
Evaluating Persistent Memory Range Indexes: Part Two

Yuliang He
Simon Fraser University

georgeh@sfu.ca

Duo Lu
Simon Fraser University

luduol@sfu.ca

Kaisong Huang
Simon Fraser University

kha85@sfu.ca

Tianzheng Wang
Simon Fraser University

tzwang@sfu.ca

ABSTRACT

Scalable persistent memory (PM) has opened up new opportunities
for building indexes that operate and persist data directly on the
memory bus, potentially enabling instant recovery, low latency
and high throughput. When real PM hardware (Intel Optane Per-
sistent Memory) first became available, previous work evaluated
PM indexes proposed in the pre-Optane era. Since then, newer
indexes based on real PM have appeared, but it is unclear how they
compare to each other and to previous proposals, and what further
challenges remain.

This paper addresses these issues by analyzing and experimen-
tally evaluating state-of-the-art PM range indexes built for real PM.
We find that newer designs inherited past techniques with new
improvements, but do not necessarily outperform pre-Optane era
proposals. Moreover, PM indexes are often very competitive with or
even outperform indexes tailored for DRAM, highlighting the poten-
tial of using a unified design for both PM and DRAM. Functionality-
wise, these indexes still lack good support for variable-length keys
and handling NUMA effect. Based on our findings, we distill new
design principles and highlight future directions.

PVLDB Reference Format:

Yuliang He, Duo Lu, Kaisong Huang, and Tianzheng Wang. Evaluating
Persistent Memory Range Indexes: Part Two. PVLDB, 15(11): 2477 - 2490,
2022.

doi:10.14778/3551793.3551808

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/sfu-dis/pibench-ep2.

1 INTRODUCTION

The recently commercialized persistent memory (PM) devices, rep-
resented by Intel Optane Persistent Memory (Optane PMem) [16],
deliver persistence, high capacity, lower cost and fast speed on the
memory bus. There have been many PM-inspired (re)designs in
data-intensive systems [3, 4, 9, 45, 55, 63, 76]. In particular, much
exciting progress has been made on devising single-level persistent
OLTP indexes that directly operate and store data on PM without
involving the storage stack, even before real PM devices became
available [2, 11, 12, 27, 40, 56, 64, 68, 71, 73]. As we have shown in
the past [44], although these pre-Optane proposals do not perform
as expected (e.g., much slower) on real PMem devices due to inaccu-
rate assumptions and emulation, several building blocks (unsorted

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551808

nodes, fingerprinting, hybrid DRAM-PM structures) have proved
useful for devising new indexes on PM.

The availability of real PM devices has further enabled a new
breed of PM-based indexes [13, 34, 46, 48, 49, 77], which are tailor-
made for Intel Optane PMem. Although they appear/claim to per-
form better than pre-Optane proposals on real PM, it remains un-
clear (1) how they compare against each other, as these new indexes
appeared roughly concurrently and/or were proposed by different
research communities (e.g., VLDB/SIGMODvs. SOSP/OSDI), (2) how
they are different from (or similar to) the pre-Optane proposals (i.e.,
what “legacy” have pre-Optane proposals left for the new breed?),
and (3) what further challenges and opportunities remain in this area.
The goal of this paper is to answer these questions, which is the
key to pushing actual adoption of these new indexes and PM-based
systems in general. We do so by conducting a comprehensive eval-
uation of five state-of-the-art PM indexes, including DPTree [77],
𝜇Tree [13], LB+-Tree [46], ROART [49] and PACTree [34]. We also
include as a reference FPTree [56], a representative and arguably
the best-performing design from the pre-Optane era [44].

This work can be seen as a sequel to the “first episode” of our
past work which benchmarked and distilled the aforementioned
useful building blocks from pre-Optane era PM indexes [44], but is
not a mere repeat of what was done before with newer indexes. On
the one hand, we follow the similar methodology and focus on rep-
resentative range indexes. On the other hand, in this paper we give
a snapshot of the latest state of this area and highlight new findings,
observations and perspectives that were often omitted in the past,
especially on variable-length key support, NUMA-awareness and
new potential impact of existing PM indexes on future work. We
summarize our findings below. 1 The key optimization target re-
mains to be reducing read and (more often) write operations on PM
to preserve PM bandwidth (and thus achieving higher performance).
2 As we predicted in past work, several pre-Optane techniques are
effective on real PM hardware and widely adopted by new propos-
als, including fingerprinting [56], unsorted nodes and leveraging
DRAM. 3 Although modern PM-enabled servers are often multi-
socket, most state-of-the-art PM indexes are still only optimized
for single-socket machines and consciously avoided NUMA effect
in their experimental evaluations; handling NUMA effect remains
an unsolved problem. 4 PM programming infrastructure (e.g., PM
allocators and runtime) is still far from ideal in many cases and
requires further improvements. 5 Finally and perhaps most pro-
foundly, for the first time, we observe that techniques employed by
PM indexes can also be useful in devising high-performance volatile
in-memory indexes. Surprisingly, when running on DRAM without
the extra fences and cacheline flushes, under certain workloads a
PM index can match or even outperform well-tuned indexes specif-
ically designed for DRAM, such as HOT [6] and Masstree [50]. This
highlights the potential of unifying persistent and volatile indexing
to simplify the design and implementation of future systems.

