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Abstract
Website fingerprinting (WF) is a traffic analysis attack

that allows an eavesdropper to determine the web activ-
ity of a client, even if the client is using privacy tech-
nologies such as proxies, VPNs, or Tor. Recent work
has highlighted the threat of website fingerprinting to
privacy-sensitive web users. Many previously designed
defenses against website fingerprinting have been broken
by newer attacks that use better classifiers. The remain-
ing effective defenses are inefficient: they hamper user
experience and burden the server with large overheads.

In this work we propose Walkie-Talkie, an effective
and efficient WF defense. Walkie-Talkie modifies the
browser to communicate in half-duplex mode rather than
the usual full-duplex mode; half-duplex mode produces
easily moldable burst sequences to leak less information
to the adversary, at little additional overhead. Designed
for the open-world scenario, Walkie-Talkie molds burst
sequences so that sensitive and non-sensitive pages look
the same. Experimentally, we show that Walkie-Talkie
can defeat all known WF attacks with a bandwidth over-
head of 31% and a time overhead of 34%, which is far
more efficient than all effective WF defenses (often ex-
ceeding 100% for both types of overhead). In fact, we
show that Walkie-Talkie cannot be defeated by any web-
site fingerprinting attack, even hypothetical advanced at-
tacks that use site link information, page visit rates, and
intercell timing.

1 Introduction

Website fingerprinting (WF) attacks are classification at-
tacks that allow a local, passively observing eavesdrop-
per to determine which web page a client is visiting by
observing the client’s sequence of packets. WF attacks
succeed against clients using privacy technologies, such
as VPNs, IPsec, and Tor, that hide the contents and desti-
nations of packets. The attacker—such as the client’s ISP

or government—uses various packet sequence features,
such as packet counts, packet order, packet directions,
and unique packet lengths to classify the web page [5].
WF attacks require only local eavesdropping capabilities,
small computational cost, and carry little risk of detec-
tion. As web-browsing clients of these privacy technolo-
gies do not want to reveal the web pages they are visiting
to any eavesdropper, they need to defend their privacy
against WF in some way.

Website fingerprinting is a well-established threat to
privacy in the literature [8, 14, 23], as well as in prac-
tice: Tor, a popular anonymity network, has imple-
mented a WF defense [24, 26]. However, Tor’s de-
fense does not succeed in lowering the accuracy of
WF attacks [6, 31]. Researchers have proposed alterna-
tive defenses, but these defenses are either ineffective
against newer attacks [31] or carry a very large over-
head [4, 8, 20, 31]. We describe previous website finger-
printing work in detail in Section 2.

In this paper, we present Walkie-Talkie (WT), a new
website fingerprinting defense, with the following prop-
erties:

1. Effective: Many WF defenses have failed against
newer WF attacks. WT succeeds against all known
WF attacks, including attacks that leverage timing
and packet ordering.

2. Efficient: A high bandwidth overhead burdens the
network, while a high time overhead frustrates the
user. (We define these terms rigorously in Sec-
tion 3.2.) WT requires a much smaller overhead
than all known effective defenses.

3. Easy to use: WT requires no changes to web servers
and therefore does not impact server performance,
as it needs to be deployed only on the client and
proxies. Our implementation only modifies the ap-
plication layer. Furthermore, the defense can be de-
ployed incrementally as it does not depend on other
clients using the same defense.
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Walkie-Talkie consists of two components: half-
duplex communication and burst molding. We describe
both components in Section 4. These components trans-
form packet sequences of monitored sensitive pages and
benign non-sensitive pages, so that these packet se-
quences are exactly the same (each packet has the same
timing, length, direction and ordering). Since the packet
sequences are exactly the same, and WF attacks are
based solely on classifying packet sequences, no WF at-
tack can succeed against Walkie-Talkie. To mold sen-
sitive packet sequences into non-sensitive packet se-
quences, the client would need to have some information
about them. We will show that such information can be
practically obtained and delivered to the client.

For the purposes of this paper, we base our experi-
ments and implementation on Tor, though Walkie-Talkie
works on any other setting where website fingerprint-
ing is a threat (using encryption with proxies to hide
from a local attacker). We evaluate Walkie-Talkie on
a data set collected over Tor, squaring off our defense
against known attacks and other known defenses in Sec-
tion 5. We show that known website fingerprinting at-
tacks are unable to succeed against packet sequences un-
der Walkie-Talkie, and that our defense has a signifi-
cantly lower overhead compared to known defenses. We
describe ways to defeat a hypothetical attacker using
more advanced strategies beyond known website finger-
printing attacks in Section 6. We conclude in Section 7,
and we include a link to share our code and data in the
Appendix.

2 Related Work

Remote side-channel analysis can be used to attack web
clients in a wide range of scenarios, including network
timing attacks [3], cache attacks [21], and browser fin-
gerprinting [9]. Some of these involve an active attacker,
for example one that may send JavaScript requests when
the client visits an attacker-controlled web page. This
work focuses on defeating website fingerprinting (WF),
where the attacker is passively monitoring web pack-
ets. Researchers have identified WF as a potential attack
against privacy since 1998 [7]. WF has become espe-
cially relevant with the growing popularity and usabil-
ity of privacy technologies such as Tor and the revela-
tion that state-level adversaries are willing to eavesdrop
on Internet users en masse [11]. As a result, Tor cur-
rently employs a WF defense [24]. In this section, we
discuss known WF attacks and defenses to contextualize
our work.

2.1 Attacks

There is a long line of research on WF attacks [6, 12,
13, 15, 16, 22, 23, 30, 31]. In WF, the attacker classi-
fies which web page each testing packet sequence be-
longs to. To do so, the attacker learns to classify using a
set of training packet sequences and a machine learning
technique. In the closed-world scenario, testing packet
sequences come from a (small) list of monitored sensi-
tive web pages the attacker knows, and the attacker must
distinguish packet sequences coming from each of those
pages. In the more realistic open-world scenario, testing
packet sequences could also originate from non-sensitive
web pages outside of the list and unknown to the attacker.
In the open-world scenario, the attacker needs to distin-
guish between sensitive web pages and be able to identify
that a non-sensitive web page is non-sensitive.

Over time, researchers have demonstrated increas-
ingly accurate [22] and noise-tolerant attacks [33] us-
ing better classifiers. While older attacks were only able
to identify pages in the closed-world scenario, newer at-
tacks are also able to tackle the open-world scenario, thus
posing a practical threat to privacy. We refer the reader to
previous work [5, 22, 31] for a more detailed discussion
of the specific workings of each WF attack and how they
have evolved.

2.2 Defenses

Wright et al. (2009) published traffic morphing [34], a
defense that randomly pads unique packet lengths so that
these packet lengths look as if they came from another
distribution of packet lengths corresponding to another
web page. They showed that this defense was effec-
tive against an earlier attack (2006) by Liberatore and
Levine [15], because that attack relies on unique packet
lengths and does not consider other features such as
packet ordering. Later, Wang et al. (2014) showed that
this defense was not effective against their new attack,
which uses packet ordering as a feature [31].

Luo et al. (2011) published HTTPOS (HTTP Obfus-
cation) [17]. They implemented the defense on the client
side using features in HTTP: the client sets a Range
header in order to split traffic into packets of random
length and uses HTTP pipelining to change the number
of outgoing packets. Luo et al. have shown that this is
a successful defense against older attacks [2, 15, 30], but
other researchers have also found that it is not a success-
ful defense against several newer attacks [6, 31].

