
Inductive Situation Calculus

Marc Denecker
Department of Computer Science, K.U.Leuven,

Celestijnenlaan 200A, B-3001 Heverlee,
Belgium

email: marcd@cs.kuleuven.ac.be

Eugenia Ternovska
School of Computing Science,

Simon Fraser University,
Burnaby, BC, V5A 1S6, Canada

email: ter@cs.sfu.ca

Abstract

Temporal reasoning has always been a major test case
for knowledge representation formalisms. In this pa-
per, we develop an inductive variant of the situation
calculus using the Logic for Non-Monotone Inductive
Definitions (NMID). This logic has been proposed re-
cently and is an extension of classical logic. It al-
lows for a uniform represention of various forms of
definitions, including monotone inductive definitions
and non-monotone forms of inductive definitions such
as iterated induction and induction over well-founded
posets. In the NMID-axiomatisation of the situation
calculus, fluents and causality predicates are defined
by simultaneous induction on the well-founded poset of
situations. The inductive approach allows us to solve
the ramification problem for the situation calculus in
a uniform and modular way. Our solution is among
the most general solutions for the ramification problem
in the situation calculus. Using previously developed
modularity techniques, we show that the basic variant
of the inductive situation calculus without ramification
rules is equivalent to Reiter-style situation calculus.

Introduction and Preliminaries
The recently developed Logic for Non-Monotone In-
ductive Definitions (NMID) is an extension of classical
logic that allows for uniform representation of vari-
ous forms of definitions, including monotone inductive
definitions and non-monotone forms of inductive defini-
tions such as iterated induction and induction over well-
founded posets (Denecker & Ternovska 2004).

Here, we demonstrate an application of NMID-logic.
The aim is two-fold. First, we illustrate the role of
NMID-logic and non-monotone inductive definitions for
knowledge representation by presenting a variant of the
situation calculus which we call inductive situation cal-
culus. We show that ramification rules can be natur-
ally modeled through a non-monotone iterated induct-
ive definition. Second, we illustrate the use of our re-
cently developed modularity techniques for NMID-logic
in order to translate a theory of the inductive situation
calculus into a classical logic theory of Reiter’s situation
calculus (Reiter 2001).

Copyright c© 2004, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

There are several points of interest in this exper-
iment. The first one is our observation that com-
plex non-monotone inductive definitions not only occur
in mathematics, but also in common sense reasoning.
In particular, we believe that the original Reiter-style
situation calculus contains hidden forms of definitions
which we explicitate in the inductive situation calcu-
lus. The second point is the fact that different forms of
inductive definitions, which have a uniform representa-
tion in NMID-logic, can be formalised in classical (first-
or second-order) logic as well, but not in a uniform way:
different sorts of definitions require different formalisa-
tion. As a consequence, our formalisation is simpler,
more uniform and more modular than Reiter-style situ-
ation calculus. The third point is that NMID-logic is
closely connected to logic programming. In particu-
lar, it formally extends logic programming (LP) and
abductive logic programming (ALP) under the well-
founded semantics. The strong connection with LP
and ALP can be exploited to build implementations of
NMID-logic and of inductive situation calculus theor-
ies. Moreover, NMID-logic has an important advantage
as a knowledge representation language — contrary to
logic programming, it does not automatically impose
the domain closure assumption (although the domain
closure axiom can be expressed if needed).

In the remaining part of this section we briefly de-
scribe NMID-logic, the modularity theorem, and some
techniques for translating NMID-logic theories into
classical logic. We also review the more traditional vari-
ant of the situation calculus similar to (Reiter 2001). In
the rest of the paper, we present the formalism of the
inductive situation calculus, address the ramification
problem and consider a detailed example.

NMID-Logic

First, we present an extension of classical logic with
non-monotone inductive definitions. This work extends
previous work of (Denecker 2000). A more detailed ex-
position can be found in (Denecker & Ternovska 2004).
A new binary connective ← is called the definitional
implication. A definition ∆ is a set of rules of the form
∀x̄ (X(t̄) ← ϕ), where x̄ is a tuple of object variables,
X is a predicate symbol (i.e., a predicate constant or

variable) of some arity r, t̄ is a tuple of terms of length
r of the vocabulary τ , ϕ is an arbitrary first-order for-
mula of τ . The definitional implication ← must be
distinguished from material implication.

Note that in front of rules, we allow only universal
quantifiers. In the rule ∀x̄ (X(t̄) ← ϕ), X(t̄) is called
the head and ϕ is the body of the rule. A defined symbol
of ∆ is a relation symbol that occurs in the head of at
least one rule of ∆; other relation, object and function
symbols are called open. We use notation φ(x1, . . . xn)
to emphasize that symbols x1, . . . xn are distinct and
are free in φ. Let τ be a vocabulary including all free
symbols of ∆. The subset of defined symbols of defini-
tion ∆ is denoted τd

∆. The set of open symbols of ∆ in
τ is denoted τo

∆. The sets τd
∆ and τo

∆ form a partition
of τ , i.e., τd

∆ ∪ τ
o
∆ = τ , and τd

∆ ∩ τ
o
∆ = ∅ .

A well-formed formula of the Logic for Non-
Monotone Inductive Definitions, briefly a NMID-
formula, is defined by the following (monotone) induc-
tion:

1. If X is an n-ary predicate symbol, and t1, . . . , tn are
terms then X(t1, . . . , tn) is a formula.

2. If ∆ is a definition then ∆ is a formula.

3. If φ, ψ are formulas, then so is (φ ∧ ψ).

4. If φ is a formula, then so is (¬φ).

5. If φ is a formula, then ∃σ φ is a formula (σ can be
either a first- or second-order symbol).

A formula φ is an NMID-formula over vocabulary τ if
the set of free symbols of φ is a subset of τ .

As an example, in the language of the natural
numbes, the following formula expresses that there is
a set which is the least set containing 0 and closed un-
der taking successor numbers, and which contains all
domain elements. It is equivalent to the standard in-
duction axiom and with the domain closure axiom:

∃N

[{

∀x(N(x)← x = 0),
∀x(N(s(x))← N(x))

}

∧ ∀x N(x)

]

.

Note that this formula contains an existential quanti-
fication over the second-order variable N . This can be
avoided by skolemising N and using a new predicate
constant instead. In fact, all examples of second-order
quantification that appear in this paper, are of the same
kind as in this example and can be eliminated in the
same way, by skolemisation of the existentially quanti-
fied second-order variable.

