-world and closed-world experiments
to validate our claims that these techniques achieve better accuracy,
and they are presented in Section 6. We discuss our results in Sec-
tion 7, and we conclude in Section 8.

2. RELATED WORK
A number of attacks have been proposed for website fingerprint-

ing. An attack generally consists of a way to process each training
traffic instance to extract useful information, followed by a classi-
fication mechanism to identify a testing traffic instance. We outline
related work on website fingerprinting attacks below. For our pur-
poses, they can be divided into two classes: non-distance-based
methods, and distance-based methods.

Defenses.
We briefly note that while many interesting defenses have been

suggested to counter these attacks [12, 19], they are not imple-
mented in Tor because of the additional network load [13], which
is a bottleneck in Tor [14]. Previous work has indeed shown that
a number of known website fingerprinting defense techniques are
either ineffective or inefficient [5].

2.1 Non-distance-based methods
In 2005, Liberatore and Levine [8] published two methods for

“inferring the source of encrypted HTTP connections”. The au-
thors used the lengths of incoming and outgoing TCP/IP packets
and discarded the order. Testing instances were classified with a
Naïve Bayes classifier, based on packet lengths. The probability of
an observed traffic instance belonging to a given class (representing
one site) is computed from the product of the probabilities of the
observed packet lengths occurring at their observed frequencies.
The probability of a packet length occurring at a given frequency
for a specific class is computed from a normal distribution deter-
mined by each training instance in that class. This method was
shown to be quite effective on plain encryption (a client using a
simple SSH tunnel, for example). Liberatore and Levine did not
report the accuracy of their classifier on Tor.

Herrmann et al. [7] in 2009 described an improved method that
gave a higher accuracy than Liberatore and Levine under compa-
rable conditions. They described their method as an application
of known text mining techniques to website fingerprinting. The
classifier they used for training was the Multinomial Naïve Bayes
classifier. As before, the order of packets was discarded, and only
lengths and frequencies were used. The Multinomial Naïve Bayes
classifier does not learn a normal distribution over possible frequen-
cies of certain packet lengths. Instead, this frequency is used as an
exponent to the relevant probability value. They applied a set of
well-known text mining transformations to optimize their classi-
fier. Herrmann et al. demonstrated that their algorithm achieves a
higher success rate than Liberatore and Levine’s algorithm on sim-
ple encryption. However, they also showed that its accuracy on Tor
is only 3%. This indicates that website fingerprinting on Tor poses
a greater challenge than plain encryption.

2.2 Distance-based methods
Besides the Naïve Bayes classifier, Liberatore and Levine also

proposed using the Jaccard coefficient for classification [8]. For
two sets of packet lengths, the Jaccard coefficient is a ratio of the
size of their intersection to the size of their union. This coefficient
was shown to be less effective than the Naïve Bayes classifier; it
only considers packet lengths and does not consider the frequency
in which they appear.

In 2011, Panchenko et al. [12] used a Support Vector Machine
(SVM) to perform website fingerprinting specifically on onion rout-
ing anonymity networks (such as Tor) using a variety of features.
Features of two traffic instances induce a distance between them,
based on how different those features are, which is used to de-
cide whether or not these instances belong to the same site. These
features include the total size of all packets in each direction, the
size of the HTML document, the total number of transmitted bytes,
markers for indicating direction changes in packet order, the per-
centage of incoming bytes, and more. Order is used in classifica-
tion, unlike the non-distance-based methods described above. The
authors performed separate open-world and closed-world experi-
ments. In the open-world experiments, the attacker gathered a num-
ber of traffic instances of 5 specific monitored sites and 1 instance
each from a large set of 4000 non-monitored sites; the simulated
client could choose a monitored site or one from another set of
1000 non-monitored sites. In the closed-world experiments, the at-
tacker gathered a number of traffic instances from a limited set of
sites and the client was only allowed to choose among those sites.
They achieved a recall of 73% with a false positive rate of 0.05% in
the open-world model and an accuracy of 54% in the closed-world
model for Alexa’s top-ranked pages.
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In 2012, Cai et al. [2] proposed using a different metric to achieve
better results than Panchenko et al. They used the optimal string
alignment distance, which is described in more detail in Section 5.2.
They were able to achieve a higher accuracy of 87.3% in the closed-
world model, although there are no open-world results. We supple-
ment open-world results in this paper for our metrics and theirs.
They also described how they can use Hidden Markov Models to
classify web sites instead of web pages.1

3. TOR
In this section, we briefly describe Tor, focusing on aspects which

are relevant to website fingerprinting.
Tor is a popular anonymity network, currently used by around

500,000 daily clients and carrying 2500 MB of data per second [15].
Tor consists of around 4000 volunteer relays, which are routers that
volunteer to relay information for Tor clients. Clients build circuits,
consisting of three relays, to communicate with destination web-
sites. Tor uses TLS to communicate between relays. Each connec-
tion to a destination server is represented as a stream in Tor, which
is multiplexed in Tor’s circuits. We give more details on circuits
and streams in Section 3.1.

Tor seeks to protect clients’ anonymity. If website fingerprint-
ing is accurate, however, then Tor cannot protect client anonymity
against an attacker who is able to monitor the connection between
the client and the first relay of the Tor circuit (called the entry
guard). Furthermore, as Tor relays are operated by volunteers with
no presumption of trust, they may act as attackers as well. Tor has
implemented a pipelining and order randomization defense to pro-
tect itself against website fingerprinting; more details are given in
Section 3.2.

3.1 Circuits and Streams
When using Tor, a client picks three relays: the entry guard,

the middle relay, and the exit relay. The client constructs a cir-
cuit through these three relays, and uses that circuit for about ten
minutes before switching to a new circuit. To limit the rate of
deanonymization, each client keeps a list of three entry guards it
will use for 30–60 days, while the middle and exit relays are cho-
sen randomly for each circuit, weighted chiefly by bandwidth for
load balancing. As relay bandwidth ranges over more than three or-
ders of magnitude, the random selection of relays causes variance
in Tor’s performance, which impacts our attacker’s data collection.
We deal with this problem in detail in Section 4.1.

Once a circuit has opened, the client communicates through the
circuit using a number of streams. Each stream corresponds to a
separate TCP connection at the exit relay, and streams are mul-
tiplexed in a circuit. A client may open many streams to load a
single site.

