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ABSTRACT
To defeat Website Fingerprinting (WF) attacks that threaten pri-
vacy on anonymity technologies such as Tor, defenses have been
proposed and evaluated under the multi-page setting. The multi-
page setting was designed as a difficult setting for the attacker and
therefore gives too much of an advantage to the defense, allowing
weak defenses to show success. We argue that all WF defenses
should instead be evaluated under the one-page setting so that the
defender needs to meet a higher standard of success.

Evaluating known WF defenses under the one-page setting, we
found that Decoy, Front and Tamaraw all failed to defend against
WF attacks. None of these defenses were shown to be vulnerable in
previous work. In Tamaraw’s case, the attacker’s TPR increases 13
times from 2.9% to 37% with 4.4% FPR; he can also achieve 91% TPR
and 21% FPR. We also found that these attacks were able to succeed
in a wide array of newly defined WF scenarios that could not be
captured by the standard laboratory scenario. In response, we create
the first defense that is strong enough for the one-page setting by
augmenting Tamaraw with greater randomization overhead so that
its anonymity sets are more evenly dispersed.

CCS CONCEPTS
• Security and privacy → Pseudonymity, anonymity and un-
traceability; • Networks→ Network privacy and anonymity.
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1 INTRODUCTION
Internet users are constantly subjected to eavesdropping and surveil-
lance. Anonymity networks, such as Tor, protect user privacy by
relaying their traffic across multiple volunteer nodes, such that an
eavesdropper at a single location cannot capture both their iden-
tity and their behavior simultaneously. However, Tor is vulnerable
to traffic analysis attacks known as Website Fingerprinting (WF),
which allow an eavesdropper (including Tor’s volunteer nodes) to
determine the user’s activity from traffic patterns. WF attacks have
been repeatedly shown to achieve high recall and/or precision in a
large open-world setting [9, 11, 15, 17, 18].

On the other hand, there has been little success in work on
WF defenses — mechanisms to obfuscate web traffic so that WF
attackers cannot recognize them. As of yet, Tor does not use a
single WF defense, despite more than a decade of research and
implementation work. This is in large part due to the cat-and-
mouse game that characterizes research on defenses. A defense
would be published that shows success against all known attacks,
but it is soon followed by a new attack that defeats this defense,
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necessitating work on a new defense. Tor developers are unlikely
to invest the technical effort necessary to maintain a defense that
may soon be defeated. Attempts have been made to break this
cycle by designing provably effective WF defenses that can defeat
any theoretical WF attack, but these defenses are prohibitively
expensive in overhead and less suitable for use in a popular (and
thus resource-strapped) anonymity network such as Tor.

In this work, we investigate the question:How should we show
that a WF defense is effective? We find that defenses have been
evaluated using a methodology that strongly favors the defender:
it requires the attacker to distinguish between a large number of
classes in the open world. This methodology was directly trans-
posed from research work on attacks where it was designed to
demonstrate attack effectiveness in a difficult setting. When used
for defense evaluation, the same methodology only shows the suc-
cess of a defense in an easy setting. In reality, an attacker may only
need to recognize accesses to a single web page (which we call the
one-page setting), and a defense must still thwart that attempt.
The low bar for defense evaluation explains why historically, many
defenses have been quickly beaten by newer attacks.

Our work re-evaluates WF defenses using the one-page setting
with the following main contributions:

(1) In the one-page setting, we find that attacks can achieve
high (>90%) TPR even against defenses that were not consid-
ered broken. We analyze defenses separately to explain how
they fail to cover visits to a page, particularly highlighting
limitations in current design paradigms.

(2) We newly define a number of realistic scenarios in which
the WF attacker’s success is not directly captured by the
standard laboratory scenario. We demonstrate that a realistic
WF attacker can achieve his goals even if the false positive
rate is much higher than the base rate. We also reveal a
number of important variables for attacker success that had
previously been ignored.

(3) We attempt to fortify WF defenses in the one-page setting by
exploring randomness and regularization options for several
defenses. In doing so, we find that some defense paradigms
have more potential to be fortified than others, and we are
able to create the first defense that succeeds in the one-page
setting (though with high overhead).

We organize the rest of the paper as follows. We give the back-
ground of Tor and Website Fingerprinting in Section 2, where we
also explain the weaknesses of the previous evaluation methodol-
ogy and our proposed one-page setting. In Section 3, we evaluate
WF defenses in the one-page setting. We define realistic scenar-
ios where an WF attacker can succeed against these defenses in
Section 4. Then, we explore improvements to these defenses in
Section 5. We discuss relevant issues in Section 6, give related work
in Section 7, and conclude with potential future work in Section 8.
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2 BACKGROUND AND METHODOLOGY
2.1 Tor
Tor is a widely popular anonymity network designed for low-
latency internet usage such as web browsing [6]. By relaying client
traffic across multiple (volunteer) nodes with layered encryption,
Tor ensures that only the entry node contacted by the user knows
their identity, while only the exit node sees the end server. The
separation of identity and activity safeguards privacy, and eaves-
droppers on the network should not be able to link entry node
traffic with the true web server being visited.

2.2 Website Fingerprinting Attacks
InWebsite Fingerprinting (WF), a local eavesdropper (whichmay in-
clude the entry node) uses traffic analysis techniques on the client’s
traffic to deduce the web page they are visiting, thus compromising
Tor’s main guarantee of privacy. The threat of such traffic analysis
attacks against web privacy was studied before Tor [16], and was
considered a potential threat at Tor’s creation [6]. A large number of
attacks have demonstrated success against Tor in a large multi-class
open-world setting [1, 9, 11, 13, 15, 18]. Even in scenarios with very
low base rates, WF attacks can achieve high precision with almost
no false positives if a true positive rate trade off is acceptable [17].

We select three of the most effective attacks for evaluating de-
fenses in the one-page setting:

• k-Fingerprinting (kFP) [9]: A classifier based on random
forests, each forest being a multiple decision tree. The deci-
sion trees are trained on a large set of features such as packet
counts, inter-arrival times and burst patterns.

• CUMUL [11]: An SVM trained on cumulative packet size
sums, with outgoing packets from the client counting posi-
tively to the cumulative sum and incoming packets counting
negatively. Notable for using a small number of features
(104).

• Deep Fingerprinting (DF) [15]: A Convolutional Neural Net-
work taking packet directions as input; it is currently the
state-of-the-art attack.

While there may be other WF attacks based on deep learn-
ing [1, 13], these attacks are sufficient for our evaluation of defense
performance.

2.3 Website Fingerprinting Defenses
To harden Tor against these attacks, researchers have proposed a
number of WF defenses [2, 7, 8, 10, 12]. Broadly, defenses can be
classified into one of three types:

• Noise: adding dummy packets in a random fashion to dis-
rupt classification. Examples include Front [8], which adds
dummy packets according to a Rayleigh distribution focus-
ing on covering the front of the packet sequence, and WTF-
PAD [10], which adds dummy packets to attempt to mimic a
interpacket timing distribution.

• Mimicry: disguising the traffic of a page to look like that of
another page. An example is Decoy [12] randomly loading a
decoy web page whenever a real web page is loaded.

• Regularization: defining fixed rules and patterns for all web
traffic to follow in order to limit feature leakage. An example

is BuFLO [7] and the later improvement Tamaraw [2], which
stipulate fixed packet rates that all packet sequences must
follow, delaying real data and adding dummy packets as
necessary, as well as only allowing a sequence to end at
specified lengths to reduce leakage.

We focus on evaluatingWTF-PAD, Front, Decoy, and Tamaraw in
this work as representative defenses from each type. Currently, no
WF attack has shown success against Front, Decoy, and Tamaraw.