Tor has implemented another WF defense [24] in re-
sponse to a WF attack by Panchenko et al. [23]. Tor’s
defense uses HTTP pipelining by randomizing the max-
imum number of requests in a pipeline, so that the order
of requests may change if the number of requests exceeds
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the depth of the pipeline. This defense has no bandwidth
overhead as pipelining does not introduce extra packets.
Tor has updated its defense [26] recently in response to
newer attacks, but both versions of Tor’s defense have
little effect on the accuracy of known attacks [6, 31, 32].

We are aware of six WF defenses that are still effec-
tive: Decoy (Panchenko et al. 2011 [23]), BuFLO (Dyer
et al. 2012 [8]), Tamaraw (Cai et al. 2014 [5]), CS-
BuFLO (Cai et al. 2014 [4]), Supersequence (Wang et
al. 2014 [31]), and Glove (Nithyanand et al. 2014 [20]).
We refer to BuFLO, Cs-BuFLO, and Tamaraw as BuFLO
defenses, as the latter two are modifications of BuFLO
to lower overhead. Supersequence and Glove share the
same usability issue as our work: they require the client
to have some information about web pages. Whereas the
issue is a stumbling block for Supersequence and Glove,
our work resolves this issue by using half-duplex com-
munication to minimize the amount of information the
client needs to have, which we describe in detail in our
evaluation (Section 5). All of these previous effective
defenses generally require more than 100% bandwidth
and/or time overhead.

3 Preliminaries

3.1 Attack Scenario
We consider a web-browsing client that is connecting to
the Internet using one or more proxies over an encrypted
connection. A packet received over such a network (e.g.,
a TLS packet) at some time t and having some length `
is denoted as p = (t, `). A packet sequence is denoted
as s = 〈p1, p2, . . .〉. We use positive lengths to denote
outgoing packets from the client and negative lengths to
denote incoming packets.

We assume the attacker is local to the client and pas-
sive, consistent with previous works on website finger-
printing. Possible local attackers may include the client’s
ISP, wiretappers, packet sniffers, and other eavesdrop-
pers. Since the attacker is local, the attacker knows the
client’s identity, but does not know which page she is vis-
iting because she is using one or more proxies. As a pas-
sive eavesdropper, the attacker never attempts to modify
the client’s packet sequence. The attacker is therefore
very hard to detect.

The attacker seeks to identify static web pages;
Walkie-Talkie does not protect dynamic content. It is
difficult to defend dynamic content as a whole, as band-
width and timing requirements vary significantly. For ex-
ample, it would be overwhelmingly expensive to make
an online chatroom confusable with a high-quality video
stream. Some types of dynamic content are not sus-
ceptible to WF, such as chatting and file downloading.
Other works have shown that search queries [18] and

videos [27] are susceptible to fingerprinting attacks. As
pages are static, they are associated with finite-length
packet sequences.

In our scenario, at least one proxy is outside the WF
attacker’s control. Otherwise, the attacker has already
won without the need of website fingerprinting: previous
work has shown that an attacker with control over both
ends of a multi-proxied connection can compromise the
client’s privacy completely [19]. The non-compromised
proxy (which we simply refer to as the proxy hereafter) is
willing to protect the client’s privacy by shaping the traf-
fic according to her specification. A proxy who shapes
the traffic incorrectly can be easily detected by the client,
who sees the whole packet sequence.

As a preliminary, the client and proxy implement a
simple defense: all packets they send to each other are
of the same length, much like in Tor. They can do so by
splitting longer packets and padding shorter ones. Pre-
vious work has shown that TCP packet lengths leak too
much information to the WF attacker [5]. Indeed, Tor re-
lays use fixed-length cells to deliver information; for this
reason, previous work has found that Tor is much harder
to attack with WF than many other web privacy technolo-
gies [13], though Tor is still vulnerable. Borrowing Tor’s
terminology, we use the term “cells” instead of “packets”
to describe the fixed-length data elements, and scale our
size units so that a cell has |`|= 1. Note that although we
borrow the fixed-size cell concept from Tor, our defense
is nevertheless applicable to other technologies such as
VPNs and IPsec.

3.2 Overhead

To show that WT is efficient, we will evaluate its band-
width overhead and time overhead.

The bandwidth overhead of a defense is the num-
ber of dummy cells added by the defense, divided by
the number of cells in the undefended (original) cell se-
quence. Dummy cells are necessary to obfuscate the true
amount of data on the wire. Bandwidth overhead repre-
sents a burden to the proxy and possibly other proxies be-
tween the client and the proxy. Note that the web server
does not suffer from bandwidth overhead; it will never
generate or see dummy cells.

The time overhead of a defense is the extra amount
of time required to load the cell sequence, divided by the
original amount of time required. To keep bandwidth
overhead and time overhead separate, we assume that
dummy cells do not add to the time overhead by them-
selves (i.e., the bandwidth is sufficient that extra dummy
cells can be sent without delaying real cells). Neverthe-
less, all known effective WT defenses incur a large time
overhead, typically because they artificially delay cells
in order to induce desired traffic patterns such as sending
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cells at a constant rate. A large time overhead deteri-
orates the client’s experience, as the client needs to wait
longer to load web pages, but it does not burden the prox-
ies.

4 Components of Walkie-Talkie

Walkie-Talkie consists of two components: half-duplex
communication and burst molding. To defend a cell se-
quence from a sensitive web page, half-duplex communi-
cation transforms the cell sequence into a burst sequence.
which is then molded into a burst sequence from a non-
sensitive web page. We describe both components and
how they work together in detail in this section.

4.1 Half-Duplex Communication

We modify the client’s web browser so that it commu-
nicates in half-duplex mode, much like a walkie-talkie.
Normally, web browsing is full-duplex: multiple servers
are sending web page data to the client while the client
simultaneously sends further resource requests, possibly
to new servers. The pattern of exactly when the client has
received, for example, an img tag within an HTML re-
source, causing it to immediately fetch the corresponding
image resource, is a strong feature for the WF attacker.
Under our defense, the client only sends requests after
the web servers have satisfied all previous requests. As
a result, the client and proxy both send data in interleav-
ing bursts of incoming and outgoing cells. Walkie-Talkie
does not affect web servers.

The goal of half-duplex communication is to
reduce the information available to the WF at-
tacker about the cell sequence s to the form s =
〈(b1+,b1−),(b2+,b2−), . . .〉, a burst sequence: each bi+
is the number of continuous outgoing cells sent in a burst
and each bi− is that for the succeeding incoming cells.
We can think of half-duplex communication as a way to
group same-direction cells together.

The benefit of using burst sequences instead of cell se-
quences is that they can be molded at little overhead, and
molding them is computationally cheap. (We describe
molding in detail in Section 4.3). Indeed, previous de-
fenses (Supersequence [31], Glove [20]) have attempted
to mold cell sequences directly, at a much greater cost in
overhead. Another issue with these previous defenses is
that they require the client to know the cell sequences of
many pages, but cell sequences carry a lot of information
and are therefore difficult to deliver and store. Burst se-
quences are much lighter in information content, and we
will show that it is practical to deliver and store hundreds
of thousands of burst sequences.

4.1.1 How browsers work

In this section we describe how browsers use persistent
connections to load data from a web server. We use the
terminology defined in RFC 7230 on “HTTP/1.1 Mes-
sage Syntax and Routing”, especially its discussion on
connection management in Section 6 [10]. While our
implementation is based on Tor Browser, any browser
with persistent connections (i.e., any browser supporting
HTTP/1.1) can be modified to support half-duplex com-
munication.