Tor uses a number of control cells to communicate commands
among relays and the Tor client. These control cells may include
circuit construction and closing cells, stream open and closing cells,
flow control cells and cells used to transmit network information.
Tor uses the SENDME control cell to perform flow control [4]. A
circuit-level SENDME cell is sent every 100 cells per circuit, and a
stream-level SENDME cell is sent every 50 cells per stream. While
the attacker is collecting data for website fingerprinting, those cells
will be included in the traffic instance. If the attacker can identify
them under the encryption, SENDME cells should be removed as

1We do not attempt to re-engage the problem of classifying web
sites instead of web pages, and in this work, our use of the words
“site” and “website” refer to a single web page.

they provide no extra information, just as ACK packets should be
removed from captures at the TCP/IP level.

3.2 Defenses
In response to the first successful website fingerprinting attack

on Tor by Panchenko et al. [12], Tor developers have implemented
an experimental defense against website fingerprinting [13]. This
defense has three components: HTTP pipelining is enabled so that
multiple requests can be made on a single stream without having
to wait for each to finish; the pipeline size is randomized; and the
order of requests is randomized. This defense does not significantly
impact the total size of the transmission. The Tor developers did not
test the effectiveness of this defense, and no additional defenses
have been implemented yet. Cai et al. showed that the defense
is ineffective [2] against both their strategy and that proposed by
Panchenko et al. We analyze this defense on our metrics as well.

4. DATA COLLECTION AND PROCESSING

4.1 Collecting Data
Previous website fingerprinting works generally did not go into

detail on the problem of data collection on Tor. Tor is a live net-
work with ever-changing performance, and different clients may
have entirely different experiences. Precautions need to be taken
in order to ensure that data is collected the same way a realistic at-
tacker would. With our new methodology, we collect a set of data
for our experiments. In this section we specify exactly how we col-
lect the data while addressing issues in circuit construction, timing,
and website localization. We will later compare different website
fingerprinting techniques using this data set.

4.1.1 Circuit Construction
Tor relays have a wide range of bandwidths. As of July 2013,

the top 1% of relays comprised 29% of the total bandwidth of Tor
and the top 20% of relays comprised 93% of the bandwidth. Band-
width and congestion will affect the sequence of packets received
by the client, so that traffic instances collected using the same cir-
cuit are more similar than those collected using different circuits.
We assume that the attacker can observe the client’s network traffic,
but cannot control or observe which Tor circuits the client is using
(this is a basic assumption necessary for the privacy guarantees of
Tor [4]). We must naturally ensure that we never use the same cir-
cuit for both training and testing in our experiments, as that would
give an unrealistic advantage to the attacker.

By default, Tor can only use a circuit for up to ten minutes, af-
ter which Tor will not launch new connections on the circuit. If
this setting is maintained, and if sites are visited in sequence, then
instances of the same site are more likely to be accessed with the
same circuit, while instances of different sites are more likely to be
accessed with different circuits. The inherent difference of circuits
imposes a difference upon the traffic instances of different sites,
which could help the machine learning algorithm separate them,
giving the attacker an unrealistic advantage. We should therefore
control circuit construction manually rather than allowing Tor to
close its circuits every ten minutes. (For the above reasons, dis-
abling automatic circuit closing increases the difficulty of finger-
printing.)

4.1.2 Timing
A site’s content may change over time. A news site, for exam-

ple, would not have the same content every day; it may have differ-
ent images and different text, and perhaps even a different number
of resources. We find that, in our metrics, processing the data to
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train the classifier could take more than two hundred CPU hours,
whereas news sites could be updated every few minutes. Therefore,
we cannot expect the attacker to keep up with ever-changing con-
tent. The attacker and client should train on sites that are loaded at
least several hours apart.

4.1.3 Localization
Depending on the location of the exit relay, a site could present

entirely different data. This is known as website localization and it
is especially prevalent among popular sites, such as google.com
and yahoo.com. Roughly speaking, there are two types of web-
site localization that are of concern to us. The first type is redi-
rection: a Canadian client attempting to access google.com will
be redirected to google.ca by Google—the site that the client
is actually accessing is different depending on locality. The sec-
ond type involves content changes: a German advertisement may
be shown to a person connecting from Germany or a Tor client ex-
iting from Germany, but it is unlikely for other clients to see the
German advertisement. This does not involve redirection. When
Tor is used, the locality of the client is determined by the location
of the exit relay, and is thus dependent on what circuit the client is
using. Tor does not attempt to choose the exit relay based on the
client’s location (to protect the client’s privacy).

4.1.4 Our Methodology
We use a Tor controller [10] to gain full control over circuit

construction. Our circuits are built according to Tor’s algorithm,
which chooses relays with a probability depending on their ob-
served bandwidths. While clients can change this algorithm, it is
not easy or encouraged to do so and thus we assume the client uses
Tor with no modifications.

Our main data set consists of 40 traffic instances for each of 100
sites (other data sets we use for specific experiments are detailed
in Section 6). To deal with circuit and timing issues, we collect
our traffic instances in batches. Each batch consists of 4 traffic in-
stances; they are each collected a few hours apart using different
circuits. We later perform 10-fold cross validation, so that training
instances are never collected from the same circuit used to collect
the testing instances. We maximize Tor’s permissiveness for circuit
dirtiness (so Tor can keep using the same circuit), and we use each
circuit as long as possible. As different circuits are used for train-
ing and testing, it is more difficult for the attacker to use timing
information to attack the client.

The data set we use is based on Alexa’s top sites,2 modified
to avoid localization redirection, in order to ensure that traffic in-
stances from the same site were consistent. We use Alexa’s top
sites to ensure comparability with previous results. We modified
the top sites list in two steps. First, if a single site occurred many
times under different localization instances in the list, we removed
all repeated occurrences of it. In particular, different localizations
of google.com occurred many times in the top 100 sites list, and
all had similar traffic patterns. A classifier would not be expected to
distinguish them, and a censor who may wish to monitor Google’s
search engine as a whole would not need to separate two different
localizations of the site in any event. Second, whenever possible,
we attempted to specify the localization version of a site we wanted
to visit. That is to say, we did not attempt to visit yahoo.com; in-
stead, we attempted to visit yahoo.de. This avoided localization
redirection from various sites. Modification of the top sites list was
done manually.3 Our data was collected batch-by-batch, with each
2http://www.alexa.com/topsites
3We also removed tumblr.com from the list as it was unusually
large (around 10 MB). This site impacted our processing time and

batch corresponding to one circuit (one client); each batch took
around 4 hours and was separated from each other by around 4–12
hours. This helps ensure that our data set has a suitable granularity,
as the attacker’s training and the client’s accesses are separated by
more than 4–12 hours. Therefore, the attacker may not have up-to-
date versions of the pages visited by the client, which is realistic
for the setting of our attack.

