
Tianzheng Wang Ryan Johnson

Transaction Logging Unleashed
with NVRAM

No, I’m not talking about the syslog

1

 Used by most transactional systems
 Databases, file systems…

 Reliability
 Everything goes to the log first, then the real place

 Replay winners, rollback losers

 Performance
 Buffer log records in DRAM

 Disk/storage friendly long, sequential writes

Write-ahead logging

2

Update
Bal=500

Data

1. Log it 2. Really change it

Update
Bal=500

Data

1. Log it 2. Really change it

 Used by most transactional systems
 Databases, file systems…

 Reliability
 Everything goes to the log first, then the real place

 Replay winners, rollback losers

 Performance
 Buffer log records in DRAM

 Disk/storage friendly long, sequential writes

Write-ahead logging

3

Update
Bal=500

Data

1. Log it 2. Really change it

Update
Bal=500

Data

1. Log it 2. Really change it

All was good until we had

massively parallel hardware

Centralized log: a serious bottleneck

4

Transaction
threads

DRAM
Log buffer

on commit

Flush
Storage

Why not distribute the log?

Reality

Ideal

Log
work

CPU
cycles

46% - Log
contention

Other

5

Sure!

But need the help of

byte-addressable, non-volatile memory (NVRAM).

The (impractical) distributed log
 Log space partitioning
 by page or xct?

 Impacts locality and recovery

 Dependency tracking
 Direct xct deps: T4  T2

 Direct page deps: T4  T3

 Transitive deps: T4  {T3, T2}
 T1

 Easily end up flushing all logs

 Storage is slow
 System becomes I/O bound

6

a d c
Log 1 Log 2

e f
Log 3

g
Log 4

a e g
Log 1 Log 2

d f
Log 3

c
Log 4

T1 T2 T3 T4

a b c d e f g h

T1 T2 T3 T4

The (impractical) distributed log

7
* R. Johnson etc., “Aether: a scalable approach to logging”, PVLDB 2010

The (impractical) distributed log

8

Heavy dep. tracking + slow I/O

=

showstoppers

* R. Johnson etc., “Aether: a scalable approach to logging”, PVLDB 2010

NVRAM to the rescue

 NVRAM as log buffers for distributed logging

 Log records durable once written

 No dep tracking or flush-before-commit

9

Heavy dep. tracking + slow I/O = (SOLVED)

System architecture

10

Before:

Log buffer (DRAM)

After:

Log buffers (NVRAM)

 Contend on a single
log buffer

 Flush on commit or
timeout

 Less or no contention

 Flush when buffers are
full or timeout

 NUMA effects

 Durability – processor cache is volatile

 Database system implications

 Ordering

 Uniqueness of log records

 Recovery

 Checkpointing

 …

Challenges

11

NUMA
node 2

NUMA
node 1

Problem #1: NUMA effects

 Partition-by-page => easier/simpler recovery

 Threads prefer to access local NVM node

12

P1
P2
P2

NUMA
node 2

NUMA
node 1

Transaction level: Page level:

Prefer to partition by xct

 NUMA-friendly  Cross NUMA boundary

Problem #2: LSN gives partial order

 Log sequence numbers only good in any one log

 Recovery needs total order in any log/xct/page

13

Transaction
threads:

Log buffers: …1 2 1 2

The same page
being modified:

…

Same LSNs,
whom first?

Recovery
manager:

smaller ≠ earlier!

By-xct d-log needs global ordering of log records

Solution #2: global sequence number

14

Tx GSN:

Log bufs: …2 3 8 9

Page:

…

0
2
3

1 – 2 – 3Pg GSN:

7
8
9

3 – 8 – 9

GSN: Page Transaction Log

EX-latch max(pg’s, tx’s) + 1 /

SH-latch / max(pg’s, tx’s) /

Log ins. max (pg’s, tx’s, log’s) + 1

How? Bump GSNs when the
transaction latches pages
and inserts log records

 Based on Lamport’s clock, no extra contention

GSN gives a partial, global order in each page, tx and log

 Log records must leave CPU cache before commit,
preferably without dependency-tracking

 The ultimate solution: durable processor cache
 Candidates: FeRAM, SRAM + Supercapacitor…

 Kiln [MICRO-46]

 Whole system persistence [ASPLOS ’12]

 Rohm nonvolatile CPU

Problem #3: Volatile CPU caches

15

But not available

on the market

dGSN dGSN dGSN

 Log records must leave CPU cache before commit,
preferably without dependency-tracking

 Stop-gap solution: passive group commit

Problem #3: Volatile CPU caches

16

Commit queue

Get min dGSN: 8

Passive group commit daemon

Dequeue xct with
dGSN <= 8

on commit:
1. Flush local caches
2. Update local dGSN
3. Enqueue transaction

TXN dGSN

Xct 1 5

Xct 2 10

Evaluation

 Setup

 4-socket, 6-core Xeon E7- 4807 @ 1.8GHz

 24 physical cores, 48 “CPUs” with hyper threading

 64GB DRAM

 NVM: flash/super-capacitor backed DRAM

 Workloads

 Shore-MT, with Aether*

 TPC-C: online transaction processing

 TATP: telecom database applications

17
* R. Johnson etc., “Aether: a scalable approach to logging”, PVLDB 2010

TATP – write intensive

 Distributed vs. centralized logging

18

TATP – write intensive

 Passive group commit

19

TPC-C – full transaction mix

 Distributed vs. centralized logging

20

TPC-C – full transaction mix

 Passive group commit

21

Conclusion

 Centralized logging is a serious bottleneck

 NVRAM resurrects d-log to scale databases

 Practical distributed log today

 Passive group commit

 Flash/super-capacitor backed DRAM (NVDIMM)

22

Find out more in our VLDB paper:

Scalable Logging through Emerging Non-Volatile Memory

http://www.vldb.org/pvldb/vol7/p865-wang.pdf

Thank you!

http://www.vldb.org/pvldb/vol7/p865-wang.pdf