The semantics of the NMID-logic is an extension
of classical logic semantics with the well-founded se-
mantics from logic programming (Van Gelder 1993;
Fitting 2002; Denecker, Bruynooghe, & Marek 2001).
We now briefly describe this semantics. We assume fa-
miliarity of the reader with the semantics of classical
logic. For more detail, we refer to (Denecker & Ter-
novska 2004). A structure I of a vocabulary τ consists
of a domain dom(I), and for each symbol σ ∈ τ a value
σI in dom(I), i.e., a domain element for an object sym-
bol, a function for a function symbol and a relation for a

predicate symbol of the corresponding arity. The value
tI of a term t in I is defined by the standard recursion.

We first define the well-founded model of a definition
∆ extending a τo

∆-structure Io. For each defined symbol
X of ∆, we define

ϕX(x̄) := ∃ȳ1 (x̄ = t̄1∧ϕ1)∨ · · ·∨ ∃ȳm (x̄ = t̄m∧ϕm),

where x̄ is a tuple of new variables, and ∀ȳ1 (X(t̄1) ←
ϕ1), . . . , ∀ȳm (X(t̄m)← ϕm) are the rules of ∆ with X
in the head. For every defined symbol Y , we introduce
a new relation symbol Y ′ of the same arity. We obtain
ϕ′

X from ϕX(x̄) by substituting Y ′ for each negative
occurrence of each defined symbol Y .

For any pair of τ -structures I, J extending Io, define
IJ as the extension of Io which interprets each defined
symbol X of ∆ as XI , the value of X in I, and each new
symbol X ′ as XJ , the value of X in J . The basis of the
construction of the well-founded model extending Io is
the operator T∆ which maps pairs I, J of extensions
of Io to a structure I ′, also extending Io, such that for
each defined symbol X, XI′

:= {ā | IJ |= ϕ′
X [ā]}.

Thus, the operator T∆ evaluates positive occurrences
of defined symbols in rule bodies by I, and negative
occurrences of defined symbols by J .

In the lattice of τ -structures extending Io, the op-
erator T∆ is monotone in its first argument and anti-
monotone in its second argument. Define the stable1 op-
erator ST∆ as follows: ST∆(J) := lfp(T∆(·, J)). This
stable operator is anti-monotone, hence its square is
monotone and has a least and largest fixpoint. We
define Io

∆↓ := lfp(ST 2
∆), and Io

∆↑ := gfp(ST 2
∆).

For an intuitive explanation of the well-founded se-
mantics and an argument why it formalises different
forms of inductive definitions, we refer to (Denecker,
Bruynooghe, & Marek 2001).

Definition 1. Definition ∆ is total in τo
∆-structure

Io if Io
∆↓ = Io

∆↑. When this is the case, Io
∆↓ (or

Io
∆↑) is called the ∆-extension of Io and is abbreviated

as Io
∆. More generally, ∆ is total in a structure Ko

interpreting a subset of τo
∆ if ∆ is total in each τo

∆-
structure extending Ko.

The aim of an inductive definition is to define its
defined symbols. Therefore, a natural quality require-
ment for a definition is that it is total.

Below, I[σ : v] denotes the structure obtained from
I by assigning the value v to the symbol σ.

Definition 2 (φ true in structure I). Let φ be a
NMID-formula and I any structure interpreting all free
symbols of φ. We define I |= φ (in words, φ is true in
I, or I satisfies φ, or I is a model of φ) by the following
induction:

1. I |= X(t1, .., tn) if (tI1, .., t
I
n) ∈ XI ;

2. I |= ∆ if I = Io
∆↓ = Io

∆↑, where Io is the restriction
of I to τo

∆;

1This operator is often called the Gelfond-Lifschitz op-
erator and was introduced in (Gelfond & Lifschitz 1991).

3. I |= ψ1 ∧ ψ2 if I |= ψ1 and I |= ψ2;

4. I |= ¬ψ if I 6|= ψ;

5. I |= ∃σ ψ if for some value v of σ in the domain
dom(I) of I, I[σ : v] |= ψ.

Given an NMID-theory T over τ , a τ -structure I satis-
fies T (is a model of T) if I satisfies each φ ∈ T . This
is denoted by I |= T .

The above inductive definition is a prototypcial ex-
ample of a non-monotone inductive definition, more
specifically a definition over a well-founded poset,
namely the set of NMID-formulas ordered by the sub-
formula relation. It contains non-monotone recursion
in rule 4. This is an example of a definition which can
be represented using definitions in NMID-logic.

As mentioned before, the definitional implication
should be distinguished from material implication.
Rule ∀x̄ (X(t̄) ← ϕ) in a definition does not corres-
pond to the disjunction ∀x̄ (X(t̄) ∨ ¬ϕ), although it
implies it. Intuitively, definitional implication should
be understood as the “if” found in rules in inductive
definitions (e.g. Definition 2 consists of 5 such rules).

Modularity Results

Definition 3 (partition of definitions). A partition
of definition ∆ is a set {∆1, . . . ,∆n}, 1 < n, such that
∆ = ∆1 ∪ · · · ∪∆n, and if defined symbol P appears in
the head of a rule of ∆i, 1 ≤ i ≤ n, then all rules of ∆
with P in the head belong to ∆i and only to ∆i.

Notice that ∆i has some “new” open symbols. For
instance, if P is defined in ∆, but not in ∆i, then it
is a new open symbol of ∆i. Of course, it holds that
τ = τo

∆ ∪ τ
d
∆ = τo

∆i
∪ τd

∆i
, 1 ≤ i ≤ n. Also, ∪iτ

d
∆i

= τd
∆

and τd
∆i
∩ τd

∆j
= ∅ whenever i 6= j.