We checked the size of all traffic instances. If the size of the
traffic instance was less than 20% of the median size for that site,
it was removed. These traffic instances are regarded as failed in-
stances, which may be a failed connection to the server or a server-
originated message that denied access to the client.

We disabled browser caching as Tor Firefox, by default, does
not allow caching to disk, so the browser cache is cleared every
time Tor Firefox is restarted. This simulates an attack on instances
collected from different users and different browser sessions. Cai
et al. [2] conducted an analysis of various website fingerprinting
techniques under warm and cold caches and found that they work
well under both situations. We did not attempt to control dynamic
content changes based on client locality, such as advertisements.
Furthermore, server-side caching of client settings may affect the
content for clients using exit relays that have accessed those sites.
We could limit the locality of the exit relays, but this would limit
our selection of circuits. Our choices mean our results should more
accurately reflect live conditions, where an attacker cannot account
for such differences in content.

4.2 Processing Data
Once the attacker collects the traffic data (either the training or

testing data), some processing may be done before using it to clas-
sify the site. After processing, each traffic instance is represented
as a sequence of positive and negative integers. We describe three
ways to process the data before using it as input to the SVM.

4.2.1 TCP/IP packet instances
A TCP/IP packet header contains the length of the given packet,

which was used by previous authors [2,12] to represent the packet.
This length often ranges from 0 (just an ACK) to 1448 for ether-
net. Previous authors discarded ACK packets as they provide no
useful information, and removing them increased classification ac-
curacy. TCP/IP does not attempt to pad packets when there is not
enough data, but it attempts to send packets of the maximum seg-
ment size (MSS), which is 1448 for Ethernet. Packet lengths are
viewed as a sequence of integers in order. Outgoing packets are
represented as positive integers while incoming packets are repre-
sented as negative integers. Cai et al. also rounded the packet sizes
up by increments of 600. For example, one GET request would
be classified as 600, a SENDME and a GET request sent together
would be 1200, and MSS packets on Ethernet would be 1800 (in-
coming packets are often MSS packets). This strategy offers a dis-
tinction between these types of packets. This is similar to a strategy
used by Panchenko et al. They round the total size of all packets in
a traffic instance by increments of 600 and use it as a feature. We
compare this data processing method to our new ones below.

4.2.2 Tor cell instances
We experiment with extracting Tor cells directly. The Tor cell is

a more consistent and basic unit than TCP/IP packets. For instance,
TCP/IP packet retransmissions would produce duplicate entries in
traffic instances processed as above, but not when we reconstruct
the TCP streams, parse the TLS layer, and extract the cell counts.

does not impact our classifier comparison, as it was very easy to
identify from its size alone.
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Figure 1: ROC to evaluate True Positive Rate and False Positive
Rate with our experimental SENDME removal methodology

As the choice of circuits affects timing, we should remove timing-
dependent factors from our data. Tor cells cannot be broken down
or combined together by relays or routers in the middle, unlike
TCP/IP packets. Tor cells are always padded to a constant size,
while the sizes of TCP/IP packets vary based on the connection.

Tor encrypts its data in Transport Layer Security (TLS) records,
which always contain a number of complete Tor cells. TLS is de-
signed to encrypt information on the socket layer to prevent eaves-
dropping, message forgery, or tampering on the internet. As such,
it operates independently of TCP/IP, and thus a TLS record could
be contained in parts of one or several TCP/IP packets. There are
three types of TLS records: data records, handshake records and
alerts. TLS data records begin with one byte for type (17 for ap-
plication data), followed by two bytes of the version (0301, TLS
version 1, is used by Tor), followed by two bytes representing the
length. We ignore TLS handshakes and alerts.

Parsing TCP/IP data allows the attacker to reconstruct full TLS
records with their lengths. We are able to reconstruct these records
while discarding retransmitted TCP/IP packets. We denote each
size as positive if it is outgoing and negative if it is incoming. We
round these record lengths down, to the closest multiple of 512,
and then divide by 512. Each TLS record may contain a number
of complete Tor cells (or none), and this method will produce the
number of Tor cells in the record. The rounding accounts for the
extra data in the record, such as encryption and MAC overhead, and
empty TLS records used to defend against the BEAST attack [9].

We demonstrate with the following example. Consider a se-
quence with three TLS records of size 544, -1088, 1088. This
sequence will be represented as 1, -1, -1, 1, 1 in the Tor cell in-
stances. Each cell is recorded separately, so Tor cell instances only
contain the integers 1 and -1.

4.2.3 Removing SENDMEs
As described in Section 3, Tor issues a circuit-level SENDME

cell every 100 cells on each circuit and a stream-level SENDME
cell every 50 cells on each stream. We attempt to automatically
remove these cells as they provide us with no information, just as
we remove ACK packets at the TCP level.

We remove SENDMEs with the following method. We scan
through each traffic instance with a running counter of incoming
cells. When the counter reaches some amount p1, the next out-
going cell is guessed to be a SENDME. Then, the counter is de-
creased by some amount p2 (the counter can become negative). We
collect data to evaluate this scheme by instrumenting Tor to mark

SENDME cells on 100 traffic instances. The results are presented
as a receiver operating characteristic curve (ROC) in Figure 1. The
false positive rate is taken over all outgoing packets, which is much
greater than the total number of SENDMEs. The area under the
curve, as a sum of trapezoids, is 0.88.

Specifically, for our experiments, we choose the parameters p1 =
45 and p2 = 40, which offers a true positive rate of 62% and a false
positive rate of 5.7%. We chose this number because for our ex-
periment the total count of false positives and false negatives was
lowest with those parameters. In our data set, around 19% of all
outgoing packets (2.1% of all packets) were removed this way. The
effectiveness of removing SENDMEs is evaluated in Section 6.

5. CLASSIFICATION
Our website fingerprinting problem can be viewed as a machine

classification problem. Each class can be a group of sites, such as
“Monitored sites” or “Other sites” (in the open-world scenario) or
a specific site (in the closed-world scenario). Given a sequence of
packets collected from one access of a site, the classifier attempts
to categorize the testing instance into one of the available classes.
To do so, the classifier first learns about each class by training on a
number of training instances. We next discuss the SVM classifier
we use to tackle the classification problem, and then discuss how
we construct the kernel used in the SVM.