During web browsing, clients make requests to ob-
tain data from the server (or post data to the server). To
send requests, the browser creates or re-uses persistent
TCP/IP connections (up to a preset maximum number of
connections). When requests are complete, the browser
may close the attached connections, or keep them alive
as open connections in order to send further requests to
the same server.

As the total number of simultaneously open connec-
tions is (tightly) limited, a browser will often be un-
able to make further requests until current requests are
completed. Until then, the browser stores the request
in a pending request queue. When a request completes
or when a connection dies, the browser enumerates the
pending request queue in an attempt to send requests
(sometimes by creating new connections). During the
enumeration process, the browser may re-use open con-
nections or close them to make room for new connections
to other servers.

4.1.2 Implementation of half-duplex mode

We add two states to the browser to enforce half-duplex
communication: walkie and talkie. Conceptually, the
walkie state corresponds to an idle browser; the talkie
state corresponds to a browser that is actively loading a
page (which may be any number of resources). We ex-
plain each below. Our modification only adds 26 lines of
code and removes 12 lines of code from the connection
manager in Tor Browser (which is itself a modification
of Firefox), and it is available for download with a link
in Section 7.

The browser starts in the walkie state. When the client
starts any request while in the walkie state, the browser
sends the request immediately, and the browser switches
to the talkie state. After the page has finished loading,
when there are no pending requests left, the browser will
return to the walkie state.

In the talkie state, the browser is currently loading
a page. The browser always queues new requests in
this state; it never sends requests immediately. Further-
more, the browser does not enumerate the pending re-
quest queue whenever any connection dies or become
idle. Rather, the browser only enumerates the request
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queue and sends out requests when there are no active
connections left (i.e., all connections have died or be-
come idle). If instead the request queue is empty, the
browser returns to the walkie state; page loading has
stopped.

We justify why the above states implement half-
duplex communication by making the following obser-
vation: the client never attempts to initiate new HTTP
requests when there are any active connections left. This
is true in both the walkie and the talkie state. Since
an HTTP server does not actively initiate contact with
the client, the lack of active connections means that the
server is never sending data when the client initiates new
HTTP requests.

However, the above alone is not sufficient to ensure
half-duplex communication. This is because making a
new HTTP request is not instantaneous. Unless a pre-
existing open connection to the server exists, the client
must spend an extra round-trip time to open a new con-
nection. The round-trip time creates a time gap that
causes the client to talk when the servers are already re-
sponding to other HTTP requests. One way to solve this
problem is to ensure that the client must establish a con-
nection and send the HTTP request in two bursts rather
than one burst. We implement a more efficient solution
to this problem, as described below.

4.2 Optimistic data
Normally, when a client wishes to load a resource from
a web server, the client makes a TCP connection re-
quest, waits for the server’s request acknowledged mes-
sage, and only then will the client send a GET request to
load the resource. This creates an extra round-trip time
that can be removed by having the client send both the
TCP connection request1 and the HTTP GET request at
the same time. The final hop holds the GET request until
the TCP connection is established, and then sends out the
GET request. This is known as optimistic data in Tor, and
Tor Browser has used optimistic data since 2013 [25]. As
optimistic data works on Firefox in general if the client
is using a SOCKS proxy, users of other privacy options
and anonymity networks can use optimistic data as well.

Optimistic data works at the socket level. Normally,
after sending a connection establishment request, the
socket waits for an acknowledgement by the server be-
fore informing the browser that it is ready to send re-
quests. With optimistic data, the socket does not wait,
but rather it immediately pretends to the browser that the
server has established the TCP connection, which causes
the browser to send the GET request immediately. Op-

1The TCP connection request is here an application-layer message
instructing the last hop in the anonymity network to make a TCP con-
nection to the desired destination.

timistic data is useful for our defense, as it allows the
client to establish a new connection and send the rele-
vant request at the same time. Optimistic data reduces
the number of bursts and thus the amount of padding we
need to confuse the attacker.

4.3 Burst molding

Burst molding draws from the concept of Decoy, the WF
defense described by Panchenko et al. [23], which loads
two pages in parallel to confuse the adversary, at an ap-
proximately 100% bandwidth overhead. The adversary
cannot determine which of the two pages is really visited
by the client. We can further leverage the open-world
scenario to improve the defense mechanism: if the real
page is a non-sensitive page, we will choose a sensitive
page as the decoy page, and vice versa. If the client’s sen-
sitive pages are always loaded with popular non-sensitive
pages, the attacker can never determine that she has vis-
ited a sensitive page. This is especially effective if the
non-sensitive page is sufficiently popular, in which case
the attacker suffers from the base rate fallacy. It is plain
to see that Decoy is effective no matter what classifier the
WF attacker uses. Burst molding is able to achieve the
same property.

However, instead of actually loading two pages, burst
molding simulates loading two pages by loading the su-
persequence of two burst sequences, which allows a
much lower overhead than loading two pages. A se-
quence s′ is a supersequence of s if s′ contains s; this
applies to both cell sequences and burst sequences. The
idea of simulating supersequences is inspired by Super-
sequence [31] and Glove [20]. Allegorically, adding
padding cells is like injection molding: burst molding
adds cells to the original burst sequence so that it is
molded into the supersequence.

Burst molding adds fake cells to burst sequences
as follows. If the number of cells in a burst of the
real page is bi = (bi+,bi−), and for a burst of the
decoy page it is b′i = (b′i+,b

′
i−), we will send b̂i =

(max{bi+,b′i+},max{bi−,b′i−}) cells. We do so for ev-
ery burst in each burst sequence. If the number of bursts
in the two burst sequences is different, we add fake bursts
consisting of entirely fake cells to the shorter sequence.
We do so for each burst, resulting in a significantly lower
overhead compared to simply loading two pages at once:
burst molding uses the max, while Decoy would use the
sum of burst sequences. The attacker knows that any
subsequence of the above is possibly the real page—
including the real and decoy pages themselves—but can-
not tell which is the real page.

Fake cells in a burst add to the bandwidth overhead,
but do not add to the time overhead (according to our
definition in Section 3.2). Fake bursts consisting of en-
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Figure 1: Diagram showing the effect of Walkie-Talkie
on cell sequences. Black circles indicate outgoing cells
and white circles indicate incoming cells. Walkie-Talkie
consists of two steps: half-duplex mode and burst mold-
ing. Half-duplex mode groups cells of the same direction
together, while burst molding adds fake cells to make
sensitive and non-sensitive cell sequences the same.

tirely fake cells add to both the bandwidth and time over-
head. We show the effect of half-duplex communication
and burst molding in Figure 1 as an illustration.

4.3.1 Advantages

We will show that burst molding is more effective and
has lower overhead compared to other defenses in Sec-
tion 5. Burst molding has several other qualitative ad-
vantages, which we describe below:

Cover story.
With burst molding, the client knows and could control
what non-sensitive web pages have been used to disguise
her page accesses. This gives the client an explicit cover
story for her actions. This is not the case in BuFLO [8],
Tamaraw [5], and CS-BuFLO [4], where the client can-
not know or control which other page her cell sequence
appears to come from (rather, the client is only given the
assurance that such a page is likely to exist).

Base rate.
Web pages are accessed with vastly different base rates in
the real world, but most work in the field (including all
defenses) has ignored this fact. Our design specifically
takes this into account, as we use more popular (and less
sensitive) Alexa’s top pages as decoy pages. In the above
scenario, an attacker trying to claim the client visited the
sensitive page is highly likely to be wrong. We further
develop on how varying base rates affect our defense ef-
fectiveness in Section 6.2.

Minimizing computation.