A domain atom over vocabulary τ in domain A is any
atom P [a1, . . . , an] (or P [ā]), where P is relation symbol
of τ and a1, . . . , an are elements of A. Let AtτA be the
set of domain atoms over τ in A. Let ≺ be any binary
relation on AtτA. If Q[b̄] ≺ P [ā], we will say that P [ā]
depends on Q[b̄] (according to ≺). We use Q[b̄] ≺≺ P [ā]
as an abbreviation for Q[b̄] ≺ P [ā] ∧ P [ā] 6≺ Q[b̄]. For
any domain atom P [ā] and any pair I, J of τ -structures
with domain A, we define I ∼=≺P [ā] J if for each atom

Q[b̄] ≺ P [ā], I |= Q[b̄] iff J |= Q[b̄]. We extend this
to pairs by defining (I, J) ∼=≺P [ā] (I ′, J ′) if I ∼=≺P [ā] I

′

and J ∼=≺P [ā] J
′.

Let Ko be a structure with domain A interpreting
at least all object and function symbols of τ and no
defined predicates of ∆.

Definition 4 (reduction relation). A binary relation
≺ on AtτA is a reduction relation (or briefly, a reduc-
tion) of ∆ in Ko if for each domain atom P [ā] with P a
defined symbol, for all τ -structures I, J, I ′, J ′ extending
Ko, if (I, J) ∼=≺P [ā] (I ′, J ′) then IJ |= ϕP [ā] iff I ′J ′ |=
ϕP [ā].

Intuitively, the definition expresses that ≺ is a reduc-
tion relation if the truth of the formulas ϕP [ā] depends

only on the truth of the atoms on which P [ā] depends
according to ≺.

Recall that a pre-well-founded order is a reflexive and
transitive relation such that every non-empty subset
contains a minimal element. The following definition
is crucial for the Modularity theorem.

Definition 5 (reduction partition). Call partition
{∆1, . . . ,∆n} of definition ∆ a reduction partition of
∆ in τo

∆-structure Io if there is a reduction pre-well-
founded order ≺ of ∆ in Io and if for each pair of atoms
P [ā], Q[b̄] which are not defined in the same ∆i and
such that Q[b̄] ≺ P [ā], it holds that Q[b̄] ≺≺ P [ā] (i.e.,
P [ā] 6≺ Q[b̄]).

The intuition underlying this definition is that in a re-
duction partition, if an atom defined in one module de-
pends on an atom defined in another module, then the
latter atom does not depend on the first atom and hence
is strictly less in the reduction ordering.

A partition {∆1, . . . ,∆n} of ∆ is called total in Ko

if each ∆i is total in Ko.

Theorem 1 (modularity). If {∆1, . . . ,∆n} is a total
reduction partition of ∆ in τo

∆-structure Io, then for
any τ -structure M extending Io, M |= ∆1 ∧ · · · ∧
∆n iff M |= ∆.

Corollary 1. Let To be a theory over τo
∆ such that

for any τo
∆-model Mo of To, {∆1, . . . ,∆n} is a total

reduction partition of ∆ in Mo. Then To ∧∆ and To ∧
∆1 ∧ · · · ∧∆n are logically equivalent.

Now we consider for two special cases of definitions
how to translate them in classical logic. Let ∆ be a
positive definition, i.e., with only positive occurrences
of defined symbols in rule bodies, defining the symbols
P̄ . Let Xi and Pi have the same arity. Define

PID(∆) :=
∧

∆ ∧ ∀X̄(
∧

∆[P̄ /X̄]→ P̄ ⊆ X̄).

Here,
∧

∆ is the conjunction of formulas obtained by
replacing definitional with material implications in ∆,
∆[P̄ /X̄] is the definition obtained by substituting Xi

for each defined symbol Pi and P̄ ⊆ X̄ is a shorthand
for the formula

∀x̄ (P1(x̄)→ X1(x̄)) ∧ · · · ∧ ∀x̄ (Pn(x̄)→ Xn(x̄)).

The formula PID(∆) is the standard second-order for-
mula to express that predicates P̄ satisfy the positive
inductive definition ∆.

Theorem 2. If ∆ is positive (i.e., contains no negative
occurrences of defined symbols) then it is total in each
τo
∆-structure, and for any structure I, I |= ∆ iff I |=
PID(∆).

The theory PID(∆) expresses that the defined rela-
tions are the least relations closed under the rules of ∆
in a τo

∆-structure. Because the rules of ∆ are positive,
such least relations are guaranteed to exist. Since these
relations are the unique minimal relations closed under
the rules of ∆, the well-known knowledge representa-
tion principle of circumscription could also be used to
formalise ∆.

Another result is concerned with (possibly non-
monotone) definitions over well-founded posets. First,
we propose a formalisation for this informal concept in
NMID-logic.

Definition 6 (strict reduction relation). A reduc-
tion relation ≺ of ∆ on AtτA is strict in Ko if it is a
strict well-founded order (i.e., an antisymmetric, trans-
itive binary relation without infinite descending chains).

Thus, if P [ā] ≺ Q[b̄] holds, then the bodies of rules
defining Q[b̄] may depend on the truth value of P [ā],
but not vice versa.

Definition 7 (definition by well-founded induc-
tion). Let ∆ be a definition with a strict reduction re-
lation ≺ in Ko. We call ∆ a definition by well-founded
induction (over ≺) in Ko.

Being a definition by well-founded induction is not
a universal property. A definition may have a strict
reduction in one structure and not in other structures.

There is a well-known concept in knowledge repres-
entation that can be used to formalise this type of defin-
itions in first-order logic. Define the completion of ∆,
denoted comp(∆), as the conjunction, for each defined
symbol X of ∆, of formulas ∀x̄(X(x̄)↔ ϕX(x̄)).

Theorem 3 (completion). Suppose ∆ is a definition
by well-founded induction in τo

∆-structure Io. Then (a)

definition ∆ is total in Io, and (b) the model Io
∆ of ∆

is the unique model of comp(∆) extending Io.

Corollary 2. Let To be a theory over τo
∆ such that

for any τo
∆-model Mo of To, ∆ is a definition by well-

founded induction in Mo. Then To ∧ ∆ and To ∧
comp(∆) are logically equivalent.

Notice that positive inductive definitions and induct-
ive definitions with strict reduction relation have differ-
ent (and, in general, non-equivalent) formalisations in
classical logic.

Reiter-style Situation Calculus

The vocabulary τsc of the situation calculus is a many-
sorted vocabulary with equality and with sorts for ac-
tions (Act), situations (Sit), and possibly a finite num-
ber of domain-specific sorts called object sorts (Ob1,. . . ,
Obk). The vocabulary contains a potentially infinite set
of domain-dependent function symbols of the sort Act.
The sort of each argument of such a function is an ob-
ject sort. For example, in the block world domain, we
may have actions pick up(x) and put on(x, y) ranging
over the sort Block.