5.1 Support Vector Machine
The Support Vector Machine (SVM), proposed by Vapnik and

Chervonenkis [16], is a classifier that was used by previous au-
thors for website fingerprinting [2, 12] and was shown to be fairly
successful. We therefore use SVMs for our experiments as well.
During training, SVMs take in a number F of features for each
training instance s. Each training instance can then be considered
a point in F -dimensional space belonging to a class. Consider the
simplest case, with only two classes. If the training points can be
separated by a hyperplane, then the SVM finds the hyperplane that
maximizes the gap between the two classes. The training points
that are closest to the gap determine (support) the hyperplane and
are called support vectors. Each side of the hyperplane consists of
only points from one class. The SVM would then classify each
testing instance based on the side of the hyperplane on which it
is located. If the training points cannot be separated by a hyper-
plane, we can use a cost parameter c to penalize training points
that are on the wrong side of the hyperplane. The higher the value
of c, the more importance the machine would place on avoiding
wrongly classified points (relative to maximizing the gap between
different classes). To avoid overfitting to the cost parameter c, we
choose it exponentially. The machine can also assign a hyperplane
in a higher dimension than F by extending all points to a higher
dimension where a more complex hyperplane can be found.

As SVMs are based on finding a maximum gap between differ-
ent classes, distance is central to the SVM. We need to compute
the distance between every pair of instances. In this work, we use
distance-based metrics to compute the distance without using fea-
tures, as described in Section 5.2. A square kernel matrix of size
K × K is built for the K training instances this way, where the
element in row i, column j is computed as above for instances si
and sj . A value of 1 indicates perfect similarity, whereas a value
approaching 0 indicates strong dissimilarity.

We use the SVM provided by LIBSVM version 3.14, which
deals with multiple classes using “One-to-One” classification. Sup-
pose the set of classes is C. A different SVM is trained for each pair
of classes, resulting in |C|(|C|−1)/2 SVMs, as above; let the SVM
responsible for distinguishing between classes i, j ∈ C, be denoted
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as SVMi,j . The classifier SVMi,j is responsible for deciding if
each testing instance s is more likely to belong in class i or class
j; this output is denoted as SVMi,j(s) ∈ {i, j}. Then we find the
class a ∈ C which maximizes |{j ∈ C|SVMa,j(s) = a}|. This
technique resembles a tournament in which all players (classes)
play against each other, and the player with the greatest number
of wins is declared the victor. We also experimented with “One-
against-All” classification, in which we train one binary classifier
for each class against all other classes. Our preliminary experi-
ments with “One-against-All” classification did not produce better
results, so we will present our results using “One-to-One” classi-
fication. Other researchers have investigated more sophisticated
techniques for multi-class classification [18].

5.2 Distance-based Metrics
A traffic instance is represented as a sequence of positive (out-

going) and negative (incoming) integers indicating the size of TCP
packets or Tor cells. We train an SVM by directly computing the
kernel matrix from these sequences using distance-based metrics.
In this paper, we propose a number of new distance-based metrics.
These metrics are designed to allow greater success in website fin-
gerprinting by taking certain realistic observations in mind. These
observations are described in detail in each corresponding section.

5.2.1 Optimal String Alignment Distance
Cai et al. use the optimal string alignment distance (OSAD)4 to

measure the distance between two traffic instances. OSAD is used
in word matching; it describes the number of insertions, deletions,
substitutions and transpositions required to transform a sequence
of characters to another, with the specific requirement that trans-
positions can only affect elements that are adjacent in each string.
This means that the distance between xAy and yx will be 3 opera-
tions (delete A, delete y, insert y before x) instead of 2 operations
(delete A, transpose y and x). The latter operation is not allowed
as x and y are not adjacent in the first string. These operations
can be assigned different costs without affecting the above algo-
rithm’s validity; the costs of insertions and deletions must be the
same, however, in order to preserve distance symmetry. Cai et al.
assign a lower cost to transpositions than insertions and deletions.
The details of the OSAD algorithm can be found in Appendix B.

5.2.2 Damerau-Levenshtein Distance
The Damerau-Levenshtein distance (DLD) is closely related to

the OSAD, with the chief difference being the removal of the re-
striction on transpositions. The Damerau-Levenshtein distance be-
tween two strings is therefore never greater than the optimal string
alignment distance when the operation costs are the same.

We use Algorithm 2 in Appendix B to implement the Damerau-
Levenshtein distance by making one additional change [17]. When
computing the value of Mtranspose for the element at (i, j), instead
of comparing with the element at (i−2, j−2), we compare instead
with the element at (i1, j1), where i1 is the last occurrence in the
first string of the jth element of the second string, and j1 is the last
occurrence in the second string of the ith element of the first string.
The cost is then the cost of the number of deletions necessary to
make those two elements adjacent, plus the cost of a transposition,
plus the cost of re-inserting the deleted elements. This allows us to
transpose elements that are not adjacent to each other.

4Cai et al. called the metric they used the Damerau-Levenshtein
distance, but a review of their code and their results showed that it
is the OSAD, which is a restricted version of the DLD.

5.2.3 Removing Substitutions
The permissible operations on one traffic instance to transform

it into another roughly correspond to possible events when access-
ing the same site several times. Insertions and deletions would be
necessary if, for instance, a site loaded a different advertisement
(which may be slightly larger or smaller), or if the text changed.
Too many connections may be opened and some connections may
be rejected, which would cause additional packets to be sent in a
particular traffic instance. Transpositions are allowed at a lower
cost because there is almost always some degree of reordering be-
tween two accesses of the same site. The timing of requests is
highly dependent on how quickly data is received. As Tor relays
are frequently congested [1], packet timings of the same site even
across the same circuit will not be consistent (much less across dif-
ferent circuits).

Substitutions, however, do not seem to correspond to any realis-
tic scenario. Accesses of the same site would not change the packet
sequence in a way that can be represented by substitutions, unlike
insertions, deletions or transpositions. We want to limit our permis-
sible operations to those corresponding to possible situations that
could cause two instances of the same site to be different. This is
because the cost between two traffic instances should be low only if
they correspond to the same site. We therefore experiment with re-
moving substitutions from the list of possible operations. This can
be done by removing the Msub term when computing the minimum
of different operation costs at Mi,j .

5.2.4 Different costs for Incoming/Outgoing Packets
The number of incoming packets depends on the size of web

objects, which may change unpredictably for the same site for var-
ious reasons described above. In contrast, the number of outgoing
packets depends on the number of resources (GET requests), the
number of connections Firefox would open to download these re-
sources (stream open requests), and the number of SENDMEs. The
number of SENDMEs can vary based on the number of incoming
packets, but the rest do not change easily. Since the number of
outgoing packets is less likely to change when accessing the same
site several times, outgoing packets should be more costly to insert
or delete. On average, around one out of nine Tor cells when ac-
cessing a site are outgoing. We experiment with changing the cost
of operations such that inserting and deleting outgoing packets are
more costly than inserting and deleting incoming packets.