2.4 Classification Basics
In the WF classification problem, the attacker (Oscar) obtains web
traffic traces by passive eavesdropping, and attempts to classify
them as positive (sensitive) or negative (non-sensitive) web page ac-
cesses. The attacker’s goal determines what he considers sensitive
and non-sensitive. We also refer to sensitive pages as monitored
pages and non-sensitive pages as non-monitored pages. For posi-
tive web page accesses, the attacker also wants to identify exactly
which page the client has visited. The problem to be solved by the
attacker is a hybrid between multi-class classification and binary
(sensitive/non-sensitive) classification, and we refer to it as the
multi-page open-world problem.

The client/defender (Alice) may try to obfuscate these traces to
thwart the attacker. Since the defender is aligned with the client,
we do not distinguish between them. A network-layer defender can
delay packets and insert new dummy packets at specific times. She
may do so based on which page the client is truly visiting.

On a multi-hop anonymity network such as Tor, the attacker sits
between the client and the first node. Since the first node can also
be an attacker, dummy packets are dropped by the second node.
Due to layered encryption, the attacker cannot read any packet,
which also means he cannot identify which packets are dummy
packets. He only knows the timing, size, and direction (to or from
the client) of each packet.

The attacker’s success is measured in his True Positive Rate
(TPR) (or recall) and his False Positive Rate (FPR). It may also be
measured in his precision, the percentage of positive classifications
that are true, keeping in mind the base rate, which is the client’s
chance of visiting a sensitive web page. The base rate is often low in
realistic WF scenarios. The defender wants to lower the attacker’s
TPR and precision.

2.5 The One-Page Setting
In previous work, WF defenses were evaluated according to:

(1) Their ability to reduce the recall (TPR) of known attacks, in
a multi-page closed-world or open-world setting;

(2) Their ability to reduce the precision of known attacks, in a
multi-page open-world setting.

In both cases, the number of positive classes was 100 or higher,
and there may be one negative class representing all non-monitored
pages. This setting was created to evaluate WF attacks; it is an
intentionally difficult setting to allow the attacker to prove his
general effectiveness [3, 18]. But the same settings were used to
evaluate website fingerprinting defenses [2, 8, 10, 18, 19], without
adjusting for the fact that the difficulty of the setting for the attack
makes it too easy for the defense to succeed.
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In this work, we propose that WF defenses should be evaluated
under the one-page setting, where there is only one monitored
class and one non-monitored class. The monitored class represents
one page that the attacker is trained to identify. The attacker’s
success is measured in recall and precision, and the defender’s
objective is to lower both. To analyze the defense’s effectiveness
over a range of pages, we repeat the experiment with different
pages as the monitored class, taking the mean performance of the
attacker on these pages.

We give two main reasons why the one-page setting is preferable
to the multi-page setting for defense evaluation.

First, and most importantly, a defense should be designed to
meet a high standard of evaluation. This is a general principle of
security and privacy research. A defense that assumes conditions
unfavorable to the attacker can only be considered a partial defense.

Second, it is realistic for an attacker to want to monitor only one
web page, and that is sufficient to threaten user privacy. A one-page
attack can satisfy many use cases:

• Targeted surveillance of a sensitive website to identify cer-
tain users or demographics;

• A police force tasked with busting a drug trade network;
• Targeted campaigns (and/or harassment) of users visiting a
certain website;

• A popular but embarrassing website that users would not
want to be identified as visiting, such as pornographic con-
tent;

• A website owner who only wants to track users accessing
his own homepage.

Such an attack can have a chilling effect on users’ willingness to
use anonymity networks and thus erode trust in the technology.

2.6 TPR/FPR Tradeoff
Another aspect that a defense evaluation should include is the trade-
off between TPR and FPR. It is possible to trade off some of the high
TPR of known attacks for a lower FPR to achieve better precision by
rejecting low-confidence positive classifications [17]. For a defense
to claim success, it must take this into consideration as well: it
needs to be successful against the entire range of TPR/FPR values
an attack can achieve, considering potential tradeoffs.

We will find that for many scenarios, it is not necessary for FPR
to be lower than the base rate in the one-page setting, unlike the
multi-page setting. In fact, some attacks perform best when the
attacker maximizes his TPR (no tradeoff is performed). This is an
unexpected consequence of using the one-page setting, and we will
explore this in our evaluation.

3 DEFENSE EVALUATION
In the previous section, we argued for the importance of using the
one-page setting to analyze WF defense effectiveness. We apply
this new methodology to state-of-the-art defenses in this section.
In Section 3.2, we determine if these defenses are effective against
WF attacks. We find that under the one-page setting, all known
defenses, even higher-overhead ones, are unable to lower TPR
to a satisfactory degree. We investigate the TPR/FPR tradeoff in
Section 3.3, and we are able to reduce the FPR of lower-overhead
defenses below 1% while maintaining 90% TPR.

To understand why even the stronger defenses have failed, we
will also discuss how previous design paradigms interact with the
one-page setting. We separately analyze Decoy (Section 3.4) and
Tamaraw (Section 3.5) to determine why they fail in spite of previ-
ous work.

3.1 Experimental Setup
We use Gong and Wang’s WF data set [8] for our experiments.
The data set is relatively recent (2019) and since we are evaluating
known attacks and defenses, it is best for us to maintain comparabil-
ity with previous work. The data set was collected on Tor Browser
8.5a7 on Tor 0.4.0.1-alpha. It contains Alexa’s top 100 websites, each
visited 100 times, with 10,000 other pages as the non-monitored
class. Though it is smaller than some other data sets used to evaluate
WF attacks [15], it is sufficient for our purpose as we are performing
defense evaluation. This data set was collected with one machine
connected to a university network, relying on Tor’s random cir-
cuit selection for generalizability. Our evaluation of results used a
computing cluster (left unnamed for blind review).

3.2 Results
We chose five representative defenses to evaluate: Random, WTF-
PAD, Front, Decoy, and Tamaraw. “Random” is a simple benchmark
defense that randomly adds dummy packets to the sequence in a
uniform fashion. The other defenses were chosen as representa-
tives of different defense paradigms. Sirinam et al. showed success
in attacking WTF-PAD with DF [15], and they showed DF to be
stronger than competitive deep learning attacks. Front, Decoy, and
Tamaraw are not considered “broken” by any attacks.

To test these defenses, we deploy the three WF attacks described
in Section 2.2 (kFP, CUMUL, DF) against them in the one-page
setting. We show the data overhead (extra data required to load
a page) of the defenses to compare their costs; the data overhead
is a burden to the network. Tamaraw is the only defense that also
delays packets, increasing page load times by 184%.1 We evaluate
both multi-page TPR/FPR and one-page TPR/FPR on Gong and
Wang’s data set.

In Table 1, we see significantly higher TPR values against all
defenses in the one-page setting; the gap is more pronounced when
a defense is applied than when there is no defense. kFP performs
notably better against Decoy than against Front and Tamaraw in
the multi-page setting, but their TPR in the one-page setting is
quite similar. Most surprisingly, the one-page setting exposes even
Tamaraw to a 91% TPR with kFP, where it only had a 2% TPR in
the multi-page setting. Tamaraw was presented as allowing no
more than a 10% true discovery rate for most websites [2], and
has been frequently shown to be the most robust defense against
WF [9, 10, 19].

Among the three attacks, kFP performed the best, and DF did
not perform especially well. This is likely due to the small training
sets (for DF, only 162 samples for training and 18 for validation) in
each classification problem. It may also be because certain hyper-
parameters in DF are sensitive to the classification problem — in
1This number is somewhat higher than prior work, which suggests a page load time
increase of around 140% [19], because we are using a more pessimistic simulation that
assumes inter-packet times cannot be shorter in the defended trace than in the base
trace.
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Table 1: Results of three attacks on WF defenses. Multi-page refers to the original multi-page open world methodology, while
One-page refers to the one-page methodology we recommend for defense evaluation in this paper.