Wang et al. pointed out that Supersequence requires the
solution of an NP-hard problem [31] to minimize band-
width overhead for cell sequences. Both Supersequence
and Glove use an approximation algorithm to this prob-
lem. This approximation algorithm is nevertheless slow,
and the client would have trouble computing the super-
sequence of a large number of cell sequences. For WT,
computation of burst supersequences is cheap: we sim-
ply take the maximums of several pairs of numbers.

Minimizing client information.
WT, Supersequence, and Glove all require the client to
know some decoy pages. The difference is that WT re-
quires burst sequences, whereas the latter two require cell
sequences. Burst sequences are much easier to store than
cell sequences, because we do not need to store the or-
dering of cells. On our data, we found that we only need
about 20 bytes of information to describe the burst se-
quence of a web page, whereas cell sequences require 36
kB of information on average; burst sequences are about
1800 times more efficient to store and deliver. For exam-
ple, the client can know the burst sequences of 100,000
potential decoy web pages by loading and storing 2 MB
of data. Currently, a Tor client needs to load about 8 MB
of data when starting up Tor for relay discovery, so this
amount is feasible on Tor. Tor directory authorities can
collaborate with each other to collect cell sequence data,
and send the data to clients along with relay data.

4.3.2 Choosing decoy pages

We can optimize the overhead of burst molding by choos-
ing decoy pages cleverly, instead of simply choosing a
random burst sequence. For each sensitive page s in
our set of known burst sequences, we pre-compute its
overhead when sent with each of the set of non-sensitive
pages in our set; suppose non-sensitive page s′ caused
the minimum overhead when sent with s (conceptually,
s and s′ are similar cell sequences). Then we pair s and
s′ together, such that when the client needs to visit s, she
uses s′ as a decoy page; similarly when the client needs
to visit s′, she uses s as a decoy page. Each decoy page
is only paired with one other page. The choice of de-
coy pages is then symmetric between sensitive and non-
sensitive pages, and reveals no information as to which
one triggered the cell sequence. This optimization is only
possible if the client knows the burst sequence of her real
page. In case she does not, she defaults to simply choos-
ing a decoy page randomly. Burst molding is therefore
most efficient when the set of decoy pages is large, and
we have seen that a large set of decoy pages is practical.

Some clients may not want to use sensitive pages as
decoys, as they would rather not attract the attention of
eavesdroppers monitoring sensitive page access. It is
however necessary that sensitive pages should be used
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as decoys; otherwise, whenever the attacker detects that
the client is visiting either a sensitive page or a non-
sensitive page, the attacker would know that the non-
sensitive page is a decoy. Further, we argue that the use
of a sensitive decoy page is no more compromising than
the use of proxies or encryption: for instance, the pres-
ence of ciphertext does not suggest that the plaintext is
noteworthy. In particular, the client is never made to visit
sensitive pages under WT, which is an advantage over the
defense of Panchenko et al. [23] She only adds fake cells
in a way that matches the burst sequences of sensitive
pages.

We evaluate a fixed set of decoy pages in this work,
though it is possible for the client to choose her own de-
coy pages. For example, a German-speaking client may
choose popular German pages to be more convincing.

4.4 Practical implementation

In WT, the client and proxy construct the supersequence
together by respectively adding fake cells and bursts to
their outgoing packets. The client chooses the decoy
page and sends the decoy burst sequence to the proxy
before starting a page visit. The proxy counts the num-
ber of sent packets in each burst and adds packets if it is
lower than the number of required packets in the decoy
burst sequence. Therefore, there is almost no computa-
tion overhead to the proxy. WT is deployable: any proxy
that is willing to carry and encrypt traffic for the client
would also be willing to mold it slightly for her privacy.

As a proof of concept, we implemented burst molding
by modifying the Tor client. Our implementation adds
143 lines of code to Tor. We added two new cell types,
a fake cell and a fake burst end cell. During a real burst,
the client sends fake cells before sending real cells. The
proxy sees the client’s fake cells, drops them, and sim-
ilarly starts sending fake cells before sending real cells.
During a fake burst, the client and the proxy both use
fake burst end cells to mark the end of each fake burst.

The chief difficulty in our implementation was that the
Tor client had to stop delivering cells in the middle of
fake bursts. Otherwise, the fake burst would look dif-
ferent from real bursts. We did so by adding a queue
to each Tor circuit, so that each cell that was created in
between fake bursts would be queued. At the end of a
fake burst (signalled by the fake burst end cell), the client
empties the queue and sends the queued Tor cells as the
next burst. Our implementation does not rely on any Tor-
specific mechanics, and could be applied to other proxy
technologies.

Our implementation assumes that that the client can ei-
ther collect burst sequences or receive them from some-
where else. (Our security analysis assumes that the at-
tacker is allowed to see them.) We describe an alterna-

tive construction of Walkie-Talkie for which the client
has no information about any real burst sequences in Ap-
pendix A.

4.5 Security

We analyze the security of Walkie-Talkie against an at-
tacker who wants to know when a client has visited some
sensitive page s. The client really visits s at probability p
and chooses s as a decoy page for some other page with
probability p′. It is plain to see that the attacker’s preci-
sion cannot exceed p/(p+(1− p)p′), as no attacker can
distinguish between real visits and decoy visits.

To achieve the maximum precision, the attacker must
be able to correctly determine the two subsequences that
make up any given cell sequence of WT. We will see
in the evaluation (Section 5.2) that no real attack comes
close to doing so. Even a theoretical perfect classifier
fails to do so; in Section 5.4.2, we show that there are
often hundreds if not thousands of possible realistic sub-
sequences (from a set of 10,000 subsequences) for any
given cell sequence of WT.

We extend our analysis to include the scenario that the
client may not have chosen s as a decoy page. Consider
two types of clients: clients who really visit s at some
probability p taken from distribution X , and clients who
only use s as a decoy with probability p′ taken from some
distribution X ′. To distinguish between those two types
of clients, the attacker must be able to judge if the client’s
visits of s come from X or X ′. It is not practical for the at-
tacker to do so, as the attacker cannot directly measure X ,
X changes over time in an unpredictable manner, many
page visits would include s as a subsequence (even with-
out choosing s as either a real page or a decoy page), and
the attacker’s estimation of X ′ is significantly affected
by observation error, especially if the set of decoy pages
is rotated regularly. Therefore, the attacker cannot de-
termine if any given client has ever really visited s, or
merely uses it as a decoy page.

5 Evaluation

Here we evaluate WT on data collected from Tor using
the methodology described next in Section 5.1. In Sec-
tion 5.2 we show that WT is effective against known WF
attacks. In Section 5.3 we compare our defense against
known defenses to show the significantly lower overhead
of WT. WT is in fact effective against all possible WF
attacks; we rigorously define this notion and quantify
WT’s effectiveness against all WF attacks in Section 5.4.
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5.1 Setup and Data Collection

We collected our data on Tor Browser 6.0 (based on Fire-
fox 38.7.1) with Tor 0.2.8.1. To collect burst sequences
for WT, we modified Tor Browser to enable half-duplex
communication, as described in Section 4.1.2.

We collected data from Alexa’s top pages [1]; we
use long-standing pages to make our results more re-
producible and comparable to other papers in the field.
We use 100 of the top pages as the non-sensitive set (af-
ter removing duplicates due to different localizations or
URLs of the same page), and we collected 100 instances
of each page in the non-sensitive set. We use the next
10,000 pages in Alexa’s top pages as the sensitive set. In
the closed-world scenario, we only use the former data
set, in which case the 100 top pages are sensitive instead;
to avoid confusion, in this case we refer to the top 100
pages as the closed-world set. We dropped any instance
with fewer than 50 cells (25 kB) in it, in order to discard
pages that failed to load.