The vocabulary contains a binary relation ⊑ with
arguments of sort Sit and denoting precedence of situ-
ations. The constant S0 of sort Sit denotes the initial
situation. Function do of sort Sit maps actions and
situations to situations, i.e., given a and s, term do(a, s)
denotes the successor situation which is obtained from
situation s by performing action a. The predicate con-
stants F1, F2, . . . are called fluents and denote prop-
erties of the world (both in the initial situation and

in other situations). Fluents always have exactly one
argument of sort Sit, while the sort of each other ar-
gument is an object sort. For example, On(x, y, s) of
arity 3 denotes that object x is on object y in situation
s.

Definition 8 (Duna(S)). The theory of unique name
axioms for sort S, Duna(S), is the set of axioms in the
following axiom schema: For distinct function symbols
f and g of sort S

∀x̄ ∀ȳ ¬(f(x̄) = g(ȳ)). (1)

∀x̄ ∀ȳ (f(x1, . . . , xn) = f(y1, . . . , yn)
→ x1 = y1 ∧ · · · ∧ xn = yn).

(2)

The axioms (2) hold for every function symbol f with
arity greater than zero.

Definition 9 (Df). The foundational axioms of the
situation calculus, Df , are the set of axioms consisting
of the unique name axioms for situations Duna(Sit), the
domain closure axiom for situations

∀P (P (S0) ∧ ∀s
′ ∀a (P (s′)→ P (do(a, s′)))
→ ∀s P (s))

(3)

and the precedence axioms for situations

∀s ¬(s ⊏ S0), (4)

∀s ∀s′ ∀a (s ⊏ do(a, s′)↔ s ⊑ s′) (5)
where s ⊏ s′ is an abbreviation for s ⊑ s′ ∧ ¬(s′ ⊑ s).

The role of axiom (3) is to guarantee that the domain
of situations Sit is the smallest set closed under ap-
plications of the function symbol do, which satisfies the
unique name axioms for situations. Every two mod-
els of Df with identical domains of sort Act will have
identical domains of sort Sit (modulo isomorphism).

Definition 10 (Dss). The successor state axioms, Dss,
are of the form:

∀x̄ ∀a ∀s (F (x̄, do(a, s))↔
(γ+

F (x̄, a, s) ∨ F (x̄, s) ∧ ¬γ−F (x̄, a, s))).
(6)

Formula γ+
F (x̄, a, s) (respectively, γ−F (x̄, a, s)) denotes

a first-order formula specifying the conditions under
which action a causes fluent F to become true (respect-
ively, false) in the situation s (Reiter 1991). The only
free variables of these formulas are among x̄, a, s and
the only symbol of sort Sit is the free variable s. An
example of a successor axiom is

∀sw ∀a ∀ s (On(sw, do(a, s))↔
a = toggle(sw) ∧ ¬On(sw, s)∨
On(sw, s) ∧ a 6= toggle(sw)).

This axiom says that a switch is on in situation do(a, s)
if and only if this situation was obtained by performing
action toggle(sw) in situation s where this switch was
off, or the switch was already on and an action other
than toggle(sw) was performed.

Definition 11 (DS0
). A description of the initial situ-

ation, DS0
, is a set of first order sentences that are

uniform in S0, that is, it contains no situation term
other than S0.

A basic action theory consists of Df ∪ Duna(Act) ∪
DS0
∪ Dss.

Inductive Situation Calculus

Here we define a variant of Reiter-style situation calcu-
lus, which we call the inductive situation calculus. All
fluents will be defined by simultaneous induction on the
well-founded set of situations. Ramifications describing
propagation of effects of actions are modeled as mono-
tone inductions at the level of situations. The result is
an iterated inductive definition with alternating phases
of monotone and non-monotone induction. Below we
describe the components of the inductive situation cal-
culus.

The vocabulary τisc of the inductive situation calcu-
lus extends τsc by two types of symbols. Symbols IF1

,
IF2

, . . . are used to describe the initial situation and
correspond to the fluents F1, F2, . . . , Fn but have no
situation argument. They are open symbols of the in-
ductive situation calculus. The other type of symbols
denote causality relations. These symbols will be in-
troduced a bit later. The open vocabulary τo

isc of the
inductive situation calculus consists of all symbols of
τisc except for all fluents and causality predicates.

The foundational axioms of the inductive situation
calculus, Dif , are the unique name axioms Duna(Sit) for
situations, the following domain closure axiom for situ-
ations

∃P

[{

∀s (P (s)← s = S0),
∀a∀s (P (do(a, s))← P (s))

}

∧ ∀sP (s)

]

(7)

and the following definition of the precedence relation

∆⊑ :=

{

∀s∀s′ (s ⊑ s′ ← s = s′),
∀s∀s′∀a (s ⊑ do(a, s′)← s ⊑ s′)

}

. (8)

The role of axiom (7) is to guarantee that the domain
of situations Sit is the smallest set closed under ap-
plications of the function symbol do, which satisfies the
unique name axioms for situations. It is equivalent to
Reiter’s induction axiom for situations.

In place of DS0
, the description of the initial situation

in terms of fluents which hold in S0, in the inductive
situation calculus we describe the initial situation in
terms of symbols IFi

. The corresponding collection of
axioms is Dinit.

An initial structure AI of the inductive situation cal-
culus is a multi-sorted structure with a non-empty do-
main for each sort of the language, which interprets
all symbols of τo

isc and which satisfies the foundational
axioms Dif and the unique name axioms for actions
Duna(Act).

Proposition 1. Let A be a τo
isc-structure, which satis-

fies Dif and the definition ∆⊑ (8). In every such struc-
ture, 〈SitA,⊑A〉 is a well-founded poset (and, thus a
pre-well-founded set).

The following proposition demonstrates that the re-
maining two foundational axioms of the situation cal-
culus as presented in (Reiter 2001), are implied by the
definition above.

Proposition 2. The sentences (4) and (5) are logically
implied by the unique name assumptions for situations
Duna(Sit), the domain closure axiom for situations (7),
and by the sentence (8).