Defenses Overhead
Multi-page One-page

kFP kFP CUMUL DF
TPR FPR TPR FPR TPR FPR TPR FPR

None 0% 91.3% 3.4% 99.1% 0.9% 97.7% 4.9% 86.5% 5.5%
Random 22% 49.8% 5.7% 97.6% 4.7% 96.5% 7.5% 83.9% 8.8%

WTF-PAD [10] 32% 60.3% 14.8% 97.6% 4.4% 5.5%1 0.3% 66.6% 73.6%
Front [8] 67% 18.5% 7.5% 92.9% 13.1% 80.5% 22.6% 76.2% 27.3%
Decoy [12] 98% 30.8% 9.2% 91.2% 10.0% 77.5% 26.7% 73.0% 39.6%
Tamaraw [2] 107% 2.9% 4.4% 91.0% 21.4% 91.1% 21.6% 59.8% 38.9%

1 The result for CUMUL on WTF-PAD is not in error; it is due to a failure of the SVM to converge based on preset parameters. While other parameters may produce better results,
we kept this result as it showed a limitation of SVMs and did not particularly affect any of our other results, which would be derived with kFP.
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Figure 1: CDF for TPR of kFP against Tamaraw for 100 dif-
ferent web pages.

fact, we had already lowered its training batch size parameter from
128 to 5, or the classifier could not be trained. While it is possible
that further optimizations to DF could improve results, our intent
is to evaluate defenses (not attacks), and the strong performance of
kFP is sufficient to do so.

Due to kFP’s superior performance compared to CUMUL and
DF for our scenario, from this point on, we evaluate defenses using
only kFP as a benchmark.

We want to determine the variance in performance against dif-
ferent pages in the one-page setting. We measure the TPR of kFP
against Tamaraw (the hardest defense) for each of 100 pages indi-
vidually and plot the results as a CDF in Figure 1. The standard
deviation of TPR across the 100 pages is fairly low at 6.9%, and
Figure 1 displays this phenomenon: no page had a TPR lower than
66%, and only 9 pages had a TPR lower than 85%. Broadly speaking,
no page in our data set is particularly safe in the one-page setting
even when protected by Tamaraw.

3.3 TPR/FPR Tradeoff
Decreasing the FPR increases precision, and it has been argued that
high precision is important for website fingerprinting [17]. The FPR
values we found in Table 1 are relatively high for Front, Decoy and
Tamaraw. We investigate if the FPR can be reduced by trading off
a portion of their high TPR values. For a defense to claim success,
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Figure 2: TPR and FPR for kFP when traded off based on
classifier confidence. Note the FPR scales up to 0.25. When
classifier confidence is ignored, the result would be the fur-
thermost top-right point on each curve. The results for Ran-
dom and WTF-PAD overlap each other.

it needs to show that it succeeds against the entire range of the
attacker’s possible TPR/FPR values.

For the TPR/FPR values we obtained above, classifiers treated
the two classes (monitored and non-monitored) equally. We can
reduce FPR with the simple but effective technique of increasing
the minimum threshold confidence (or class probability) required
to classify a trace as monitored, depending on the classifier. We
apply this technique and show the results in Figure 2.

The results show us that it is indeed possible to significantly
reduce the FPR incurred against each defense. We can lower the
FPR close to 0% when there is no defense (as was shown in previous
work [15, 17]), and it is even possible to do so with defenses. The
highest TPR at which less than 0.1% FPR could be measured was
63% for WTF-PAD, 42% for Decoy, and 20% for Front.

At the highest confidence settings, Tamaraw holds out as the
strongest (though most costly) defense against kFP, at 17.5% TPR
and 1.5% FPR; poor results for the attacker. The attacker achieves
37% TPR in the one-page setting compared to 2.9% TPR in the multi-
page setting, if we hold the FPR at 4.4% in both cases. The TPR/FPR
tradeoff is not especially effective for Tamaraw, as shown by the
relatively straight line in Figure 2 (a straight line with slope 1 would
indicate the trivial tradeoff).
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3.4 Decoys do not Force a 50-50 Guess
The use of the one-page setting has the added benefit of exposing
implicit assumptions that were not previously examined. Decoy is a
simple defense that loads a fake decoy page whenever a real page is
loaded. Since the WF attacker can at best identify both pages being
loaded together, and there is no way to know which of the two is
real (as both pages are in fact loaded), it is tempting to conclude that
the attacker is forced into a 50-50 guess and can therefore achieve
no more than 50% TPR under Decoy. However, this is contradicted
by our 91% TPR against Decoy.

The reason for this contradiction is that the set of decoy pages
cannot be assumed to come from the same distribution as real pages
being visited by the client. This is because different clients need
to use decoy pages from the same distribution (or their choice of
decoy pages alone could identify them), but they still visit real pages
differently. We replicate this effect in the experimental setting by
setting aside a portion of pages as a decoy page set, and loading both
monitored and non-monitored pages with randomly chosen decoy
pages from this set. As a result, packet sequences of monitored
pages still look more similar to each other than they do to packet
sequences of non-monitored pages.

To reduce the accuracy of the attacker to no more than 50%, the
client would have to always use the monitored page as the decoy
when visiting non-monitored pages, which is impossible as the
attacker decides which page to monitor.

From another perspective, we observe that if an attacker is
trained to monitor a specific sensitive page, and the attacker sees
that the client has visited two pages, among which one is the sen-
sitive page, the attacker’s ideal strategy is not to guess that the
sensitive page was visited 50% of the time — he should classify it as
sensitive much more often than that. This strategy works because
the chance that a sensitive page would be used as a decoy page is
usually much smaller than the chance that a sensitive client would
visit a sensitive page; all clients do not visit the same page at the
same base rate. The analysis needs to consider the fact that sensitive
accesses are not uniformly distributed among all clients.

3.5 Tamaraw and Anonymity Sets
Tamaraw regularizes the packet sequence, fixing packet rates, so
that the resulting packet sequence is defined by only one feature —
the sequence length. All packet sequences of the same length will be
identical to each other, so they can be considered to be in the same
anonymity set, and larger anonymity sets are created by padding
the sequence length to multiples of a fixed integer. In the multi-page
setting, an attacker cannot distinguish within the large and diverse
anonymity sets created by Tamaraw. But in the one-page setting,
Tamaraw failed, even though we tested a strengthened version of
Tamaraw that pads sequence lengths to multiples of 500 (instead of
100 in the original work [2]). We investigate why by exploring its
anonymity sets.

In Figure 3, we show a scatter plot of anonymity set sizes and
how many positive elements each contained. For classification, we
use a simple strategy of identifying anonymity sets and classifying
each anonymity set to the majority of elements it contained. This
strategy is Pareto-optimal for the attacker and would achieve a TPR
of 0.925 with an FPR of 0.176 (similar to kFP and CUMUL).
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Figure 3: Scatter plot of anonymity set sizes and the number
of positive elements in them, as well as their classification
using a simple majority strategy delineated by 𝑦 = 𝑥/2.

Here, we see that sensitive and non-sensitive pages belonged
to anonymity sets of very different sizes. The maximum size for a
set classified as non-sensitive was 19, while that of sensitive sets
was 53 (out of 200 elements in each classification problem). 79% of
sensitive pages belonged to anonymity sets of size 9 or above, while
only 26% of non-sensitive pages did so. Overall, 1998 out of 10000
sensitive pages belonged to anonymity sets that only contained
sensitive pages, while 6602 out of 10000 non-sensitive pages (a
majority) belonged to anonymity sets that only contained non-
sensitive pages. These are not truly anonymity sets, and they do
not confuse the attacker.