We added the capability to generate fake cells on Tor
clients and relays, but we will not use the latter to achieve
burst molding in this section. Rather, we will simu-
late burst molding after collecting data using half-duplex
mode. This is because we want to present experimental
results for a large number of parameter choices for burst
molding, and re-collecting data for each set of parame-
ters is infeasible. Our simulated burst molding does not
consider network instability events such as packet loss
and proxy dropping; these events are rare and unlikely to
be caused by and therefore linkable to the server.

5.2 Walkie-Talkie versus Attacks

We implemented nine known WF attacks and tested each
of them against WT. Each WF attack we tested was the
state of the art at the time of its publication. Since many
of the older attacks were not designed for the open-world
scenario, we tested all of them in the closed-world sce-
nario for consistent comparison. We use 100 instances of
each of the 100 closed-world pages for training and test-
ing with 10-fold cross validation. Since the closed-world
scenario is strictly easier to attack than the open-world
scenario, our results are a conservative estimate of WT’s
effectiveness.

We show the results in Table 1 under two columns: the
original accuracy on a Tor data set without our defense
(Undefended), and the new accuracy on a Tor data set
with our defense (Defended).

Jaccard and MNBayes are highly inaccurate even in
our Undefended case because they rely on unique packet
lengths, but all of our cells have the same length (see
Section 3.1). Out of all the attacks, SVM by Panchenko
et al. [23] appears to suffer least from WT, perform-

Table 1: Closed-world accuracy (TPR) of known attacks
against Tor (Undefended), and Tor protected by WT (De-
fended).

Attack Undefended Defended
Jaccard [15] 0.01 0.01

Naive Bayes [15] 0.49 0.16
MNBayes [13] 0.03 0.02

SVM [23] 0.81 0.44
DLevenshtein [6] 0.94 0.19

OSAD [32] 0.97 0.25
FLevenshtein [32] 0.79 0.24

kNN [31] 0.95 0.28
CUMUL [22] 0.64 0.20

kFP [12] 0.86 0.41

Table 2: Open-world accuracy (TPR and FPR) of known
attacks against Tor (Undefended), and Tor protected by
WT (Defended).

True Positive Rate (TPR)
Attack Undefended Defended

SVM [23] 0.47 0.33
kNN [31] 0.98 0.68

CUMUL [22] 0.78 0.20

False Positive Rate (FPR)
Attack Undefended Defended

SVM [23] 0.05 0.20
kNN [31] 0.09 0.62

CUMUL [22] 0.04 0.35

ing slightly better than kNN [31]. Indeed, previous au-
thors [5,8] have noted the resilience of this attack against
random noise, possibly due to its use of a “kernel trick”
transforming distances between cell sequences, allowing
greater flexibility in ignoring dummy cells. While our
experiments on the closed-world scenario show that WT
is successful, WT truly shines in the more realistic open-
world scenario, which we investigate next.

We designed WT for the open world, as it attempts to
confuse sensitive and non-sensitive pages. We focus on
three WF attacks that have been successful in the open-
world scenario: SVM, kNN, and CUMUL, and present
their TPR and FPR in Table 2. We see that the FPR for
each attack increases significantly with the application
of WT. kNN adopts an aggressive strategy, achieving a
high TPR but suffering a high FPR, whereas CUMUL
and SVM both suffer a low TPR with a low FPR.

The base rate fallacy tells us that since the TPR and
FPR are similar for all three attacks, they are highly im-
precise if the base rate of sensitive page access is low.
This is an important consideration as realistically, clients
do not often visit sensitive pages. For example, if the rate
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Table 3: Accuracy of each feature category of kNN
against Tor (Undefended), and Tor protected by WT (De-
fended).

Category Undefended Defended
Sequence length 0.67 0.14

Location of outgoing cells 0.01 0.01
Ratio of outgoing cells 0.79 0.19

Cell bursts 0.81 0.27
Direction of initial cells 0.04 0.01

Intercell times 0.10 0.04

of sensitive page access is 5%, then kNN would have a
precision of only 5.5%; almost all of its sensitive classi-
fications are wrong. Despite having a decent recall rate,
kNN would be useless against WT as the attacker cannot
act upon its sensitive classifications.

We seek to delve deeper into the success of WT against
known WF attacks by examining how WT affects indi-
vidual features. To do so, we examine the feature cat-
egories defined by kNN [31]. We choose kNN because
its feature categories are diverse and understandable, and
it is one of the better attacks. Returning to the closed-
world scenario for this experiment, we measure the ef-
fectiveness of each individual category by calculating the
classification accuracy if only features from that category
were used for kNN classification. We contrast the effec-
tiveness of each category before and after WT is applied
on our cell sequences.

We plot the six feature categories and their results in
Table 3. Each feature category that was useful for clas-
sification in the Undefended case has been covered by
WT. Although WT makes no explicit attempt to cover
intercell times, the addition of fake cells appears to dis-
rupt intercell times as a feature. Comparing Table 3 and
the entry for kNN in Table 1, we see that the accuracy of
kNN under WT would be almost unchanged if only the
sizes of the cell bursts were used and other feature cate-
gories were discarded. This reflects the fact that WT ef-
fectively reduces the information available to the attacker
to simply the burst sequences.

5.3 Walkie-Talkie versus Defenses

In the other direction, we compare WT with a basket
of known website fingerprinting defenses in Table 4, in
terms of bandwidth overhead (BWOH), time overhead
(TOH), and accuracy of the kNN attack by Wang et
al. [31]. We use the kNN attack because it is the cur-
rent state-of-the-art attack on Tor. We implemented all
of these attacks based on their original authors’ descrip-
tions. We did not include some older defenses which had
no effect on cell sequences, as they only affected packet
sizes.

Table 4: Bandwidth overhead (BWOH) and time over-
head (TOH) of the best WF defenses, as well as the ac-
curacy of kNN on them in our data set.

Defense BWOH TOH kNN acc.
Adaptive [29] 193% 16% 0.67

Decoy [23] 100% 39% 0.25
BuFLO [8] 145% 180% 0.08

Supersequence [31] 222% 112% 0.05
Tamaraw [5] 103% 140% 0.05

WT (this work) 31% 34% 0.28

We can see from Table 4 that WT has a markedly
smaller bandwidth overhead (BWOH) and time over-
head (TOH) than many of the previous attacks, and it
is still able to defeat kNN. Across our data set, the band-
width overhead of WT is 31%± 16% and its time over-
head is 34%± 5%; different cell sequences vary signifi-
cantly in bandwidth overhead but not time overhead. Bu-
FLO, Supersequence, and Tamaraw are able to further
decrease kNN accuracy (0.05 to 0.08) compared to WT
(0.28), but this effectiveness comes at a high cost in over-
head. kNN’s higher accuracy against WT is not practi-
cally meaningful: nevertheless, the attacker cannot iden-
tify accesses to sensitive pages under WT due to the base
rate fallacy. For WT, any cell sequence always looks as if
it could have come from at least two different web pages
due to burst molding, which means that no WF attack
can reach an accuracy above 0.5. We develop this notion
further in Section 5.4.

We stated in Section 3.2 that we assume fake cells do
not contribute to time overhead. We justify this assump-
tion here. Recent Tor metrics show that the median time
taken to download a 5 MB file from Tor is 11.6 seconds
(450 kB/s). Walkie-Talkie requires on average 290 KB
of extra data across a page load, which takes on aver-
age 16 seconds on Tor (18 kB/s). As Walkie-Talkie’s
fake cells will only require a small portion of the average
bandwidth to load a page, it is likely their effect on time
overhead is small.