Proof. The definition ∆⊑ logically implies its comple-
tion comp(∆⊑). This theory gives us ∀s ∀s′ (s ⊑ s′ ↔
s = s′∨∃a ∃s′′ s′ = do(a, s′′)∧s ⊑ s′′). To prove (4), we
instantiate the completion with s′ = S0, taking into ac-
count the unique name assumptions for situations. We
obtain: ∀s (s ⊑ S0 ↔ s = S0). This sentence implies
∀s (s ⊑ S0 → s = S0), which entails ∀s ¬(s ⊏ S0).

To prove (5), we use a model theoretic argument.
In each structure satisfying the foundational axioms,
there is a bijection (one to one and onto) from the set
of finite sequences of elements of the action sort to the
situation sort. By a simple inductive argument on the
definition of ⊑, one can show that for two situations
s, s′, s ⊑ s′ if and only if the sequence of actions of
s is an initial segment of the sequence of actions of
s′. When s ⊏ do(a, s′) holds, then the action sequence
in s is a strictly smaller initial segment of the action
sequence of do(a, s′) and hence an initial segment of
the action sequence of s′. Consequently, s ⊆ s′. Vice
versa, if s ⊑ s′, then the action sequence of s will be
a strictly smaller initial segment of the action sequence
of s′ appended with action a, and hence s ⊏ do(a, s′)
holds.

A basic action theory of the inductive situation cal-
culus will be a collection of axioms of the form:

Dif ∪ Duna(Act) ∪ Dinit ∪ {∆sc}, (9)

where ∆sc is an inductive definition of the fluents. In
the next sections, we present two variants of ∆sc.

Specifying Direct Effects of Actions For each flu-
ent Fi, we introduce two additional auxiliary relations,
CFi

and C¬Fi
. These relations represent initiating and

terminating causes for Fi, respectively. Both CFi
and

C¬Fi
have the same sort of arguments as Fi plus one

action argument. Let Dinit axiomatize the initial situ-
ation using IF1

, . . . IFm
.

We augment Dif ∪Duna(Act)∪Dinit with the following
definition

∆sc =
⋃

i

∆i
fluent ∪

⋃

i

∆i
effect

where ∆i
fluent :=











∀x̄i (F (x̄i, S0) ← IF (x̄i)),
∀x̄i (Fi(x̄i, do(a, s)) ← CFi

(x̄i, a, s)),
∀x̄i (Fi(x̄i, do(a, s)) ← Fi(x̄i, s)∧

¬C¬Fi
(x̄i, a, s))











,

and ∆i
effect :=

{

∀x̄i (CFi
(x̄i, a, s) ← γ+

Fi
(x̄i, a, s)),

∀x̄i (C¬Fi
(x̄i, a, s) ← γ−Fi

(x̄i, a, s))

}

.

The intuitive meaning of this definition is as follows.
The first rule of ∆i

fluent defines the fluent in situation
S0. The second rule says that if an action causes a
fluent in some situation, then the fluent holds in the
successor situation. The third rule deals with the case
where a fluent is not affected by an action and will be
referred to as the law of inertia. The rules in ∆i

effect
describe direct effects of actions on the fluent Fi. For-
mulas γ+

Fi
(x̄i, a, s), γ

−
Fi

(x̄i, a, s) are analogous to those
found in Reiter-style situation calculus. The only situ-
ation term appearing in them is s and they do not con-
tain causality or initiation predicates. From the formu-
las γ+

Fi
(x̄i, a, s), γ

−
Fi

(x̄i, a, s), a successor state axiom for
the fluent Fi can be constructed. These axioms will be
called the successor state axioms corresponding to ∆sc.

Note that any fluent may appear in the rules of a
causality predicate. Hence, this definition is one large
simultaneous inductive definition. Moreover, since the
inertia law contains a negative occurrence of C¬Fi

and
this predicate may be defined in terms of fluents, this
is, in general, a non-monotone inductive definition.

In what follows, we use our modularity results in or-
der to obtain the standard successor state axioms of the
situation calculus.

Proposition 3. Suppose AI is an initial structure of
the inductive situation calculus such that AI |= Dinit.
A structure I extending AI is a model of ∆sc iff I is a
model of comp(∆sc).

Proof. Let A be the domain of AI. Define the following
relation ≺ on AtAI

τisc
, the set of all domain atom, as the

set of all tuples:

(IPi
[ū], Pi[ū, S

AI

0]),
(C(¬)Pi

[ū, a, s], Pi[ū, do
AI(a, s)]),

(Pi[ū, s], C(¬)Pj
[v̄, a, s]),

for arbitrary tuples of objects ū and v̄, for arbitrary
elements a of the action sort and s of the situation sort,
for each i, j.

It is easy to show that ≺ is a reduction relation.
Since any superset of a reduction relation is also a re-
duction relation, the transitive closure ≺∗ of ≺ is a
reduction relation. Moreover, it follows from the fact
that 〈SitAI ,⊑AI〉 is a pre-well-founded set (Proposition

1), that ≺∗ is a strict pre-well-founded order on AtAI

∆sc
.

This means that we can apply Theorem 3 and we ob-
tain that ∆sc is total in AI and is equivalent to the
completion.

Suppose that τ1, τ2 are vocabularies extending τ and
let T1, T2 be theories in respectively τ1, τ2. We call T1

equivalent in τ to T2 if for each τ1-modelM1 of T1, there
exists a τ2-model M2 of T2 such that M1|τ = M2|τ and
vice versa. Here Mi|τ denotes the restriction of Mi to
the symbols of τ .

Proposition 4. Dif ∪Duna(Act) ∪Dinit ∪{∆sc} is equi-
valent in τsc to

Df ∪ Duna(Act) ∪ DS0
∪ Dss

where DS0
is the theory obtained from Dinit by substi-

tuting Fi(t̄, S0) for each atom IFi
(t̄) and Dss is the set

of the successor state axioms corresponding to ∆sc.

Proof. Dif and Df are logically equivalent. By pro-
position 3, Df ∪ Dinit ∪ {∆sc} is logically equivalent to
Df ∪ Dinit ∪ comp(∆sc), where comp(∆sc) is
∧n

i ∀x̄i Fi(x̄i, s)↔ (s = S0 ∧ IPi
(x̄i)∨

∃a ∃s′ s = do(a, s′)∧
CFi

(x̄i, s) ∨ Fi(x̄i, s
′) ∧ ¬C¬Fi

(x̄i, s))
∧

∧n
i ∀x̄i∀s∀a CFi

(x̄i, a, s)↔ γ+
Fi

(x̄i, a, s
′)

∧
∧n

i ∀x̄i∀s∀a C¬Fi
(x̄i, a, s)↔ γ−Fi

(x̄i, a, s
′).