Non-sensitive sets were smaller because sequences of a sensitive
page were more similar to each other than non-sensitive pages
were to each other. Across our data set, the mean coefficient of
variation for the sequence lengths of a sensitive page was 0.196,
compared to 0.649 for non-sensitive pages. As a result of their
similarity, sequences of a sensitive page would be grouped together
in the same anonymity sets. To strengthen Tamaraw in the one-
page setting, either greater anonymity sets or more randomness is
required; we explore these options later when attempting to derive
a stronger defense in Section 5.1.

4 WEBSITE FINGERPRINTING SCENARIOS
The standard laboratory scenario for WF attacks is a basic super-
vised classification problem: the attacker is presented with labelled
testing elements, and his performance is evaluated by his overall
TPR and FPR. This standard scenario does not fully capture a real
attacker’s objective in WF, and it is not obvious how such an at-
tacker’s TPR/FPR would translate to a realistic threat. To provide a
more complete WF analysis, we define and investigate three WF
scenarios in this work. These scenarios allow us to determine if
the TPR/FPR values we found in the previous section would allow
an attack to succeed against the defenses. They will also allow us
to re-examine the implicit assumptions of the standard laboratory
scenario.

We will explore the following three scenarios:

• The selection scenario (Section 4.1), where the attacker,
monitoring many clients, picks out which ones are visiting
a sensitive page.
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• The identification scenario (Section 4.2), where the at-
tacker, monitoring a single client, decides if she is visiting a
sensitive page or not.

• The linking scenario (Section 4.3), where the attacker ob-
serves a visit to a sensitive page, and tries to determine which
of several clients did so.

4.1 Selection scenario
In the selection scenario, the eavesdropper monitors a large number
of clients, and a portion of them are visiting sensitive pages. He
wants to pick these clients out of the larger group as candidates
for further action, such as to identify members of a compromising
website or specific interest groups. Results of WF in the selection
scenario can allow him to decide where to apply more powerful but
resource-limited surveillance techniques, such as zero-day malware,
phone tapping, or electromagnetic monitoring.

We define the scenario as follows. 𝑆 clients visit 𝐾 pages each,
among which 𝑁 clients (“sensitive clients”) have visited a sensitive
page𝑀 times each. The other 𝑆 −𝑁 clients do not visit the sensitive
page. The eavesdropper wants to select 𝑁 ′ clients that are visiting
sensitive pages. To do so, he uses WF to classify all page visits, and
selects the 𝑁 ′ clients that have visited the most pages.

Analysis

We examine a setting with 𝑆 = 1000 clients among which 𝑁 = 30
clients visit sensitive pages. The attacker observes 𝐾 = 2000 page
visits for each client in total, and the sensitive clients visits𝑀 = 60
sensitive pages. The attacker attempts to guess who they are by
selecting the top 𝑁 ′ = 𝑁 = 30 clients by sensitive page access
count, where the count is determined by the classifier. Setting the
number of actual sensitive clients to be the same as the attacker’s
number of selections allows us to simplify the analysis by using a
single accuracy value to measure success, and it gives the attacker
the hardest possible task without making it inherently impossible.
(The attacker does not need to know𝑁 .) As 3% of clients are visiting
a sensitive page 3% of the time, overall, clients are only visiting the
sensitive page at a very low base rate of 0.09% — below the lowest
base rate examined in previous work [17]. We set a low base rate
so that the scenario is difficult for the attacker, in order to show
that defenses still do not succeed in this scenario.

We show the attacker’s success rate, defined as the percentage of
sensitive clients correctly identified as such, against four defenses
in Figure 4. The lines show how a TPR/FPR trade-off by increasing
the confidence limit would increase the success rate. Indeed, each
attack sees an increase in success rate due to the trade off:WTF-PAD
(100% → 100%), Decoy (76% → 100%), Front (84% → 100%), but
not so much for Tamaraw (53% → 59%). It is also disadvantageous
to increase the confidence limit too much, which would cause the
success rate to drop due to low accuracy.

The TPR/FPR trade-off is useful for this scenario because the FPR
is a stronger determinant of attacker success than TPR (in terms
of absolute value). An attacker achieving 90% TPR and 5% FPR has
the same success rate of 97.7% as an attacker achieving 80% TPR
and 3.9% FPR. Interestingly, we found that the Tamaraw attacker
does not benefit much from a TPR/FPR tradeoff, even though his
FPR against Tamaraw was 20% (much higher than the base rate).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

S
u
c
c
e
s
s
 R

a
te

Confidence

WTF-PAD
Decoy
Front

Tamaraw

Figure 4: Selection scenario: Success rate (percentage of sen-
sitive clients correctly identified) using kFP against four de-
fenses for𝑀 = 30, 𝑁 = 30, 𝑆 = 1000 and 𝐾 = 2000, varying the
confidence limit for a TPR/FPR tradeoff. 0.5 confidence is
equivalent to no tradeoff (maximum TPR).
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Figure 5: Selection scenario: Success rate against Decoy (91%
TPR, 10% FPR), while varying 𝑁 (the number of sensitive
clients), and keeping𝑀 (the number of sensitive pages each
sensitive client visits) at𝑀 = 1800/𝑁 to hold the overall base
rate constant at 0.09%. The attacker makes 𝐾 = 2000 observa-
tions of page visits on 𝑆 = 1000 total clients.

Without a TPR/FPR trade-off, the attacker is still decently successful
while incurring a much higher FPR against these defenses than the
base rate.

Concentration of base rate

Specifically, it is noteworthy that the eavesdropper can achieve
a high success rate with a relatively high FPR compared to the base
rate; a 5% FPR would be more than 50 times the base rate. This
may seem contrary to the standard laboratory scenario in which a
classifier fails when its FPR far exceeds the base rate: this is because,
in our scenario, the classifier’s goal is not to identify all page visits,
but rather to distinguish between a small group with 3% base rate
and a large group with 0% base rate. (Here we refer to the former
as the specific base rate.) Members of the small group are selected
based on their perceived number of sensitive actions by the attacker,
and so both a high TPR and a low FPR are important.

We examine the effect of the specific base rate in the following.
Fixing the TPR at 91% and FPR at 10% (similar to Decoy), we compute
the attacker’s performance in selecting 𝑁 clients visiting 1800/𝑁
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sensitive pages, varying 𝑁 , out of a group of 1000 clients.2 This
fixes the overall base rate at 0.09% while varying the specific base
rate of the group to be selected. We show the results in Figure 5,
where we see that the specific base rate has a powerful effect on the
success rate of the attacker, ranging from above 98% below 𝑁 = 20
(4.5% specific base rate) down to 35% at 𝑁 = 100 (0.45% specific
base rate). A larger specific base rate means fewer sensitive clients,
but they visit the sensitive page more frequently. There is a large
slide in success rate between 𝑁 = 20 and 𝑁 = 50. (Note that as 𝑁
increases to 150, the random chance of guessing a sensitive client
correctly increases linearly to 15%, so the success rate with high 𝑁
is partly due to random guesses.)

This adds a previously unaddressed factor to the discussion of
how the base rate affects the attacker — whether sensitive accesses
are concentrated in a few clients or spread among many. Even
if the two cases have the same overall base rate, it is far easier
for the attacker to detect sensitive clients in the former case. One
implication is that clients who only visit sensitive pages with Tor
place themselves at greater risk of being selected with WF; clients
who use Tor for both sensitive and non-sensitive activities are not
as easily detected.

We note that this scenario does not necessarily assume that there
are only two groups, one with a high base rate and one with a zero
base rate. This is because the attacker’s success rate on each group
is independent of the existence of other groups. When there are
multiple groups with different base rates, the attacker’s success rate
can be separately derived on each group.

If we had increased 𝑁 without decreasing𝑀 (causing an overall
increase in base rate), the attacker’s success rate would increase
slightly, from 84% at 𝑁 = 30 to 90% at 𝑁 = 100. While the attacker
would need to identify more clients, the overall task is easier as
more clients are sensitive. In fact, the increase in success rate is
almost identical to the increase in the random guessing success rate
(from 3% at 𝑁 = 30 to 10% at 𝑁 = 100). This shows that the value
of 𝑁 by itself does not explain the above result; it is indeed due to
the concentration of base rate.