Tamaraw, Supersequence, and WT are all tunable:
each defense can decrease its own time overhead by in-
creasing its bandwidth overhead and vice versa. Further-
more, each defense can increase either overhead to in-
crease the effectiveness of the defense against attacks.
A proper comparison of these defenses requires further
analysis. We focus on Tamaraw as it has a lower over-
head than Supersequence.

We investigate the trade-off between time overhead
and bandwidth overhead. To do so, we fix the effective-
ness of Tamaraw and WT to be the same against attacks
in general (see Section 5.4 for details on how we com-
pute this). For Tamaraw, the trade-off is achieved by
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Figure 2: Bandwidth and time overhead for Tamaraw and
WT.

varying the fixed intercell times. For WT, the trade-off
is achieved by changing which cell sequences to choose
in burst molding. We can prefer cell sequences that min-
imize bandwidth overhead at the cost of time overhead
and vice versa. We plot the results in Table 2. We find
that the range of possible overheads for WT is quite small
compared to Tamaraw. Half-duplex communication in-
duces a 30% time overhead in our experiments, so that is
the minimum value for WT. While the overhead of Tama-
raw can vary significantly, its range of both bandwidth
and time overhead is in any case much higher than that of
WT. To reach a bandwidth overhead less than 100%, for
example, a time overhead over 150% is required, which
is a large increase in page load time.

To investigate the trade-off between overhead and ef-
fectiveness, we need a general notion of effectiveness for
all attacks, not just any given attack. We next develop
such a notion and show that WT is effective against all
WF attacks in general.

5.4 Defending against any classification at-
tack

Observing that many older defenses have not proven ef-
fective against newer attacks, authors in the field [4, 31]
have suggested that a defense should be designed to be
effective against all possible WF attacks. To do so, the
output cell sequences of some web pages should be ex-
actly the same as some other web pages. To be spe-
cific, the cell sequences should be the same length, and
the timing, direction, and size of all cells should be the
same.2 If this is achieved, then no attacker can distin-
guish between those web pages, independent of the clas-
sification mechanism they use.

The above is achieved in both Tamaraw and WT. We
compare Tamaraw and WT in terms of their effectiveness
against all possible WF attacks.

2We do not need to ensure that the cells were received at the same
time including network noise; we only need to ensure that the cells were
attempted to be sent at the same time, as any timing difference then
would only indicate network noise and reveals no information about
the cells themselves.

5.4.1 Maximum Attacker Accuracy

Borrowing terminology from the k-anonymity literature,
we say that two cell sequences s,s′ belong to the same
collision set C(s) if they become the same sequence af-
ter applying the defense. They may come from different
web pages; we denote the page a cell sequence comes
from as Page(s). An effective defense’s objective is to
cause cell sequences to collide. We measure the effec-
tiveness by defining a notion of Maximum Attacker Ac-
curacy (MAA). The MAA of a cell sequence is equal to:

MAA(s) =
|{s′ ∈C(s)|Page(s′) = Page(s)}|

|C(s)|

The MAA describes an attacker who, seeing that they
cannot distinguish between any of the cell sequences in
the collision set, decides to simply randomly guess which
page it is. On the other hand, if all cell sequences in
the collision set belong to the same page anyway, the
attacker’s guess will be exactly correct. The attacker
maximizes classification accuracy in the sense that they
know exactly which page each cell sequence belongs to
(Page(s) is known to the attacker for all s). No classifier’s
accuracy can exceed the MAA; the lower the MAA, the
more effective the defense. We thus favor the MAA as an
intuitive, attack-agnostic metric for measuring the mini-
mum effectiveness of a defense. Later, in Section 6.2,
we expand on the MAA by investigating WT in an open-
world scenario with different page visit rates; for now,
we evaluate WT on a simpler MAA.

It is easy to see that the MAA of Walkie-Talkie is 0.5.
Each cell sequence is in a collision set with exactly one
other cell sequence from a different page due to burst
molding. Furthermore, since the decoy page selection
mechanism is symmetric (Section 4.3.2), the collision set
does not reveal which cell sequence is the true cell se-
quence. However, if we increase the number of colliding
cell sequences, the MAA can lower further. We develop
this idea next.

5.4.2 Maximum Attacker Accuracy of WT

In the context of WT, the MAA is that of an attacker who
knows exactly which two pages can be the decoy page
and the real page, but not which is which. In other words,
he resorts to guessing one out of two pages. We can de-
crease his MAA by molding towards the supersequence
of several decoy cell sequences, not just one decoy cell
sequence.

The greater the number of cell sequences chosen, the
greater the overhead. We investigate the MAA of WT
and compare it with Tamaraw. We show the results in
Figure 3, plotting MAA against bandwidth overhead.
WT is generally more efficient even if the user desires
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Figure 3: Bandwidth overhead and MAA for Tamaraw
and WT across a range of parameters. No WF attack can
achieve a classification accuracy above the MAA.

a very low MAA. The time overhead of WT goes up to
45% for the values in this graph, while it increases much
more quickly for Tamaraw, from 130% to 350%.

WT has another advantage over other WF defenses:
any defended cell sequence could have come from many
different web pages. This is because any subsequence of
a defended cell sequence could have been the original un-
defended cell sequence. Not all possibilities are equally
likely: burst molding attempts to minimize overhead, so
from the attacker’s perspective, the true cell sequence is
not likely to be much smaller than the observed cell se-
quence. Nevertheless, this observation produces a con-
fusing effect on the attacker that has not been accounted
for in the MAA; that is, a realistic attacker’s accuracy is
likely to be lower than the MAA.

We evaluate this effect on our closed-world page set
of 100 pages and 100 instances each. For each defended
cell sequence, we calculate the number of possible unde-
fended cell sequences from other web pages that could
have generated it. We call this the collision set size. The
maximum collision set size is therefore 9900. We show
the cumulative distribution frequency graph in Figure 4.
There was only a .1% chance that the collision set size
was smaller than 10 (it was always at least 2 because of
burst molding), and a 4% chance that it was smaller than
100. The median collision set size was 860. We con-
trast this with Tamaraw, where on our data set there was
a 2% chance that the collision set size was smaller than
10 and a 13% chance it was smaller than 100; the largest
collision set size was 795. The attacker’s ability to rule
out possible web pages given a defended cell sequence is
much more limited under WT.

6 Extensions of Walkie-Talkie

In this section, we present several extensions of Walkie-
Talkie to defeat three WF attackers that are more ad-
vanced than that of previous work. In Section 6.1 we
describe multi-page attackers, who understand the rela-
tionship between several pages of the same site and can
determine when the client is on the same site. In Sec-
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Figure 4: Cumulative distribution frequency graph of
WT collision set sizes. A collision set of a defended
cell sequence is the set of undefended cell sequences that
could have generated it when the defense is applied.

tion 6.2 we describe attackers who know that the client
visits pages at different base rates, and can estimate this
base rate. In Section 6.3 we investigate attackers that
can use timing information to defeat Walkie-Talkie. We
show that, with some modifications, WT can effectively
defend clients at little extra cost against all of these ad-
vanced attackers.

6.1 Defending against multi-page classifi-
cation

In Section 5, we analyzed Walkie-Talkie against an at-
tacker who classifies pages one at a time, independently
of any other page. A realistic attacker could leverage his
knowledge of the link structure of web sites to achieve
greater accuracy. For example, if the attacker knows a
priori that two web page accesses came from the same
site, then the attacker can more accurately identify what
site that is.