(10)
Since, by the domain closure axiom for situations,

∀s s = S0 ∨ ∃a ∃s
′ s = do(a, s′),

Df ∪ {(10)} is logically equivalent to Df ∪ {(11), (12)},
where

∧n

i ∀x̄i∀s∀a Fi(x̄i, do(a, s))↔
CFi

(x̄i, do(a, s))∨
Fi(x̄i, s) ∧ ¬C¬Fi

(x̄i, do(a, s))
(11)

and
∧n

i ∀x̄i Fi(x̄i, S0)↔ IPi
(x̄i)

∧
∧n

i ∀x̄i∀s∀a CFi
(x̄i, a, s)↔ γ+

Fi
(x̄i, a, s)

∧
∧n

i ∀x̄i∀s∀a C¬Fi
(x̄i, a, s)↔ γ−Fi

(x̄i, a, s).
(12)

Given the equivalences in (12), it is clear that Dif ∪
Duna(Act) ∪Dinit ∪ {(11), (12)} is logically equivalent to
Df ∪ Duna(Act) ∪ DS0

∪ Dss ∪ {(12)}.
Finally, observe that in the latter theory, the pre-

dicate symbols IPi
, CFi

and C¬Fi
occur only at the

lefthandside of the explicit definitions in (12). It follows
that Df ∪Duna(Act) ∪DS0

∪Dss ∪{(12)} is equivalent in
τsc to Df ∪ Duna(Act) ∪ DS0

∪ Dss.

Note that our definition ∆i
fluent does not contain rules

of the form

∀x̄i∀a∀s (¬Pi(x̄i, a, s) ← C¬Pi
(x̄i, a, s)). (13)

However, under a natural requirement, we can derive
negative effect axioms of actions, as we demonstrate
below. The requirement is that a fluent and its negation
are not caused to hold in the same situation. Formally,
the requirement is that the basic action theory should
entail the following sentence :

n
∧

i

∀x̄i∀a∀s ¬(γ+
Fi

(x̄i, a, s) ∧ γ
−
Fi

(x̄i, a, s)).

It is easy to show now that if this requirement is satis-
fied, then the negative effect axiom is implied. Observe
that each successor state axiom entails

∀x̄i∀a∀s ¬γ
+
Fi

(x̄i, do(a, s)) ∧ γ
−
Fi

(x̄i, do(a, s))
→ ¬Fi(x̄i, do(a, s)).

Under the requirement, the first literal in the condition
is entailed by the second, so we can drop it and we
obtain the negative effect rule

∀x̄i∀a∀s (γ−Fi
(x̄i, do(a, s)) → ¬Fi(x̄i, do(a, s))).

Therefore, in the context of Inductive Situation Calcu-
lus, rule (13) is not necessary. This observation illus-
trates a general principle of inductive definitions. In
an inductive definition, one defines a concept by enu-
merating positive cases. Given such an enumeration,
the closure mechanism underlying inductive definitions
yields the negative cases.

Indirect Effects The ramification problem arises in
the context of knowledge representation, when one
wants to capture indirect effects of actions in a logic-
based formalism. It has been shown (e.g., (Lin 1995))
that state constraints are generally inadequate for de-
riving indirect effects of actions, and that some notion of
causation is needed. Unlike material implication, causal
implications are not contrapositive which makes them
similar to the rules of inductive definitions. This prop-
erty is the foundation of our solution to the ramifica-
tion problem. The semantic correspondence between
causality rules and rules in an inductive definition
was independently pointed out in (Ternovskaia 1998a;
1998b) and in (Denecker, Theseider Duprè, & Van Bel-
leghem 1998).

Let, as before, CFi
and C¬Fi

represent initiating and
terminating causes for Fi, respectively. We extend the
use of the causality predicates to specify indirect ef-
fects of actions. For example, according to the causal
rule ∀a∀s (CF2

(a, s) ← C¬F1
(a, s)), when an action a

causes termination of F1, then the same action, indir-
ectly, causes the initiation of F2. We relax the con-
ditions on ∆i

effect, so that any number of rules of the
following form can appear in it:

∀a∀s (CFi
(x̄i, a, s) ← Ψ+

Fi
(x̄i, a, s)),

∀a∀s (C¬Fi
(x̄i, a, s) ← Ψ−

Fi
(x̄i, a, s))

, (14)

where Ψ+ and Ψ− are formulas in which s is the only
situation term. Note that in the direct effect case, caus-
ality predicates were excluded from bodies of rules of
∆i

effect.
The basic action theory (9), where ∆sc is as above,

encodes our most general solution to the ramification
problem in the inductive situation calculus.

Consider the following partition of ∆sc

{ ∆1
effect ∪ · · · ∪∆n

effect, ∆1
fluent, . . . ,∆

n
fluent } (15)

Proposition 5. Suppose AI is any initial structure of
the inductive situation calculus and causality predicates
have only positive occurrences in ∆sc. Partition (15) is
a total reduction partition of ∆sc in AI.

Proof. Let A be the domain of AI. Define the following
relation ≺ on AtAI

τisc
, the set of all domain atoms, as the

set of all tuples:

(IPi
[ū], Pj [ū, S

AI

0]),
(C(¬)Pi

[ū, a, s], Pj [ū, do
AI(a, s)]),

(Pi[ū, s], C(¬)Pj
[v̄, a, s]),

(C(¬)Pi
[ū, a, s], C(¬)Pj

[v̄, a, s]),

for arbitrary tuples of objects ū and v̄, for arbitary ele-
ments a of the action sort and s of the situation sort
and for each i, j.

It is easy to show that ≺ is a reduction relation. Since
any superset of a reduction relation is also a reduc-
tion relation, the reflexive, transitive closure ≺∗ is a
reduction relation. Moreover, it follows from the fact
that 〈SitAI ,⊑AI〉 is a pre-well-founded set (Proposition

1), that ≺∗ is a pre-well-founded order on AtAI

∆sc
. It

is easy to see that for atoms P [ā], Q[b̄] from AtAI

∆sc
, if

Q[b̄] ≺∗ P [ā] and P [ā], Q[b̄] are not defined in the same
∆i then Q[b̄] ≺≺∗ P [ā]. Therefore, partition (15) is a
reduction partition of ∆sc.