The benefit of more observations

Another interesting factor determining the attacker’s success
in this scenario is the total number of observations the attacker
makes. If the attacker can monitor the client for a longer period of
time (collecting more page accesses), he will naturally be able to
classify the client more accurately.

We examine this effect in Figure 6, where we scale up 𝐾 and
𝑀 proportionally while keeping the specific base rate of sensitive
clients the same at 3%, based on our attack’s TPR/FPR against
Tamaraw, the strongest defense. We see the effect of 𝐾 on the
success rate is drastic: from a success rate of 34% when 𝐾 = 1000,
the attacker’s success rate increases beyond 98% above 𝐾 = 10000.
On the other hand, if the attacker could only observe 𝐾 = 100
accesses (i.e. only𝑀 = 3 sensitive accesses), the success rate is only
7%. The long-lived guard policy of Tor implies that Tor guards can

2If 1800/𝑁 is not an integer, the client randomly chooses between ⌊1800/𝑁 ⌋ and
⌈1800/𝑁 ⌉ so that it averages to 1800/𝑁 .
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Figure 6: Selection scenario: Success rate against Tamaraw
(90% TPR, 20% FPR) while varying 𝐾 , the number of page
accesses observed, and keeping 𝑀 = 0.03𝐾 to hold the base
rate constant.

practically collect large numbers of traces on clients connecting to
them, as they would have observation periods lasting months.3

4.2 Identification scenario
We flip around the selection scenario to consider an attacker that
wants to make a single yes/no decision on whether or not a spe-
cific client has been visiting sensitive pages. In the identification
scenario, the eavesdropper has been monitoring the client for a
long time, and has collected some traces each corresponding to a
single page access. The eavesdropper wants to know if the client
has visited certain sensitive sites, such as sites of a specific political
ideology, whistleblowing sites, or online marketplaces. Identifying
the client this way may give the eavesdropper sensitive targeting
information for purposes of surveillance, recruitment, harassment
or ostracization. Out of𝐾 pages, the client has either visited𝑀 mon-
itored pages, or has visited 0 monitored pages. The eavesdropper
faces a yes/no decision problem on whether or not the client has
visited monitored pages. The identification scenario was described
in earlier work [17] and we perform a more complete analysis here.

Analysis

We represent the number of detected monitored pages with
the variable 𝑥𝑚𝑜𝑛 . If the client does not visit monitored pages,
𝑃𝑟 (𝑥𝑚𝑜𝑛 > 𝐿) is given by the binomial distribution of 𝐾 trials
with success rate 𝐹𝑃𝑅; it is one minus the CDF up to 𝑥 = 𝐿. For
a sensitive client who visits𝑀 monitored pages, 𝑃𝑟 (𝑥 ′𝑚𝑜𝑛 > 𝐿) is
given by the sum of two binomial distributions, where there are
𝑀 trials of success rate 𝑇𝑃𝑅 and 𝐾 −𝑀 trials of success rate 𝐹𝑃𝑅.
The eavesdropper decides that the client is one to visit monitored
sites if he observes more than 𝐿 visits. Therefore, 𝑃𝑟 (𝑥𝑚𝑜𝑛 > 𝐿) is
the attacker’s false positive rate (𝐹𝑃𝑅𝑖𝑑 ) and 𝑃𝑟 (𝑥 ′𝑚𝑜𝑛 > 𝐿) is the
attacker’s true positive rate (𝑇𝑃𝑅𝑖𝑑 ) in the identification scenario.

Based on an attack with 90% TPR and 20% FPR (similar to Tama-
raw) that can observe 1000 page accesses for the client, we chart a
range of 𝑇𝑃𝑅𝑖𝑑 and 𝐹𝑃𝑅𝑖𝑑 values by varying 𝐿 in Figure 7. We see
that this attack would perform poorly against a 𝑀 = 10 (1% base
3If Tor guards were short-lived, it would take them longer to collect as many traces
on their clients depending on their share of the global guard bandwidth; however,
they would be able to do so for a greater number of clients over time, so we are not
necessarily recommending a short-lived guard policy.
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Figure 7: Identification scenario: TPR and FPR in the identifi-
cation scenario (𝑇𝑃𝑅𝑖𝑑 , 𝐹𝑃𝑅𝑖𝑑 ) based on a WF attack with 90%
TPR and 20% FPR (similar to kFP against Tamaraw), given
1000 observations out of which a sensitive client visits the
sensitive page𝑀 times. The line for𝑀 = 100 is nearly covered
by the x-axis as 𝐹𝑃𝑅𝑖𝑑 is close to 0.

rate) client, but it would perform well against a 𝑀 = 50 (5% base
rate) client, even though the FPR of the underlying attack is 20%.
At𝑀 = 50, the attacker can identify 67% of sensitive clients while
mis-identifying 1% of non-sensitive clients. At𝑀 = 100,𝑇𝑃𝑅𝑖𝑑 rises
to 97% while 𝐹𝑃𝑅𝑖𝑑 drops to 0.1%.

Just as we had observed for the selection scenario, the distribu-
tion of base rate among clients would also affect our results. We
found that in the above setting, if 10% of clients visited the sensitive
page 1% of the time, we could identify 51% of sensitive clients while
mis-identifying 30% of non-sensitive clients as sensitive; a poor
result. But if 1% of clients visited the page 10% of the time, we could
identify 96% of these clients while mis-identifying less than 0.01%
of non-sensitive clients.

While the results are dependent on 𝑀 and 𝐿, an attacker does
not need to know𝑀 to set 𝐿; he can do so based on his knowledge
of his classifier’s FPR by setting 𝐿 to be comfortably higher than
the FPR times 𝐾 .

How many sensitive pages can you visit before detection?

A client can make a small number of sensitive page visits without
detection, as due to the false positive rate, she may be statistically
indistinguishable from someone who has visited no sensitive pages.
Wewant to find howmany sensitive pages (𝑀) a client canmake out
of a total of 𝐾 page visits without being detected by the attacker.
Here, we say that the attacker successfully detects the client if
he achieves above 90% 𝑇𝑃𝑅𝑖𝑑 and below 1% 𝐹𝑃𝑅𝑖𝑑 . We consider
three defenses, Front, Decoy and Tamaraw in four settings: 𝐾 = 20,
𝐾 = 50, 𝐾 = 100, 𝐾 = 1000, and show the results in Table 2.

When the number of pages visited is as small as 𝐾 = 20, around
half of the page visits need to be sensitive for the attacker to con-
fidently classify the client as a sensitive one. As 𝐾 increases, the
number of sensitive pages the client can visit does not increase
proportionally; at 𝐾 = 1000, only a 4% to 7% base rate is required
for the attacker to detect the client.

It is worth noting that the number of sensitive pages a client can
safely visit is only about 50% higher under Tamaraw than Front,
although attack performance under Tamaraw is much worse. The
similarity of these results is largely due to their similarity in TPR

Table 2: Identification scenario: How many sensitive pages
a client can visit before an attacker has a high likelihood
(𝑇𝑃𝑅𝑖𝑑 > 0.9, 𝐹𝑃𝑅𝑖𝑑 < 0.01) of detecting them as such, depend-
ing on how many total pages a client will visit (𝐾). Results
are based on TPR/FPR values achieved by kFP against three
defenses, Front, Decoy, and Tamaraw. The Front* row is based
on results against Front after a TPR/FPR tradeoff.