The remaining sections expand on more details and insights. We
give the necessary background on PM in Section 2, followed by a re-
view of pre-Optane PM range indexes in Section 3. Sections 4–5 then
survey and analyze state-of-the-art PM range indexes. Sections 6–7
present our experimental results and observations. We give an out-
look of future indexes in Section 8. Section 9 covers related work
and Section 10 concludes this paper. We have open-sourced our
code and results at https://github.com/sfu-dis/pibench-ep2.

2 PERSISTENT MEMORY

We briefly review the properties of PM (in particular Intel Optane
PMem1) and its implications on software; readers already familiar
with the literature may skim and fast forward to Section 3.

Collectively, “PM” refers to a class of devices that offer byte-
addressability (like DRAM), high capacity and persistence (like
SSDs) on the memory bus. They can be built using various materi-
als and techniques, such as PCM [70], STT-RAM [24] and memris-
tor [62]. However, only the 3D XPoint [17] based Optane PMem so
far has delivered high capacity promised by the PM vision. Thus,
we target Optane PMem in this paper. Optane PMem’s performance
generally falls between DRAM and SSDs.2 The first generation (100
series) exhibits ∼300ns latency and ∼5–40GB/s bandwidth depend-
ing on the access pattern, and with sequential/read accesses being
faster than random/write accesses. The latest 200 series further
gives ∼30% higher bandwidth [31].

Although PM offers persistence, it is still behind multiple lev-
els of CPU caches. Software normally goes through CPU caches
to access data stored on PM using load and store instructions,
and explicitly issues cacheline flush instructions (e.g., CLWB and
CLFLUSHOPT) and fences to ensure data is correctly persisted [30].
However, PM-capable platforms use asynchronous DRAM refresh
(ADR) to guarantee data flushed from the CPU caches will first land
on the CPU’s write buffer, which is power failure protected. As a
result, a PM write is considered complete once the data is forced to
the ADR domain, without necessarily having arrived at physical
PM media. More recent platforms further feature enhanced ADR
(eADR) which also protects the CPU cache, effectively providing
durable CPU caches and potentially sparing the need of cacheline
flush instructions (although fences are still needed for correct order-
ing). eADR is only available for the more recent 200-series Optane
PMem and Skylake platforms [30]. Our experiments are based on
the 100-series PMem and Cascade Lake platform without eADR
(detailed setups in Section 6). However, we do not expect our con-
clusions to change based on recent results obtained from evaluating
the impact of eADR [22]. We leave it as future work to document
eADR’s detailed behavior and impact on PM range indexes.

Optane PMem can operate under the Memory, App Direct, or
Dual modes [30]. The Memory mode uses the system’s DRAM as a
hardware-controlled cache and presents bigger but volatile memory.
The App Direct mode enables persistence, thus allowing building
persistent indexes. The Dual mode combines both by allowing part
of PM to be configured for the Memory or App Direct mode. Same
as other work, we focus on the App Direct mode as it gives software
the flexibility to use DRAM and PM as needed.

1Also known as Optane DC Persistent Memory Module (DCPMM) [28].
2Exceptions apply under certain workloads and hardware configurations [26].

3 PREVIOUSLY ON PM RANGE INDEXES

Indexing had received much attention even before real PM was
available [2, 11, 12, 27, 40, 56, 64, 68, 73]. This section reviews pre-
Optane designs to set the stage for our new evaluations.

3.1 Early Assumptions in the Pre-Optane Era

Due to the lack of real devices, early proposals had to “guesstimate”
the properties of PM based on prototypes and simulations [39, 70,
75].3 Common assumptions included (1) limited write endurance,
(2) 3–5× higher latency but similar bandwidth to DRAM’s [58, 67],
(3) writes slower than reads, (4) 8-byte atomic PM writes [15], and
(5) volatile CPU caches and reorderings by the CPU. Out of these,
the assumption on bandwidth turned out to be inaccurate: Optane
PMem’s lower-than-DRAM bandwidth is a major factor that limits
performance [44]. The speed gap between sequential and random
accesses was also largely left out. Endurance so far has not been a
major issue for Optane PMem which warrants virtually unlimited
endurance during the usual replacement cycle of 3–5 years [28, 51].

Nevertheless, these assumptions rightfully suggested that classic
in-memory indexes would not guarantee correctness (customized
recovery protocols are necessary), nor perform well on PM. Con-
currency control must be carefully considered given PM’s higher
latency. These led to the development of numerous PM indexes
even before actual PM hardware was available. The key is reduc-
ing PM read/write operations and avoiding unnecessary cacheline
flushes and fences to both improve performance and reduce wear.

3.2 Presumed Designs and Building Blocks

To reduce PM accesses, several building blocks have been proposed
around re-designing the tree architecture, node structure and con-
currency control. Now we discuss them in the context of previously
evaluated PM indexes (wBTree [12], BzTree [2], FPTree [56] and
NV-Tree [73]). Table 1 lists their main design choices. The first
three dimensions (architecture, node structure and concurrency) re-
ceived the most attention in the past; in this work, we also consider
variable-length keys, PM management and NUMA-awareness.