Observe that each definition in partition (15) is pos-
itive, and, therefore total in each structure. Con-
sequently, partition (15) is a total reduction partition
in AI.

Theorem 4. If causality predicates have only posit-
ive occurrences in ∆sc then the basic action theory
(9) is equivalent to the theory Df ∪ Duna(Act) ∪ DS0

∪

{
∧

i comp(∆
i
fluent) ∧ PID(

⋃

i ∆i
effect).

Proof. By proposition 5, we have a total reduction par-
tition. By the modularity theorem 1, we can split
the definition. The definition

⋃

i ∆i
effect is a positive

definition which, by theorem 2, can be translated into
PID(

∧

i ∆i
effect). The definitions ∆i

fluent have strict re-
duction relations, so they can be transformed into com-
pletions by theorem 3.

Example: N Gear Wheels Let us describe a simple
idealized mechanical system consisting of a number of
gear wheels w1, . . . , wn, each pair of which may or
may not be mechanically connected. For each of these
wheels, we consider two states: turning or stopped. For
each of these wheels, we consider two actions start(wi)
and stop(wi). The first action gives an impulse to the
wheel which propagates over the system to all connec-
ted gearwheels; the second action brakes the wheel and
all connected wheels. We assume that once a wheel
turns, it continues to turn (there is no friction; this sys-
tem behaves as a perpetuum mobile) until there is a
stop action.

We are faced here with a ramification problem — the
problem of how to describe the propagation of effects
through the system of connected gear wheels. The goal
is to develop a modular temporal theory describing the
effects of the basic actions and the propagation of ef-
fects. As a correctness criterion, we should be able to
prove the state constraint that in all situations, a gear

wheel w is turning if and only if all reachable wheels
(those connected to w in the transitive closure of the
connection graph) are turning as well.

We could represent this example in Reiter’s basic
situation calculus (Reiter 2001). To do this we could
pre-compute for each wheel the set of reachable wheels
in the connection graph; it suffices then to express that
the action of starting (resp. stopping) a wheel w has the
immediate effect to initiate (resp. terminate) the turn-
ing state of wheel w and each wheel reachable from w.
This representation would have an important drawback
due to the fact that it contains an explicit representa-
tion of the transitive closure of the physical connections
between gear wheels. This relation is an example of a
global property of the system which emerges as an in-
teraction of local properties, namely the physical con-
nections between gear wheels. If we explicitly represent
such global properties then a small change of a local
property (e.g. adding a new connection or deleting an
existing connection between two gear wheels) may have
a strong impact on the global properties and hence on
the theory (e.g. disconnecting one pair of gear wheels
may split a large interconnected set of connected wheels
and would affect the representation of the effect of all
actions on all wheels in this set). In a modular repres-
entation, only local properties of the components should
be represented explicitly; global properties should be
derivable from a generic part of the theory which does
not explicitly depend on the actual configuration of the
system. This is an aspect of elaboration tolerance (Mc-
Carthy 1998).

To obtain a modular representation in the gear wheel
example, we need to be able to express the reachability
from a specific wheel in an arbitrary graph. It is wel-
known that this concept cannot be expressed in first
order logic. Below we present a formalisation through
an iterated inductive definition.

In the gear wheel example, there is one domain de-
pendent sort, denoted Gearwheel. Action symbols are
start and stop and have sort 〈Gearwheel〉. The unique
fluent Turns has sort 〈Gearwheel, Sit〉.

Basic components of the inductive situation calculus
for the Gearwheel example are the foundational axioms
Dif of situations and the unique name axioms Duna(Act)

for actions. The main axiom of our theory is the sim-
ultaneous iterated inductive definition ∆sc of the fluent
Turns and its causality predicates CTurns and C¬Turns.
The effect propagation process caused by start or stop
actions in one situation will be modeled by a monotone
induction. To define the fluent Turns for all states,
the monotone induction is then iterated over the well-
founded structure of situations.

The definition ∆sc can be split up in two subdefin-
itions. The first part of the definition consists of the

rules for Turns: ∆Turns :=


















∀s∀g Turns(g, S0)← ITurns(g)
∀a∀s∀g Turns(g, do(a, s))← CTurns(g, a, s)
∀a∀s∀g Turns(g, do(a, s))←

Turns(g, s)∧
¬C¬Turns(g, a, s)



















Notice that the third rule, the law of inertia, contains
recursion over negation.

The second part of the definition ∆effect describes
the causation predicates CTurns and C¬Turns. The fol-
lowing set of rules ∆effect specify direct and indirect
effects of actions:







































∀a∀s∀g CTurns(g, a, s)← a = Start(g),
∀a∀s∀g C¬Turns(g, a, s)← a = Stop(g)),
∀a∀s∀g CTurns(g, a, s)←

∃g′ Connected(g, g′)∧
CTurns(g

′, a, s),
∀a∀s∀g C¬Turns(g, a, s)←

∃g′ Connected(g, g′)∧
C¬Turns(g

′, a, s)







































These rules contain positive recursion. To represent the
physical connections between the gear wheels, we used
the binary relation symbol predicate Connected. This
is a symmetric relation, as is expressed by the theory
DConn consisting of the axiom:

∀g∀g′ Connected(g, g′)→ Connected(g′, g).

Define ∆sc := ∆Turns∪∆effect. This definition defines
the predicates Turns, CTurns and C¬Turns by simul-
taneously non-monotone induction in terms of the open
predicates ITurns and Connected.

We assume that in the initial state, all gear wheels
are in rest. This is expressed by the theory Dinit which
contains one axiom

∀g ¬ITurns(g).

The full axiomatisation of the domain consists of

Dwheels := Dif ∪ Duna(Act) ∪ DConn ∪ Dinit ∪ {∆sc}.

Notice that the configuration of the gear wheels is left
unspecified both in the statement of the problem and
in its axiomatisation Dwheels.

Below we analyse the theory Dwheels. Since ∆effect

is a positive definition, the basic action theory Dwheels

satisfies the conditions of theorem 4. Consequently, we
have the following proposition.