5.2.5 Varying transposition cost
Accesses to the same site can result in different packet sequences

because of timing. Two resources that were downloaded simulta-
neously in one access may be downloaded sequentially in another,
as time delays may cause the second to be requested late. Such
delays, however, are less likely to affect the initial packets. This
is because the order is more important initially: we must first con-
nect to the site, request the main page, get the main page, and read
the reference to resource locations before we can begin download-
ing other resources. We experiment with varying the cost of trans-
positions depending on the position of the element, with the cost
being higher at first and lower down the line. For the element at
(i, j), we define P = min( i

m
, j
n
). Then the transposition cost is

costtrans = (1− 0.9P )2.

5.2.6 Fast Levenshtein-like distance
The amount of time taken to compute OSAD and DLD is sig-

nificant. We propose a new Levenshtein-like distance algorithm
that reduces the algorithm time from O(mn) to O(m+ n) on two
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strings of size m and n; it is around 2,000 times faster in our exper-
iments. The algorithm is presented in Algorithm 3 in Appendix C.

5.3 Post-processing
The above metrics produce distances that are of the order of

magnitude of the number of packets in each string, with smaller
values indicating greater similarity. As discussed in Section 5.1,
the elements of the kernel matrix should have values between 0
and 1, with 1 indicating perfect similarity. We use the strategy
described by Cai et al. to transform these distances into values suit-
able for the kernel matrix. For a distance D(s1, s2) between two
strings (traffic instances) s1 and s2, we first compute D′(s1, s2) =

D(s1, s2)

min(|s1|, |s2|)
and then we take

K(s1, s2) = e−D′(s1,s2)
2

.

This gives us a value suitable for the kernel matrix. Cai et al.
showed that this method was effective.

6. EXPERIMENTAL RESULTS

6.1 Setting
Due to high computation costs, we used a parallel computing

cluster to perform our experiments. We ran our experiments with
SHARCNET, a Canadian academic consortium that offers high-
performance parallel computing. As each entry of the SVM kernel
is independent of the others, our problem is embarrassingly paral-
lel. We used up to 200 cores to compute the SVM kernel matrix
simultaneously.

We performed our experiments on the Tor Browser Bundle ver-
sion 2.4.7-alpha-1. This bundle includes Firefox version 10.0.12esr
and Tor version 0.2.4.7-alpha. Tor Firefox includes HTTPS Every-
where 3.2 and Noscript 2.6.5.9, as well as a number of patches,
including one for the pipelining and order randomization defense.
HTTPS Everywhere attempts to access sites using HTTPS, whereas
NoScript disables a number of plugins (including Javascript, Flash,
and Silverlight) from untrusted sites. These add-ons are enabled by
default, so we do not make any changes to them. While any change
to the browser configuration would impact website fingerprinting,
we note that only changes that significantly affect the order or size
of communication between the user and the end server would re-
duce the fingerprinting success rate. However, a user making a
significant change to her browser configuration would cause her to
become more easily identifiable [6]. For this reason, browser con-
figuration changes are not recommended by Tor. We made only
one change to the Firefox configuration: as discussed above, we
disabled caching by setting the value of network.http.use-cache to
False in about:config.

We edited torrc, the configuration file for Tor, to change two
options. We set MaxCircuitDirtiness to 600000 (seconds)
so that our circuits would not be automatically closed after 10 min-
utes. We closed our circuits manually after each batch was com-
pleted. We set UseEntryGuards to 0 to disable the set of lim-
ited entry guards. Otherwise, we would have used only three entry
guards for our site accesses, which limits the validity of our results
across Tor. The client is not expected to make these changes; they
are made for our experiments to gather realistic data. Note that
these modifications do not make website fingerprinting easier; on
the contrary, as explained in Section 4.1.4, these modifications are
made to eliminate unrealistic advantages to the attacker. We au-
tomated site accesses by using iMacros and a Tor Controller [10];
more details are given in Appendix A.

Table 1: Closed-world results on Cai’s metric, our combined
OSAD, and our fast Levenshtein algorithm.

Method Accuracy Accuracy
(our data) (Cai’s data)

Cai’s 0.88 (± 0.03) 0.86 (± 0.02)
Combined OSAD 0.91 (± 0.06) 0.91 (± 0.02)

Fast 0.70 (± 0.07) 0.71 (± 0.02)

6.2 Closed-World Results
We tested a number of metrics (used to create the SVM kernel

matrix, as described in Section 5.3) against the data sets we col-
lected. Our metrics are parameterized by the costs of different op-
erations; to prevent overfitting, we chose the operation costs once
and did not attempt to vary the cost in order to find the one that re-
turned the best results. It is therefore possible that other operation
costs may produce better results. We varied the cost parameter c of
the SVM exponentially from 40 to 410, and chose the best result,
which was different for each metric. We collected traffic instances
using the methodology described in Section 4.1.4.

We experimented on 100 sites with 40 instances each, and per-
formed 10-fold cross validation, so that there were 36 training cases
and 4 testing cases for each site (400 tests for each fold). We com-
puted the kernel matrix once and used different parts of the matrix
to train and test for each fold. Our results are shown in Table 7 in
Appendix D, and some interesting excerpts are shown in Table 1.
We acquire one accuracy value for each of the folds, and we show
the mean and standard deviation of these 10 accuracy values for
each metric and data set.

The highest accuracy achieved was 91%, using a dataset count-
ing Tor cells with SENDMEs removed and the OSAD metric with
a combination of our enhancements, hereafter referred to as com-
bined OSAD (see Appendix D for details). This can be compared
to 88% using the data processing and metric used by Cai et al.;
hereafter referred to as Cai’s. The slight improvement in accu-
racy caused by our experimental Tor SENDME removal method-
ology can be seen by comparing the results for sets 3 and 4 in
Appendix D. The Damerau-Levenshtein distance (metric 6) was
less accurate than other metrics; we found that this is because it
could not effectively distinguish between different sites, as it gen-
erally gave a low distance value between instances of different sites
as well as instances of the same site due to its unrestricted use of
transpositions.

Our fast Levenshtein-like algorithm achieved a somewhat lower
accuracy of 70%, but with a substantially reduced computation
cost: on the same cluster of cores, using the fast algorithm on the
dataset counting Tor cells with SENDMEs removed, kernel matrix
computation took 283 CPU seconds, compared to 608,000 CPU
seconds for combined OSAD. For each fold, training the SVM took
around 6 CPU seconds for both metrics and testing was done in 0.7
CPU seconds. Our fast algorithm is therefore suitable for attackers
with limited resources. We note that stream reassembly as well as
SVM training can be done offline after data collection. In addition,
they are highly parallelizable.