Defending against multi-page classification critically
relies on the ability to specify which non-sensitive decoy
page to use for each sensitive page. With this feature, we
can specify non-sensitive pages from the same site as de-
coys when the client is visiting sensitive pages from the
same site. BuFLO-based defenses are unable to specify
decoy pages, while Supersequence and Glove must suf-
fer significant overhead to do so. However, WT is able
to choose decoy pages with great efficiency. WT is thus
well suited as a defense against multi-page classification.
We modify WT so that it chooses decoy pages more clev-
erly. When the client is visiting sensitive pages from the
same site, WT also mimics non-sensitive pages from the
same site, each one of which is likely to lead to the next.

With the above modification, WT will succeed in de-
fending clients against multi-page attacks, which no pre-
vious WF defense has done. To demonstrate this, we will
evaluate its overhead and Maximum Attacker Accuracy
against multi-page attackers. We expect the overhead to
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be higher than before, because the client has less freedom
of choice in page selection.

We experiment by configuring our Tor Browser client
to randomly follow links on each of Alexa’s top 100 sites.
Unfortunately, we do not know the true probabilities with
which real clients visit links from Alexa’s top 100 sites,
so we choose the next link uniformly randomly from the
set of all links on the page. The client stops after 10 page
loads. Then, we test the bandwidth and time overhead of
a client attempting to decoy random sensitive pages with
those page loads. We find that, maintaining an MAA of
0.5, the bandwidth overhead necessary to defend against
a multi-page attacker increases from 31% to 53%, and
the time overhead increases from 34% to 42%. The in-
crease is small, and demonstrates that a client can effec-
tively defend herself against multi-page attacks as well,
with no decrease in minimal defense effectiveness.

6.2 Incorporating prior knowledge
For analytical simplicity, our experiments assumed a
client that visits all pages with the same likelihood; to
our knowledge, all other works in website fingerprinting
make this assumption. Realistically, a client would visit
pages with different probabilities, and the attacker may
have prior knowledge of such a distribution. Here, we
remove the previous assumption and adopt a model for
estimating page likelihood, assuming that the attacker
knows the client’s distribution fully. We examine how
this affects Walkie-Talkie.

We obtain basic estimated page view data for Alexa’s
top 10,000 sites from StatShow, and perform least-
squared approximation on the logarithm of the number
of page views. We attempted to approximate the number
of page views with the following function

Views = a · ebx · (x+1)c

In the above, a, b, and c are parameters, and x being the
index of the page (1 being most popular). We obtain the
parameters by performing Levenberg-Marquardt least-
squared approximation on the logarithm of the above
function, resulting in a = 36000, b = −0.000083, c =
−1.0. However, we found that the number of page views
dropped precipitously near the end of our data set, ren-
dering parameter estimation inaccurate. We believe this
is because our list of top sites was incomplete at the end
of the list. Instead of trying to fit all of our data, we fit the
top 5,000 sites and then extrapolate. The resultant curve
had a mean squared error of 0.0002 on the logarithm of
the number of page views.

We simulate clients that visit pages with probability
based on this curve, with no limit on the index of the
page. Our model suggests that 57% of all page views are
in the top 100 sites, and 40% of all page views are in the

next 10,000 sites. We use the former set as non-sensitive
decoy pages and the latter as monitored sensitive pages.
Considering an ambitious, powerful attacker who is al-
ways capable of identifying the potential decoy and sen-
sitive page in a WT-protected page access (but not which
is which), the attacker can achieve a precision of 41% by
simply guessing that all pages are sensitive (with a recall
of 100%). In a more realistic scenario when the attacker
is interested in much fewer than 10,000 pages, the maxi-
mum precision would be proportionally lower.

We draw the attacker’s precision/recall curve by hav-
ing him cleverly choose to identify sensitive pages in de-
creasing order of precision, and gradually increasing the
set of such pages he was willing to classify. This gives
the attacker the maximum precision at each level of re-
call. We draw the graph in Figure 5. For instance, we
find that at 25% recall, the attacker has a maximum pre-
cision of 90%. Even with such a low recall, the attacker
frequently makes mistakes in identifying sensitive pages.
We can contrast this with kNN, which can achieve a pre-
cision of 99% with a recall of 80% on a non-defended Tor
data set [31]. The attacker’s precision does not change
even if the attacker had prior information indicating that
the client is not visiting certain monitored pages, as long
as the visit rate of other pages is unchanged.

We consider a page-view-sensitive variation of WT
where we also choose decoy pages based on the popu-
larity of the page, not just the potential overhead. This
method would come with a penalty to the overhead. We
take the value of maximum precision for at least 25%
recall, and we we plot the graph of maximum precision
to bandwidth overhead in Figure 6. (Time overhead in-
creased slowly from 34% to 42% within the range of
this graph.) The maximum precision starts at 90% and
then drops sharply to 64%. (The minimum precision
of simply randomly guessing if each page is sensitive
is 41%.) However, as we increase the weight for page
popularity further, we see that the maximum precision
increases counter-productively. This represents the case
where the client starts choosing only the first few most
popular pages, which limits her set of potential decoys,
weakening her defense.

6.3 Intercell timing

WT may have a subtle timing leak: the incoming cell rate
may leak information about the destination web page—
more precisely, the number of servers that are sending in-
formation simultaneously, and their possible processing
times before starting to send the page data. For outgo-
ing cells, timing leaks no information for WT, because
there is only one client and half-duplex communication
ensures that the client is dumping all the requests she can
send as quickly as possible, after which she falls silent.
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Figure 5: Maximum precision/recall graph for an at-
tacker on Tor defended by WT, after incorporating page
likelihood.
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Figure 6: Maximum precision/bandwidth overhead
graph for an attacker on Tor defended by a page-view-
sensitive variation of WT. The variation decreases preci-
sion further for a small increase in bandwidth overhead.

In this section, we first argue with empirical evidence
why the incoming intercell timing leak of WT may not
be practically usable by any attacker. Nevertheless, we
then show how WT can be modified to cover any possi-
ble incoming intercell timing leak. Despite the lack of
empirical evidence that this timing leakage can be lever-
aged by any attacker, we provide such a modification to
preserve the theoretical guarantees of WT against future
WF attacks that may more cleverly use intercell timing.

Is timing useful for classification?

The results of this work have already suggested that
intercell timing is not useful: in Section 5.2 and Sec-
tion 5.3, we allowed WT to leak intercell timing, and WT
was nevertheless able to efficiently defeat known attacks.
In fact, WF researchers tend to avoid the use of intercell
timing in general: out of fourteen known WF attacks we
surveyed, we found that only three attacks used intercell
timing: the two oldest WF attacks [2, 29] (both are sig-
nificantly less effective than newer attacks on Tor), and
kNN [31]. We specifically saw in Table 3 that intercell
timing does not aid classification in kNN either. We ran
a further classification test using kNN only on extracted
intercell timing values of the top 100 pages, and achieved
a 0.5% TPR.
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Figure 7: 100 random intercell times from each of 50 top
pages. Each cross represents an intercell time. Note that
the y-axis is logarithmic.

We suggest that this is because intercell timing is
highly inconsistent for the same site, but the distribu-
tion of timings is similar across different sites. Network
conditions fluctuate rapidly as proxies need to be rotated
frequently to safeguard anonymity. We constructed ker-
nel density estimators using Scott’s rule [28] on intercell
timing, and found that the resulting probability density
functions overlapped significantly. Experimentally, we
found that the attacker could only achieve a maximum
2% accuracy on the top 100 pages by choosing the most
likely page for each sampled intercell timing value.