Proposition 6. The theory Dwheels is equivalent to

Dif ∪ Duna(Act) ∪ DConn ∪ Dinit∪
PID(∆Effect)} ∪ comp(∆Turns)

Proposition 7. In each situation, all connected gear
wheels are turning or they are all in rest. The theory
Dwheels logically entails:

∃X











{

∀g∀g′ X(g, g′)← Connected(g, g′),
∀g∀g′ X(g, g′)← ∃g′′ X(g, g′′)∧

X(g′′, g′)

}

∧∀s∀g∀g′ (X(g, g′)→
(Turns(g, s)↔ Turns(g′, s)))











Proof. The proof is model theoretic. Let I be a model
of Dwheels.

The proof is by induction on the length of the situ-
ations. Since all gear wheels are in rest in the initial
situation, the property is trivially satisfied in this situ-
ation. Assume that the property is satisfied for situ-
ation s. We prove that it holds for the successor situ-
ation doI(a, s), for arbitrary action a.

Assume that there is a path from gearwheel g to gear-
wheel g′ through the graph ConnectedI . By definition
∆effect, if CTurn(g′, a, s) is true then so is CTurn(g, a, s).
Because the graph ConnectedI is symmetric, it follows
that CTurn(g, a, s) and CTurn(g′, a, s) have the same
truth value. The same holds for C¬Turn. The induc-
tion hypothesis states that in situation s all connected
wheels are in the same state. By the above observa-
tion, the action a has the same effects on all connected
wheels. Consequently, the induction hypothesis is pre-
served in situation doI(a, s).

Related work For an overview of different ap-
proaches for temporal reasoning and the ramification
problem we refer to (Thielscher 1997) (McIlraith 2000)
(Denecker, Theseider Duprè, & Van Belleghem 1998).
Here we limit our discussion to approaches based on
situation calculus using inductive definitions and clas-
sical logic.

The idea of using inductive definitions for mod-
eling temporal reasoning using inductive definitions
was pointed out independently in (Ternovskaia 1998a;
1998b) and (Denecker, Theseider Duprè, & Van Bel-
leghem 1998). In both cases, the motivation for us-
ing inductive definitions was the similarity between the
process of effect propagation in a dynamic system and
inductive definitions. Basically, the process of effect
propagation is a constructive process: basic actions
cause changes and effects which propagate through the
dynamic system; changes do not appear without an ex-
ternal cause. The same constructive intuition is found
in inductive definitions. This explains why inductive
definitions can correctly model recursive effect propaga-
tions. In this respect, the inductive situation calculus is
more general than two other well-known classical logic
formalisations of the situation calculus with ramifica-
tions, namely Lin’s approach (Lin 1995) and McIlraith’s
solitary stratified theories (McIlraith 2000). Both ap-
proaches impose acyclicity constraints on ramification
rules which preclude recursive ramifications. A strong
constraint in solitary stratified theories is that no flu-
ent symbol is allowed to appear both as an effect and in
the precondition of the same action. On the other hand,
McIlraith addresses the qualification problem, which we
don’t.

Conclusion

This paper explains the inductive nature of situation
calculus. We have shown that — unsuspected by its cre-
ators — the original Reiter-style situation calculus and

its extension for representing ramification, makes hid-
den use of inductive definitions. We made these defin-
itions explicit and found monotone and non-monotone
induction. In the Reiter-style situation calculus, these
different forms of induction are formalised in different
ways. In our representation in NMID-logic, they can
be represented in a uniform way. In this sense our rep-
resentation is simpler and may lead to a more modular
representation. We presented a translation to classical
logic to show that our formalisation of situation calcu-
lus is indeed equivalent to the standard formalisation.
Finally, our experiment also demonstrates that the use
of different forms of inductive definitions is not limited
to mathematics, but may have applications in a much
wider area of knowledge representation, including com-
monsense reasoning.

References

Denecker, M., and Ternovska, E. 2004. A logic for
non-monotone inductive definitions and its modularity
properties. In Proc. of LPNMR-04.

Denecker, M.; Bruynooghe, M.; and Marek, V. 2001.
Logic programming revisited: Logic programs as in-
ductive definitions. ACM Transactions on Computa-
tional Logic (TOCL) 4(2).

Denecker, M.; Theseider Duprè, D.; and Van Bel-
leghem, K. 1998. An inductive definition approach
to ramifications. Linköping Electronic Articles in
Computer and Information Science 3(7):1–43. URL:
http://www.ep.liu.se/ea/cis/1998/007/.

Denecker, M. 2000. In Lloyd et al., J., ed.,
First International Conference on Computational Lo-
gic (CL2000), volume 1861 of Lecture Notes in Artifi-
cial Intelligence, 703–717. London: Springer.

Fitting, M. 2002. Fixpoint semantics for logic pro-
gramming - a survey. Theoretical Computer Science
278:25–51.

Gelfond, M., and Lifschitz, V. 1991. Classical nega-
tion in logic programs and disjunctive databases. New
Generation Computing 9:365–385.

Lin, F. 1995. Embracing causality in specifying the
indirect effects of actions. In Proc. of IJCAI 95, 1985–
1991.

McCarthy, J. 1998. Elaboration tolerance. In COM-
MON SENSE 98, Symposium On Logical Formaliza-
tions Of Commonsense Reasoning.

McIlraith, S. 2000. An axiomatic solution to the rami-
fication problem (sometimes). Artificial Intelligence
116(1-2):87–121.

Reiter, R. 1991. The frame problem in the situation
calculus: a simple solution (sometimes) and a com-
pleteness result for goal regression. In Lifschitz, V.,
ed., Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy.
San Diego, CA: Academic Press. 359–380.

Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Describing and Implementing Dynamical Sys-
tems. MIT Press.

Ternovskaia, E. 1998a. Causality via inductive defini-
tions. In Working Notes of ”Prospects for a Common-
sense Theory of Causation”, AAAI Spring Symposium
Series, March 23-28.

Ternovskaia, E. 1998b. Inductive definability and the
situation calculus. In Transaction and Change in Logic
Databases, volume 1472 of Lecture Notes in Computer
Science. Springer-Verlag.

Thielscher, M. 1997. Ramification and causality. J. of
Artificial Intelligence 89:317–364.

Van Gelder, A. 1993. An alternating fixpoint of lo-
gic programs with negation. Journal of computer and
system sciences 47:185–221.