6.2.1 Cai’s Data
Cai et al. graciously shared with us the data they collected for

their paper [2]. We performed the same analysis as above on their
data. We show the results on Cai et al.’s data in Table 8 in Ap-
pendix D, and some excerpts are shown in Table 1 along with the
results on our new data set. Although these sets were independently
collected with different methodologies and selection of sites, the
accuracy rates were largely comparable, suggesting that our analy-
sis is robust.
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Table 2: Open-world results on Cai’s metric and our combined
OSAD.

Method Site TP FP

Cai’s

google.de 28/40 3/860
facebook.com 34/40 0/860
wikipedia.org 33/40 0/860

twitter.com 37/40 0/860

Combined OSAD

google.de 37/40 3/860
facebook.com 40/40 1/860
wikipedia.org 39/40 0/860

twitter.com 39/40 2/860

Table 3: Comparison of accuracy with and without Tor’s
pipelining and order randomization defense

Method With Def. Without Def.
Cai’s 0.87 (± 0.05) 0.82 (± 0.03)

Combined OSAD 0.90 (± 0.03) 0.88 (± 0.06)

6.3 Open-World Results
We conduct an open-world experiment to evaluate the potential

of website fingerprinting on Tor. The open-world experiment sim-
ulates an ISP that has a specific list of web pages whose use it
wishes to monitor, while its users may browse the web by access-
ing these pages or other web pages that are not modelled by the
ISP. Our own data set is used for these experiments. We choose
four sites that have a history of being monitored or specifically
blocked: google.de, facebook.com, wikipedia.org and
twitter.com (hereafter referred to as the “monitored sites” in
this section).

We used Alexa’s top 1,000 sites for this experiment. Sites ranked
101 to 1,000 were chosen as non-monitored sites and one traffic
instance from each site was loaded, out of which 860 were suc-
cessfully loaded and used. For each of the monitored sites, we
trained an SVM on 40 monitored instances and 860 non-monitored
instances for 10-fold testing. On the same fold, the attacker did not
train on the same non-monitored sites that the client visits. True
Positives (TP) is the number of monitored traffic instances that were
classified as monitored (population of 40); False Positives (FP) is
the number of non-monitored traffic instances that were classified
as monitored (population of 860). Alexa’s top 1,000 sites were
not manually processed in order to fix localization. The results are
shown in Table 2. We see that those sites were correctly identified
with over 90% success rate. With our combined OSAD, in particu-
lar, we see that these particular sites reach a mean of 96.9% recall,
compared to 86.9% on Cai’s. There are very few false positives in
all cases.

6.4 Evaluation of Tor’s Pipelining and Order
Randomization Defense

The above experiments were conducted with Tor’s pipelining
and order randomization defense [13] enabled. Cai et al. demon-
strated that this defense was ineffective against their technique [2].
We repeat this experiment on our metrics as well. We collected
10 instances each of 100 sites with pipelining and order random-
ization disabled, and trained the SVM using the same parameters
on several set-metric combinations. Each circuit was closed after 1
access to each site, thus ensuring that the attacker does not train on
the circuits that the client uses. We compare these results to those
with pipelining and order randomization (our main data set), also
on 10 instances each.

Our results are presented in Table 3; results collected in the data
set with this defense enabled are listed in the column “With Def.”;
those with this defense disabled are listed in the column “Without
Def.” The results demonstrate no significant disparity with or with-
out the defense; in fact, as Cai et al. observed, the metrics seemed
to be marginally more accurate with the defense enabled.

7. DISCUSSION

7.1 Training set size and selection
In our evaluation, we required that each batch of 400 instances

must use a different circuit, and the training set instances should not
be in the same batch as the testing set instances. We demonstrate
the importance of our methodology with a small experiment. On
100 sites in the closed-world scenario, we take the first batch (4
instances for each site), and we train our SVM on 3 instances each
using combined OSAD and 4-fold testing. This gives an unrealistic
advantage to the attacker, and it returned an accuracy value of 86%.
We then trained and tested on instancess 1, 11, 21, and 31, which
were from 4 different batches. The training size was therefore the
same (300 instances for each of 4 folds). This returned an accuracy
of 75%. Unsurprisingly, the collection methodology significantly
affects the experimental results.

We compare several metrics and how the number of instances
chosen for each site affects their closed-world accuracy. The re-
sults are presented in Figure 2. In 10-fold cross-validation, training
sizes are multiples of 9. An increased training size generally im-
proved the accuracy. As we collected our data in batches of 4 us-
ing the same circuit, instances numbered 1 to 4 are similar to each
other; 5 to 8 are similar to each other; and so on. To ensure that
our training and testing data are from separate batches, we do the
following. Suppose the size of the training plus testing sets is N ,
we computed the separation s = b40/Nc, and only the instances
numbered 1, 1+s, 1+2s, . . . , 1+(N−1)s are used for each site.
We observe that combined OSAD consistently outperforms other
metrics when we vary the training size. Similarly, for the open-
world setting, we also analyze the effect of increasing the number
of non-monitored sites used for training from 180 to 810. For this
range, the false positive rate and false negative rate respectively de-
creases from 16% and 0.55% to 3.1% and 0.17%, indicating that
the attacker can increase their open-world success rate by training
on more non-monitored sites.

7.2 Testing set size and selection
We tested on Alexa’s top 100 sites for our closed-world setting.

We only used 100 to ensure comparability with previous results
such as those by Panchenko et al. and Cai et al. [2, 12] While it is
possible that using more sites will reduce the accuracy of website
fingerprinting, we seek to understand if the accuracy change is sig-
nificant. To do so, we varied the number of sites and observed the
closed-world effects on our best metric, the combined OSAD. We
chose the first 10 sites, the first 20 sites, and so on. We performed
10-fold cross-validation on 40 instances for each site. The effect
of varying our total number of sites on the accuracy is shown in
Figure 3. We see that the accuracy for 10 sites was much higher;
this may be because the top 10 sites are distinct from each other,
reliable, and contain little dynamic content in their home pages.
There is no significant difference in accuracy with more than 20
sites for testing. Attempting to classify 20 sites produces an accu-
racy of 92.3% and using 100 sites produces an accuracy of 90.9%;
in this case a five-fold increase in magnitude reduces the accuracy
by 1.4%. Similarly, for our open-world setting, the client is only
allowed to visit Alexa’s top 1000 sites as non-monitored sites. We
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Figure 2: Effect of varying number of training instances on
accuracy in closed-world results. Note that the y-axis is not 0-
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world results (combined OSAD).