𝐾 = 20 𝐾 = 50 𝐾 = 100 𝐾 = 1000

Front 8 10 16 44
Front* 9 11 14 41
Decoy 9 13 16 49

Tamaraw 11 16 22 69

(all within 90–93%). We investigate this further by performing a
TPR/FPR tradeoff on Front (TPR: 0.912 → 0.801, FPR: 0.100 →
0.069) for a 30% decrease in FPR, labelling the result under Front*
in Table 2. This slightly increases the number of pages a client can
visit in low 𝐾 settings, and decreases it in high 𝐾 settings; the
overall change is very small despite the large change in FPR. The
results suggest that a high TPR/FPR attack can perform well in the
identification scenario, even with a low base rate.

4.3 Linking scenario
In the linking scenario, the eavesdropper knows that a sensitive
page access is one of only several potential candidates. This may be
because he knows that the sensitive page visit was made at a specific
time through an observation outside of the anonymity network;
having broad tapping capabilities over the anonymity network, he
narrows it down to one out of several traces that happened at that
time. For example, this page visit may be whistleblowing/leaking
activity, a social media post, or a threat sent by e-mail. The eaves-
dropper wants to link the observed page visit with the specific trace,
which in turn tells him who was the source of that activity.

It is worth noting two interesting aspects of this scenario. First,
the base rate is not relevant insofar as it does not change the total
number of candidate traces. Unlike the previous scenarios, a client
cannot protect herself by lowering her base rate; she can only be
protected by other users who are also visiting web pages at the
same time (and possibly location). Second, the one-page setting is
a natural fit for the linking scenario, as there is no motivation for
the attacker to link any other pages.

Let the number of potential candidate traces be 𝑃 , among which
one is the true sensitive access. If one or more traces are classified as
a sensitive page visit, the attacker links the highest-confidence clas-
sification with the visit. If all traces are classified as non-sensitive,
the attacker links the lowest-confidence non-sensitive classification
instead. The success of the attacker is dependent on the quality of
the classifier’s confidence ratings.

Analysis

We set up the experiment by randomly choosing one sensitive
trace and 𝑃 − 1 non-sensitive traces out of our data set. We measure
the attacker’s success rate as the chance that the attacker correctly
identifies the sensitive trace. We repeat this experiment 10,000
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Table 3: Linking scenario: The chance that the attacker iden-
tifies which one out of 𝑃 traces is sensitive, using kFP’s con-
fidence metric to obtain the trace most likely to be classified
as sensitive.

𝑃 = 5 𝑃 = 10 𝑃 = 20 𝑃 = 100 𝑃 = 500

None 1.00 1.00 0.99 0.98 0.96
Random 0.98 0.96 0.93 0.81 0.6

WTF-PAD 0.98 0.96 0.93 0.82 0.63
Front 0.87 0.78 0.66 0.41 0.24
Decoy 0.91 0.85 0.78 0.59 0.44

Tamaraw 0.70 0.54 0.37 0.17 0.14

times for each defense and each value of 𝑃 . In Table 3, we show
the overall success rate of kFP against various defenses for 𝑃 = 5,
𝑃 = 10, 𝑃 = 20, 𝑃 = 50, 𝑃 = 100, and 𝑃 = 500.

When there is no defense, the attacker can link the sensitive
trace with the sensitive visit at very high probability even when
there are 500 candidate traces. Given 500 traces, the attacker can
also succeed most of the time against Random and WTF-PAD and
almost half of the time with Decoy. The result with Decoy affirms
once more that Decoy-disguised traces still retain much of the true
trace’s features. While Front is not as effective as Decoy in terms
of TPR/FPR, it is more effective at disguising the true trace in the
linking scenario.

For the highly costly Tamaraw, the attacker can still succeed
most of the time up to 𝑃 = 10. On the other hand, the attacker is not
likely to identify the one correct trace out of 𝑃 = 500 traces. In fact,
the attacker is only 20% likely to find the correct trace within his
top 10 guesses; the same probability is 74% for Decoy. Nevertheless,
the 𝑃 = 500 result is still 70 times better than random guessing.

To validate the usefulness of confidence in the linking scenario,
we consider what the attacker’s accuracy would be if he simply
attempted to classify all traces using kFP, and if there were multiple
positive classifications (or all classifications were negative), guessed
one of them randomly. Setting 𝑃 = 20, the attacker’s accuracywould
drop to 0.91 (compared to 0.99) with no defense; 0.65 (compared to
0.93) with WTF-PAD; and 0.34 (compared to 0.66) with Front. This
result shows that when evaluating defenses in the linking scenario,
a confidence metric helps demonstrate the attacker’s true capability.
The attacker’s strong results in the linking scenario can be said to
be a consequence of the distinctive confidence between positive
and negative classifications.

5 STRENGTHENING THE DEFENSES
Our experiments under the one-page setting show that known
website fingerprinting defenses cannot prevent the attacker from
classifying a web page, whether in the standard laboratory scenario
or in several scenarios designed for realistic attacker goals. We want
to see if known defenses could be fortified along their original de-
sign to meet this higher standard of evaluation; if not, new defenses
would have to be created. We investigate parametric adjustments
and changes to inject randomization into three defenses, Tamaraw,
WTF-PAD, and Front, and re-evaluate their performance in the
one-page setting.

5.1 Tamaraw
Tamaraw enforces (different) fixed packet rates on both parties
and pads the end of communication to a multiple of a parameter
ℓ . After regularizing the packet rate, if the smallest multiple of ℓ
greater than the total number of cells (including dummy cells) is
𝐴ℓ , sequence-end padding will pad it to (𝐴 + 𝑘)ℓ drawing 𝑘 from
the geometric distribution 𝑃𝑟 (𝑋 = 𝑘) = (1−𝑝)𝑘𝑝 . For convenience
we write ℓ = 500𝐿 and 𝑝 = 1/(𝐺 + 1) so that 𝐿 and 𝐺 are small
integer parameters for Tamaraw. In previous experiments, 𝐿 = 1
and 𝐺 = 1.

Increasing these two parameters gives us two different paradigms
for how to fortify a defense in the one-page setting. Increasing 𝐿
decreases variation between different sequences, making it more
likely that two different pages will produce the same sequence.
Increasing 𝐺 , on the other hand, increases random variation, so
that different sequences of the same page are more likely to produce
different results. Both are potentially able to confuse the attacker at
a greater cost to data overhead. (Note that sequence-end padding
does not increase page loading time as the client is not forced to
wait for sequence-end padding to finish before loading a second
page.)

We show the distinct effects of increasing 𝐿 and𝐺 on the perfor-
mance of kFP under the one-page setting in Figure 8a and Figure 8b
respectively. When increasing 𝐿,𝐺 is fixed at 1; when increasing𝐺 ,
𝐿 is fixed at 1. We observe that the TPR decreases and FPR increases
in both cases, narrowing the gap between the two and rendering
the classifier ineffective. In other words, it is possible to strengthen
Tamaraw in the one-page setting whether by increasing 𝐿 or𝐺 . One
oddity is a slightly increased TPR at high values of 𝐿, though the
classifier does not perform better overall due to the corresponding
increase in FPR.

To enable a direct comparison between these two strategies,
we plot the gap between TPR and FPR against the data overhead
of increasing 𝐿 and 𝐺 in Figure 9. We see that increasing 𝐺 is a
more efficient way to strengthen Tamaraw in the one-page setting,
and the difference is especially pronounced at higher overheads.
At 200% overhead through increasing 𝐿, we can reduce attacker
effectiveness to 80% TPR and 40% FPR; through increasing 𝐺 , we
can further reduce it to 70% TPR and 38% FPR. This suggests that,
for Tamaraw, increasing randomness is more cost-effective against
the one-page attacker than fixed deterministic padding, though the
optimal method may involve some combination of 𝐿 and 𝐺 .