To illustrate this point visually, we plotted 100 ran-
dom intercell times from each of the top 50 pages3 in
Figure 7, in ascending order of mean intercell times. Fig-
ure 7 suggests that intercell times vary significantly, but
their patterns are not noticeably different across different
sites. This shows that individual intercell times are not
correlated with the true page of a cell sequence.

Equalizing intercell timing
We have nevertheless designed an extension of WT to

hide all timing information, though this comes at the cost
of a greater bandwidth and time overhead.

One solution would be to have the proxy behave the
same way as the client: it queues all received cells in
each burst until the servers have sent all of their data,
and sends them all at once back to the client. In this
case, timing would contain no information, and this can
be implemented with a small time overhead and no band-
width overhead. However, this implementation may not
be practical, because it would require proxies to read
client cells to determine when bursts end.

Our timing fix is inspired by a similar mechanism in
Tamaraw. We choose a fixed cell rate rcontrol such that
whenever it is the proxy’s turn to send data, the proxy
attempts to deliver rcontrol incoming cells per second. If
there is no data to send when a cell is due, the proxy
generates a dummy cell, which will be dropped by the
client. This covers the incoming intercell timing leak

3We used 50 pages instead of our full 100 pages so that the graph
would be clear.
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Figure 8: Possible bandwidth and time overhead cost for
equalizing intercell timing, obtained by varying rcontrol .

as the intercell time will always be rcontrol for incoming
cells. Varying rcontrol , we evaluate the added overhead of
timing control in Figure 8. For example, we can equalize
intercell timing at a cost of 50% bandwidth overhead and
36% time overhead.

We can use the same dummy cells described in Sec-
tion 4.3 for both burst molding and equalizing intercell
timing, without compromising either objective. This
means that, effectively, the bandwidth overhead values
for timing control and burst molding do not add to-
gether in WT; instead, the maximum of the two becomes
the bandwidth overhead of WT. The overhead of WT
with intercell timing equalized would be 50% bandwidth
overhead and 66% time overhead, which is still much
lower than known defenses (Table 4).

7 Conclusion

In this paper, we presented Walkie-Talkie: a flexible,
easy-to-use defense with low overhead that can defend
web clients against all website fingerprinting attacks.
Walkie-Talkie consists of two components: half-duplex
communication and burst molding. Half-duplex commu-
nication produces burst sequences that are concise and
easy to manipulate, which allows burst molding to mimic
non-sensitive web pages at minimal overhead. Walkie-
Talkie is highly effective against all known attacks at
overhead costs much lower than all known effective de-
fenses. Furthermore, it is capable of defending against all
possible WF attacks, because pairs of sensitive and non-
sensitive web pages will be molded to the same cell se-
quence under WT. We have implemented Walkie-Talkie
so that it functions on the Tor client and Tor nodes: in
general, it can be implemented on any proxy network
(such as VPNs).

We also considered advanced attackers beyond previ-
ous work in website fingerprinting, who are able to lever-
age site link information, page visit rates, and timing in-
formation to strengthen their attacks. Walkie-Talkie can
defend against all these types of attacks effectively, as it
gives the client the freedom to choose which pages to use

as decoys. It remains to be seen whether Walkie-Talkie
would be useful as well against other advanced attacks,
such as active adversaries and dynamic content identifi-
cation.
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A Removing the need for client informa-
tion

One limitation of burst molding is that the client needs to
know the burst sequences of some non-sensitive pages.
While it is highly practical to deliver such information
to clients on an anonymity network like Tor (see Sec-
tion 4.3.1), we have also designed a variation of Walkie-
Talkie that is useful on networks where there may not be
a party that can deliver burst sequence information.

In this variation of Walkie-Talkie, burst molding is
random: instead of adding cells according to the superse-
quence of sensitive and non-sensitive pages, we add cells
randomly. We refer to this variation of Walkie-Talkie
as Random-WT. Random-WT is less efficient, but it can
also defend against all possible WF attacks.

A.1 Design of Random-WT
Given a cell sequence s = (b1,b2,b3, ...,b|s|) with bi =
(bi+ ,bi−), we apply defense D as follows to produce
D(s):

1. Padding real bursts: From two uniform distributions
Xi+ and Xi−, we draw xi+ and xi− respectively, and
add them to bi, such that b̂i = (bi++xi+,bi−+xi−).

2. Adding fake bursts: From two uniform distributions
Xid+ and Xid−, we draw xid+ and xid−, and generate
a new fake burst b̂i = (xid+,xid−). In a fake burst, all
outgoing and incoming cells are fake cells. We add
fake bursts at random with probability p f ake before
each real burst of cells.

Random-WT is therefore defined by the bounds of the
uniform distributions Xi+, Xi−, Xid+, Xid−, as well as the
probability p f ake. We chose uniform distributions after
preliminary experiments and analysis indicated that uni-
form distributions are highly efficient at defending burst
sequences. The freedom of choice allows Random-WT
to be tunable (i.e., a client may wish to increase collision
rate by increasing overhead).

The fact that any burst in an observed cell sequence is
equally likely to be fake is a powerful feature of Random-
WT. In practice, we found that many cell sequences have
multiple bursts with few cells and one or two large bursts
with many cells. Random-WT covers the position of
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Figure 9: Bandwidth overhead and MAA for Random-
WT, WT and Tamaraw across a range of parameters. No
WF attack can achieve a classification accuracy above
the MAA.

large bursts in the cell sequence, so that they cannot be
leveraged by the attacker.

Fake bursts should be similar in length to real bursts so
as to maximize collision; we do not want the attacker to
be able to distinguish between real bursts and fake bursts
with high accuracy. In our experiments, we set the lower
bound of the uniform distributions for Xi+, Xi−, Xid+, and
Xid− to be 0. This minimizes overhead without affecting
effectiveness. We set Xid+ and Xid− to fit the observed
burst sizes of real cell sequences. Then, we vary the max-
imum range of Xi+ and Xi−, as well as p f ake, to obtain
a range of overhead and effectiveness values, which we
present below.

A.2 Experimental analysis of Random-WT

We analyze the MAA of Random-WT using the same
experimental methodology in Section 5.4. We draw Fig-
ure 9 by taking Figure 3 and adding a line for Random-
WT to compare with basic WT and Tamaraw. Figure 9
does not plot the time overhead, which is around 30%
throughout the graph for both Random-WT and WT, and
ranging from 130% to 350% for Tamaraw.

Though Figure 9 shows that the MAA of Random-WT
is worse than both WT and Tamaraw, it is still signifi-
cant enough to confuse an attacker, especially if the at-
tacker needs a low false positive rate (for example, when
attempting to identify accesses to rare pages). An ad-
vantage of both WT and Random-WT over Tamaraw is
that they are not sensitive to network conditions; pre-
vious work has shown that Tamaraw performs worse
than expected if network conditions are not correctly pre-
dicted [4].

B Publication of code and data

To ensure that our results can be reproduced, we publish
the following:

• Our implementation of Walkie-Talkie: the Firefox
code that modifies the browser to enable half-duplex
communication, the Tor code that modifies the Tor
client to enable molding, and our experiment code
for WT.

• Our experimental data sets: the cell sequences we
collected over Tor with and without half-duplex
communication.

• Our implementations of previous attacks and de-
fenses.

The code and data are available at the Tor hidden
service http://walkietalk3qqfi3.onion (you
must use Tor Browser to access this site; such accesses
are double-blind).
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