Table 4: The most difficult sites to classify with corresponding
Accuracy (Acc.). The last column is the site which the incor-
rectly classified site was most often confused as, with the corre-
sponding percentage (out of misclassified instances).

# Site Acc. Mistaken as
1 msn.com 0.547 yahoo.de (13%)
2 tudou.com 0.560 mediafire.com (28%)
3 bbc.co.uk 0.575 godaddy.com (12%)

hope to understand if the accuracy will be affected if the client is
allowed to visit only fewer non-monitored sites. The results are
presented in Figure 4. There is almost no change in the false posi-
tive and false negative rate if the client is allowed to visit only the
top 200 sites instead. This suggests to us that a more ambitious
attacker seeking to identify a greater number of sites can use our
techniques with no significant penalty.

7.3 Difficult sites and Defenses
To understand how a site may defend itself against website fin-

gerprinting, we looked at the most difficult sites to classify. The
three most difficult sites to classify, with their corresponding clas-
sification rates, are shown in Table 4. The classification rate is a
mean over all set-metric combinations that yielded an accuracy of
0.7 or above. We seek to understand why these sites were signifi-
cantly more difficult to classify. After some analysis, we observed
a number of contributing factors, as follows:

Localization. We loaded msn.com without localization specifi-
cation, and so it often redirected clients to completely differ-
ent pages with different layouts. For instance, ca.msn.com
and plasa.msn.comwould be different pages. In the case
of bbc.co.uk, specifying the localization of the site we
wished to access did not stop the site from loading localized
data. This particular site shows different news stories to UK
residents than to international clients.

Updating content. Sites 1 and 3 were both active news sites that
changed their content more than daily. Site 2 was a video
site that constantly updated itself based on the latest popular
videos, which are recommended to clients on the front page.
Our data collection process could not keep up with their con-
tent updates.

Gradual content. Sites 1 to 3 all involved automatic slide shows.
The images in these slide shows are not always loaded before
the page is considered completely loaded. Rather, they are
loaded when the slide itself is loaded. Therefore, the number
of slide images that are loaded depended on the total load
time, which varies across different circuits in Tor.

Randomized content. Site 2 involved randomized recommenda-
tions based on client preferences. As these recommendations
would change across different accesses to the site, they are
random to the Tor client.

The above strongly suggests that sites are harder to identify if
they involve significant amounts of dynamic content, especially if
such dynamic content affected the page size. Web designers them-
selves may help to protect the client’s privacy this way.
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8. CONCLUSION
In this paper, we demonstrated improved website fingerprinting

techniques on Tor. These attacks can be performed by a single
observer, who may be any one of the hundreds of volunteer en-
try guard relays in the Tor network, or an attacker tapping the link
between a client and her entry guard. We clearly described how
we managed circuit construction, timing, and addressed localiza-
tion problems to ensure that our metrics are compared realistically
and fairly. We show how Tor and Tor Firefox need to be modified
specifically for experimental fairness to ensure that the attacker is
not given unrealistic advantages. We observed that measuring Tor
cells, rather than TCP/IP packet sizes, yields more accurate infor-
mation, and removing the Tor SENDME cells reduces the noise fur-
ther. We described a new distance-based metric (combined OSAD)
for comparing packet traces, and also showed a much faster (al-
beit less accurate) metric that an attacker with limited computation
resources can easily perform.

Using our improved techniques, we demonstrated a marked im-
provement in accuracy with open-world experiments on Alexa’s top
1000 sites to emulate an attacker with a limited set of modelled
sites. With our techniques, the recall was above 95% on four sen-
sitive sites and the false positive rate was less than 0.2% for those
sites. It is possible that these results can be improved further with
more sophisticated multi-class training approaches or some fine-
tuning to the parameters used in the experiments. To compare our
results with those of previous authors, we also performed closed-
world experiments on Alexa’s top 100 sites with 40 instances each,
and we showed that our new metrics and data processing techniques
yielded up to 35% fewer mistakes than previous work. We then per-
formed a number of experiments to justify our use of Alexa’s top
100 sites for our closed-world setting and Alexa’s top 1000 sites
for our open-world setting. We showed that a five-fold increase of
the testing space in this range does not produce a noticeable effect
on closed-world and open-world accuracy. Our results warn us that
even with TLS encryption, padding, and packet relaying, Tor may
not be able to protect web-browsing clients from deanonymization
by a passive observer with limited resources.
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APPENDIX
A. OUR EXPERIMENTAL SETUP

We installed iMacros 7.6 on Firefox. We wrote iMacros code
which loaded each site successively, and programmed iMacros to
close the tab five seconds after each site finished loading. This
ensures that no future streams will be opened for that site, and it
roughly corresponds to a client who spends a small amount of time
on each site after it loads. The iMacros code worked with our Tor
Controller code in the experiment; the code is given in Algorithm 1,
with the iMacros code in bold.

We used a Tor Controller [10] to control Tor’s behaviour during
the experiments. After each site access, we closed all open Tor
streams and then reported the time. (We closed the open streams so
that they would not affect the next traffic instance; a more natural
option was to wait for them to close, but this significantly increased
data collection time and did not affect the order of packets used for
classification.) Next, after each site is visited 4 times in a batch,
we closed all open circuits. This ensured that each circuit could
not be used for more than 4 accesses of the same site. Our batches
were separated by 4–12 hours, and so the attacker’s web pages and
the client’s web pages are always separated by a number of hours to
simulate the realistic condition that the attacker will not have up-to-
date pages while monitoring the client. Only the packets captured
between the marked start time and end time of each site were in-
cluded in the traffic instance.