In Section 3.5, we showed that Tamaraw failed under the one-
page setting because the sequence lengths of a monitored page
tended to occupy its own anonymity sets while non-monitored
pages were scattered. We re-examine the anonymity sets in 𝐿 =

9,𝐺 = 1 and 𝐿 = 1,𝐺 = 9 in Figure 10, compared with original
Tamaraw. Here we show the anonymity sets of site 1 compared to
100 non-monitored pages.

Figure 10 shows that in original Tamaraw, it is clear that the
attacker can achieve success by classifying sequences between 3500
to 6000 cells as positive, and all others as negative. Increasing 𝐿 to
9, there are only 8 anonymity sets left, and they are mostly evenly
divided between positive and negative cases. On the other hand,
increasing 𝐺 to 9, we observe the sequence lengths of both sets
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Figure 8: TPR/FPR of kFP against Tamaraw with (a) increas-
ing 𝐿 (greater deterministic end-of-sequence padding), and
(b) increasing 𝐺 (more random end-of-sequence padding).
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Figure 9: kFP against Tamaraw measuring the TPR minus
FPR gap against data overhead as a percentage. Here, 100%
data overheadmeans doubling the expected data of browsing;
this is incurred by original Tamaraw.
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Figure 10: Histogram of Tamaraw anonymity sets based on
total number of Tor cells for 100 instances of site 1 and 100
non-monitored instances. (a) is original Tamaraw.

being dispersed across possible values. These two distinct strategies
are both able to confuse the attacker.

We study whether or not these improvements would defeat a
one-page attacker in the selection scenario. Like before, the attacker
attempts to select 𝑁 = 30 clients from 𝑆 = 1000 where sensitive
clients visit the page at a base rate of 3%. We examine two cases of
the number of observed packet traces,𝐾 = 2500 and𝐾 = 10000. The
results are in Figure 11; they confirm that the attacker can indeed
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Figure 11: kFP against Tamaraw measuring success rate un-
der the selection scenario for 𝐾 = 2500 and 𝐾 = 10000, varying
𝑀 to keep base rate at 3%. For all lines, 𝑆 = 1000, 𝑁 = 30.

be defeated under the selection scenario, even with a large number
of observations (𝐾 = 10000). The difference is especially stark
under 𝐾 = 10000, dropping from 97% success rate at 100% overhead
(original Tamaraw) to 26% at 250% overhead when increasing 𝐺 . In
both cases, increasing 𝐺 is more efficient.

Our results shows that while it is possible to defeat the attacker
in the one-page setting using modified Tamaraw, cheaper options
still need to be explored. The overhead values we obtain are not
practical for general deployment to all Tor users.

5.2 WTF-PAD
WTF-PAD [10] is based on Adaptive Padding, which focuses on
eliminating inter-packet timing as a feature by inserting dummy
packets. It does so by mimicking expected inter-packet times (IPTs)
from a target distribution, which could be learned from real traces. It
was shown to cost little overhead and was effective against several
WF attacks, but later WF attacks based on deep learning defeated
it [15]. In this work, we also showed that it was not effective in the
one-page setting. Similar to before, we investigate if strengthening
the defense by increasing its overhead would allow it to succeed.

WTF-PAD has no explicit parameters except those that describe
its target IPT distribution. Shorter IPTs increase the overhead as
more dummy packets are generated. To increase its overhead, we
alter the sampling process from this distribution. 4 We divide all
sampled IPTs by a fixed number 𝐷 , maintaining the original ran-
domness of WTF-PAD but directly increasing the overhead. We
test five settings for 𝐷 , and show the results in Figure 12 plotting
the TPR/FPR of kFP against the overhead. The results show that
our fix for WTF-PAD is largely unsuccessful at defeating kFP in the
one-page setting. Even with 293% overhead, the TPR only drops
from 0.973 to 0.960, and the FPR increases from 0.045 to 0.062.

These results show that not all methods of adding dummy pack-
ets are equal; not all defenses can be strengthened for the one-page
setting. This may be because any method of adding overhead to
WTF-PAD compromises its original design principle of mimicking
real IPT distributions.

4We use the default normal_recv distribution in this and previous experiments.
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Figure 12: kFP against WTF-PAD when increasing the IPT
divisor, 𝐷 .
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Figure 13: kFP against Front when increasing the maximum
for the number of random packets, 𝑁𝑚𝑎𝑥 , under two settings,
𝑊𝑚𝑎𝑥 = 14 s and𝑊𝑚𝑎𝑥 = 28 s.

5.3 Front
While Tamaraw shows more promise for the one-page setting than
WTF-PAD, it delays user packets (unlikeWTF-PAD), thus degrading
browsing performance. We turn to Front as it is also a zero-delay
defense like WTF-PAD, and it was able to thwart several attacks
that WTF-PAD could not [8].

Front focuses on adding random dummy packets to the front
of the sequence based on two values: 𝑁 , the maximum number of
dummy packets to add, and𝑊 , a parameter that controls where
most of the packets will be added according to a Rayleigh distribu-
tion. For each sequence, 𝑁 is randomly picked between 1 and 𝑁𝑚𝑎𝑥 ,
and𝑊 is randomly picked between 0 s and𝑊𝑚𝑎𝑥 . We choose two
settings for𝑊𝑚𝑎𝑥 = 14 s and𝑊𝑚𝑎𝑥 = 28 s, and six settings of 𝑁𝑚𝑎𝑥
from {2500, 5000, 7500, 10000, 12500, 15000}.

We show the results in Figure 13. The results show some promise
in decreasing the performance of kFP in the one-page setting. At
200% overhead, we reduce the attacker to 80% TPR and 25% FPR,
compared to 70% TPR and 38% FPR for our improved Tamaraw.
The𝑊𝑚𝑎𝑥 = 28 s line is distinctly better at defending against kFP;
a higher𝑊 spreads the packets out more evenly and thus more
randomly.

These results suggest that the high standard set by the one-page
setting can also be met by zero-delay defenses, but the required data
overhead may be very large. So long as the network can tolerate
the extra data, the impact on user performance will be minimal. On
the other hand, the advantage of using Tamaraw is that an analysis

of anonymity sets can give certain guarantees on the upper bound
performance of anyWFattack, whichwe cannot obtainwith current
zero-delay defenses.

6 DISCUSSION
6.1 Varying the number of pages
In this work, we propose to evaluate defenses under the one-page
setting instead of the multi-page setting, which is more suitable for
attack evaluation. A middle ground between the two settings is the
binary multi-page setting: the attacker wants to monitor access to
a number of pages, but does not care which particular page is being
accessed. For an attacker who wants to build up a profile for the
user’s interests and beliefs, this is more powerful than the one-page
setting.

In Table 4, we vary the number of monitored pages in the binary
multi-page setting and measure the kFP attack’s TPR and FPR
against the same defenses we tested before. The attacker only needs
to determine if the page is monitored or not. We see that for most
defenses, an increase of the number of monitored pages up to 50
only slightly decreases TPR. We especially note that the difference
between 20 monitored pages and 50 monitored pages is small. Only
Tamaraw regains much of its defensive capability, as the spread
of monitored pages forces the attacker to frequently make false
positive errors. We can therefore conclude that for most defenses,
even if the attacker were to monitor access to 50 pages in the binary
setting, they could still succeed at high probability.

How many pages the attacker would monitor depends on the
attacker’s needs. One interesting caveat is that because Tor does
not save browsing history and does not cache cookies, many users
visiting a website would have to go through its front page instead
of jumping to a stored page or logging in automatically. Monitor-
ing only the front page can therefore be a useful way to capture
accesses to an entire website on Tor. Regardless of these results, a
WF defense should be designed to be strong enough to defeat an
attacker monitoring one page.

6.2 What Makes the One-Page Setting Difficult
Why did all evaluated defenses fail in the one-page setting? Broadly,
there can be two sources of difficulty for the one-page setting:

(1) When there is only one class, the classifier can learn to be
bolder in classifying for that class;

(2) A reduction in the total number of positive classes by itself
increases TPR and reduces FPR.