Algorithm 1 iMacros and Tor Controller code
1: for 0 ≤ batchcounter < 10 do
2: for 0 ≤ i < 100 do
3: for 0 ≤ counter < 4 do
4: Mark the start time
5: Load site i
6: PAUSE 5 seconds
7: Mark the end time
8: Close the tab and start a new tab
9: Close all streams

10: PAUSE 4 seconds
11: end for
12: end for
13: Close all active circuits
14: end for

B. DETAILS OF THE OPTIMAL STRING
ALIGNMENT DISTANCE

The optimal string alignment distance can be calculated with
the dynamic programming algorithm roughly described as follows.
Given two strings s1 and s2 with m and n characters respectively,
we construct a matrix M of size m by n. The element of matrix
M at row i and column j is the distance between s1 up to ele-
ment i and s2 up to element j. Elements are calculated one by one
starting from i = 1 and j = 1, where each element is calculated
based on the previously-calculated elements at positions (i− 1, j)
(insertion), (i, j − 1) (deletion), (i − 1, j − 1) (substitution), and
(i− 2, j − 2) (transposition) to minimize cost. Transpositions are
only allowed when the last two elements of the two strings at i and
j are indeed a transposition of each other. The algorithm is given
in Algorithm 2. [11]

Algorithm 2 Optimal string alignment distance
Input: Strings s1, s2 with |s1| = m and |s2| = n; inser-

tion/deletion cost costid, substitution cost costsub, transposi-
tion cost costtrans

Output: OSAD of s1 and s2

1: Initialize matrix M of dimensions m by n, with:
2: M(i, 0) = i · costid ∀ 0 ≤ i ≤ m
3: M(0, j) = j · costid ∀ 0 < j ≤ n
4: for 0 < i ≤ m, 0 < j ≤ n do
5: if s1(i) = s2(j) then costidt = 0
6: else costidt = costid
7: end if
8: Mins = M(i− 1, j) + costidt
9: Mdel = M(i, j − 1) + costidt

10: Msub = M(i− 1, j − 1) + costsub
11: if s1(i) = s2(j − 1) & s1(i− 1) = s2(j) then
12: Mtranspose = M(i− 2, j − 2) + costtrans

13: else
14: Mtranspose = +∞
15: end if
16: M(i, j) = min{Mins,Mdel,Msub,Mtranspose}
17: end for
18: Return M(m,n)
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C. DETAILS OF THE FAST LEVENSHTEIN-
LIKE DISTANCE

In this algorithm, the transposition and deletion costs are input
as parameters. All elements in each string are initially marked as
unused. We proceed as follows for each element k in s1. We find
the first identical element, k, in s2 that is unused. The difference
in position between these elements is multiplied by the transposi-
tion cost and then added to the total transposition distance. Then,
we mark that element in s2 as used. If for some element in s1 we
cannot find any identical element in s2 that is unused, the deletion
distance is incremented by the deletion cost. After all elements in
s1 have been processed, the deletion distance is further increased
by the number of elements in s2 that remain unused, multiplied
with the deletion cost. The total distance is the sum of the transpo-
sition distance and the deletion distance.

The above algorithm can be efficiently implemented by first build-
ing a dictionary D of all elements in s1, such that for each ele-
ment k, D(n) = {D1(k), D2(k), . . . , Dj(k)} is a list of all pos-
itive integers such that the element in s1 at the position Di(k) for
1 ≤ i ≤ j is k. The dictionary is computed in linear time and is
used in the algorithm. The algorithm using the dictionary is given
in Algorithm 3; it is equivalent to the above description. In our ex-
periments, we take the transposition cost to be 0.01, the outgoing
packet deletion cost to be 4, and the incoming packet deletion cost
to be 1.

Algorithm 3 Fast Levenshtein-like distance
Input: Strings s1, s2 with |s1| = m and |s2| = n, dictionary

D for element positions in s1; insertion/deletion cost costid,
transposition cost costtrans

Output: Levenshtein-like Distance of s1 and s2

1: Initialize cost = 0
2: for 0 < i ≤ n do
3: if D(s2(i)) 6= ∅ then
4: cost = cost+ |D1(s2(i))− i| · costtrans

5: D(s2(i)) = D(s2(i))\{D1(s2(i))}
6: else
7: cost = cost+ costid
8: end if
9: end for

10: cost = cost+ |D| ∗ costid
11: Return cost

D. FULL RESULTS FOR ALL METRICS AND
DATA SETS

Here we show the mean and standard deviations of 10 accuracy
measurements for each combination of metric (from Table 5) and
data set (from Table 6).

Table 7 shows the results for the data we collected, and Table 8
shows the results for the data collected by Cai et al. [2]

Cai’s algorithm is Metric 1 on Set 2. Our combined OSAD
is Metric 5 on Set 4, and our fast Levenshtein-like algorithm is
Metric 7 on Set 4.

Table 5: Distance metrics used to create the SVM kernel ma-
trix, as described in Section 5.3. Metric 1 is that used by Cai et
al. [2]; metric 5 is our combined OSAD metric.

1 OSAD, with costid = costsub = 2,
costtrans = 0.1

2 OSAD, disabling substitutions
3 OSAD, with costid = 6 if the element is

positive (outgoing)
4 OSAD, with varying transposition cost squared to

its position in the sequence
5 OSAD, with all changes in metrics 2, 3 and 4
6 Damerau-Levenshtein Distance, with all costs set to 2
7 Fast Levenshtein-like distance

Table 6: Data sets used as inputs to the SVM. Set 2 (Sec-
tion 4.2.1) is that used by Cai et al. [2]; set 4 (Section 4.2.3)
is our proposal.

1 TCP/IP packet sequence
2 TCP/IP packet sequence, rounded up to 600
3 Tor cell sequence
4 Tor cell sequence, without SENDMEs

Table 7: Results on traffic traces we collected for each metric
(M.) and set (S.)

S.1 S.2 S.3 S.4
M.1 .75 ± .09 .88 ± .03 .86 ± .06 .84 ± .06
M.2 .65 ± .10 .83 ± .05 .89 ± .06 .88 ± .06
M.3 .74 ± .09 .86 ± .03 .87 ± .07 .86 ± .07
M.4 .75 ± .09 .87 ± .03 .86 ± .06 .90 ± .07
M.5 .47 ± .12 .65 ± .09 .90 ± .06 .91 ± .06
M.6 .20 ± .04 .23 ± .06 .21 ± .05 .22 ± .05
M.7 .46 ± .11 .53 ± .08 .69 ± .06 .70 ± .07

Table 8: Results on traffic traces collected by Cai et al. for each
metric (M.) and set (S.)

S.1 S.2 S.3 S.4
M.1 .82 ± .02 .86 ± .02 .87 ± .02 .87 ± .02
M.2 .71 ± .04 .84 ± .02 .89 ± .02 .89 ± .02
M.3 .81 ± .02 .85 ± .01 .87 ± .02 .87 ± .02
M.4 .82 ± .02 .86 ± .01 .87 ± .02 .86 ± .02
M.5 .59 ± .06 .75 ± .04 .91 ± .02 .91 ± .02
M.6 .11 ± .03 .14 ± .06 .08 ± .03 .08 ± .03
M.7 .54 ± .03 .52 ± .03 .70 ± .02 .71 ± .02
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