We can analyze each of these effects by performing an extra ex-
periment where the multi-page classifier is used to classify in the
one-page setting.5 Comparing the one-page and multi-page clas-
sifiers’ performance on the one-page setting will reveal the first
effect, and comparing the multi-page classifier’s performance on
the one-page and multi-page settings will show the second effect.

We focus on Front for this experiment.We perform the additional
experiment on Front and show the results in Table 5. To enable a
comparison between the two classifiers in the one-page setting, we
set a higher confidence limit for the one-page classifier to obtain
the same FPR as the multi-page classifier. The one-page classifier

5The converse, using the one-page classifier in the multi-page setting, is not valid.
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Table 4: TPR/FPR while varying the number of monitored pages in the one-page setting.

Defenses
Number of monitored pages

2 5 10 20 50
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

None 99.4% 1.3% 98.6% 1.4% 98.5% 1.6% 98.6% 1.5% 98.2% 1.8%
Random 97.9% 6.2% 95.5% 8.1% 94.3% 9.2% 93.1% 10.1% 91.6% 10.6%

WTF-PAD [10] 96.2% 4.9% 96.2% 6.5% 95.3% 7.0% 94.6% 7.7% 93.5% 7.7%
Front [8] 91.3% 15.1% 84.7% 18.3% 83.1% 17.5% 81.1% 18.8% 79.8% 17.3%
Decoy [12] 89.8% 11.5% 88.7% 12.6% 87.8% 13.1% 87.2% 13.6% 86.0% 13.2%
Tamaraw [2] 85.1% 28.8% 76.0% 36.8% 68.7% 37.7% 60.3% 36.2% 51.4% 31.3%

Table 5: TPR/FPR of the one-page/multi-page classifier in the
one-page/multi-page setting.

Classifier Setting TPR FPR

One-page One-page .929 .131
One-page One-page .320 .003
Multi-page One-page .220 .003
Multi-page Multi-page .185 .075

then achieves a moderate 10% increase in TPR. Comparing the
multi-page classifier on the two settings, we see that it achieves a
slightly higher TPR and a 22-fold reduction in FPR in the one-page
setting. The significant reduction in FPR is likely more significant
for most scenarios, i.e., the one-page setting is difficult mostly
because having only one positive class drastically reduces FPR.

6.3 Notes on Deployment
The results of our work suggest that current defenses require a
very large overhead increase to be effective in the one-page setting.
While this means that general deployment against the one-page
setting is likely too expensive, users who desire a higher level of
privacy could still have the option to adopt it. Partial deployment
of a WF defense can be done feasibly at low cost: as only the users
who actively install and use the defense would incur a cost for the
network, the overall burden on the network would remain low. Our
higher-overhead modified Tamaraw can serve this purpose.

One may point out that incremental deployment can harm pri-
vacy as people who use the new version will be distinct from clients
using the old version. This is an important consideration in e.g.
browser fingerprinting and censorship resistance. Unlike these sce-
narios however, in WF, the attacker already knows the client’s
identity and only seeks to determine the client’s behavior. The
client’s discernible willingness to adopt a WF defense only tells the
attacker that the client cares about privacy, which we believe is not
valuable information considering that the same client is already
using Tor. It is nevertheless true that a larger anonymity set is
beneficial for any privacy technology.

7 RELATEDWORK

7.1 WF Defenses and What Broke Them
We give a brief overview of the history of WF defenses focusing on
how they were broken.

Two early WF defenses, Adaptive Padding [14] and Traffic Mor-
phing [20], were designed for HTTPS and VPN. The former focuses
on covering interpacket timing and the latter on packet sizes. They
were found to be ineffective against the first WF attacks that could
attack Tor [3, 18]. In fact, some effective WF attacks do not use
interpacket timing and/or packet sizes [11, 15].

Adaptive Padding was later modified and improved to become
WTF-PAD [10]. It was able to show success against earlier WF
attacks, but it was later broken with DF by Sirinam et al., based on
Convolutional Neural Networks [15].

Two mimicry defenses were proposed, Supersequence [18] and
Walkie-Talkie [19], but they both assume the client has some knowl-
edge of the web pages to be loaded, and have not been proven
practical to deploy. Tor implemented its own defense based on
randomized pipelining in response to WF, but the defense has not
proven effective against WF attacks and was removed during the
upgrade to HTTP 2.0.

This work shows that three defenses, not broken in prior work,
are not sufficiently strong in the one-page setting: Front, Decoy, and
Tamaraw. Gong and Wang proposed Front [8] to cover the front of
a packet sequence with dummy packets, as it is the most feature-
rich portion of the sequence. Panchenko et al. proposed Decoy [12]
to cover real page loads with fake page loads. Tamaraw [2] fixed
a weakness of BuFLO [7], the first regularization defense, which
was vulnerable as it did not cover packet sequences more than 10
seconds long.

7.2 Other defenses
The main goal of our work is to demonstrate the value of the
one-page setting for the evaluation of WF defenses. To do so, we
re-evaluated the best network-layer defenses, which constitute the
majority of WF defenses. There are other defenses that can be
applied to defeat WF as well, such as ALPaCA [4], which is a server-
side defense; TrafficSliver [5], which aims to ensure that the attacker
will only be able to see a small portion of the traffic6; and Glue [8],
which adds dummy packets to glue together packet sequences
6TrafficSliver also investigates a slightly different attacker to our model: their attacker
controls Tor nodes and would be made to see partial traffic under TrafficSliver, but our
attacker is local to the client and will see all client traffic.
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belonging to different web pages. As our focus on network-layer
WF defenses suffices to show the importance of the one-page setting
for WF defense evaluation, we did not tackle the difficult problem
of implementing and comparing non-network defenses on the same
basis as network-layer defenses, and we leave it as future work.

7.3 One-Page Setting in WF
We are not aware of any work that evaluated either attacks or
defenses under the one-page setting — our results suggest that if
those defenses were, they would have been seen as ineffective. The
binary setting (two classes but with multiple monitored pages, as
in Section 6.1) has sometimes been used to evaluate WF attacks in
the open world [11, 12].

8 CONCLUSION AND FUTUREWORK
In this work, we set out to investigate WF defenses under the one-
page setting. We found that several defenses, Front, Decoy, and
Tamaraw, left the client vulnerable to WF attacks in the one-page
setting. This was especially surprising for Tamaraw, which was
designed as a future-proof defense against which any WF attack
would fail. We found that in the one-page setting, the anonymity
sets created by Tamaraw were too severely biased towards either
class to be useful. Our investigation into bolstering these defenses
shows that Tamaraw can become useful for the one-page setting
with greater randomization at the cost of higher data overhead. We
propose that the one-page setting should be used for all defense
evaluation in the future.

We also explored a number of different WF scenarios that could
not be captured by the standard laboratory scenario. We showed
that WF attacks were indeed able to succeed in these scenarios in
the one-page setting as well. These scenarios also introduced a num-
ber of new parameters that can significantly affect the attacker’s
performance. For the selection and identification scenarios, these
include the number of total observations and the concentration of
base rate. In the future, there may be more powerful attacks that
can achieve success in these scenarios with few observations.

In our results, an improved version of Tamaraw is currently the
best defense for the one-page setting, but it is not practical for
large-scale deployment due to its high overhead costs and packet
delays. One of its design flaws is a fixed constant packet rate, which
is dissimilar to how real web pages are loaded; using varying packet
rates that do not depend on the base page being loaded may be more
efficient. Another possibility is that our pessimistic simulation may
be over-estimating the cost of Tamaraw, and full evaluation on a
real deployment may show better results.

We would like to thank the authors of the relevant works for
sharing their code with us, as well as Gong and Wang for sharing
their data set with us to allow our evaluation.
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