Tree Architecture: PM-Only → DRAM-PM Hybrid. Most
pre-Optane proposals adapt in-memory B+-trees. Some (e.g., wB-
Tree and BzTree) place the entire tree on PM to allow instant recov-
ery. But doing so leads to much slower traversal speed compared to
DRAM indexes. A key contribution by FPTree and NV-Tree was to
leverage the fact that B+-tree’s inner nodes only guide search traffic
and are reconstructible using leaf nodes. This allows improved tra-
versal speed by loosening the consistency requirements for inner
nodes, by omitting flushes/fences [73] and/or placing all the inner
nodes in DRAM [56]. Upon restart, the inner nodes can be rebuilt
using B+-tree bulk loading algorithms. The downside is recovery
time can scale with data size, sacrificing instant recovery.

Node Structure: Sorted → Unsorted. Traditional B+-trees
keep keys sorted for fast binary search. The drawback of inheriting
this design on PM is insertions may shift keys, causing excessive PM
reads and writes, while having the risk of incomplete updates upon
hardware failure. Moreover, binary search becomes less (or not
at all) beneficial with small nodes commonly used by in-memory

3Various materials can be used to build PM, yet they may perform differently. This par-
tially forced past work to make general assumptions for potentially wider applicability.

Table 1: Design choices of pre-Optane PM index proposals (wBTree, BzTree, FPTree and NV-Tree) [44]. Common building blocks

such as using DRAM to store reconstructible data (e.g., inner nodes), using unsorted nodes and fingerprinting have proved to be

useful on real Optane PMem. The impact of variable-length keys, PM allocator and NUMA effect were largely unconsidered.

Architecture Node Structure Concurrency
Var.

Keys
PM Allocator

NUMA-

Aware

wBTree [12] B+-tree; PM-only Unsorted; indirection Single-threaded Pointer Emulation/PMDK No

BzTree [2] B+-tree; PM-only Partially unsorted leaf
Lock-free with Persis-
tent MwCAS [68]

Inlined Emulation/PMDK No

FPTree [56]
B+-tree; DRAM (inner) +
PM (leaf)

Unsorted leaf; fingerprints
HTM (inner) + lock-
ing (leaf)

Pointer Customized/PMDK No

NV-Tree [73]
B+-tree; PM-only or op-
tionally DRAM+PM

Unsorted leaf; inconsistent
inner nodes

Locking Pointer Emulation/PMDK No

B+-trees. A popular solution is to keep nodes unsorted and use
a linear scan to retrieve the target key. Most of the surveyed pre-
Optane indexes adopted this technique. To mitigate the impact of
linear search, BzTree periodically consolidates nodes to become
sorted. FPTree proposed fingerprinting which maintains one-byte
hashes of the keys in the node and a lookup starts by checking
the fingerprints. Only the keys with matched fingerprints will be
further examined. This greatly reduces PM accesses, especially for
negative search where the key does not exist. Another approach is
to keep an indirection array [12] that stores sorted index positions
of keys, allowing binary search using the indirection array.

Concurrency Control: Pessimistic → Optimistic. PM in-
dexes often prefer lightweight concurrency control over pessimistic
lock coupling [59]. FPTree uses separate strategies for inner and leaf
nodes: For the former it leverages hardware transactional memory
(HTM) to reduce traversal costs, and for the latter it uses tradi-
tional locking because inserting into PM-resident leaf nodes may
involve cacheline flushes, which in turn will abort HTM transac-
tions. BzTree uses lock-free multi-word compare-and-swap (PMw-
CAS) [68] that can atomically modify multiple 8-byte words. With-
out pessimistic locking, FPTree scales to high core count but ex-
hibits high tail latency and low throughput under contention, due
to HTM’s inherent limitations [44]. FPTree delegates the detailed
HTM-locking interactions to Intel TBB which uses a fast-path that
uses HTM and a slow-path that serves as a fallback when HTM
abort rate becomes higher than a threshold (10 by default).4

3.3 Functionality and PM Management

Now we turn to the remaining three dimensions under considera-
tion in Table 1: support for variable-length keys, NUMA awareness
and PM programming infrastructure support.

Most pre-Optane proposals [12, 56, 73] focused on handling fixed-
length, 8-byte keys, so did past evaluation efforts. Variable-length
keys are usually supported using pointers to keys stored in the (per-
sistent) heap. Some proposals differentiate pointers from inlined
values by designating a special “type” bit in the 8-byte key area,
effectively limiting the maximum length of keys to be 63 bits. Oth-
ers, e.g., FPTree, require compile-time customization by specifying
whether keys are 8-byte integers or pointers to support full 64-bit

4Details at https://github.com/oneapi-src/oneTBB/blob/v2021.5.0/src/tbb/rtm_mutex.

cpp#L33. Our evaluation (Section 6) sets the threshold to 256 for better performance.

keys. Pointers are used in case both types are required. As a result,
accessing shorter keys ≤ 8 bytes is also prone to cachemisses caused
by pointer chasing. Out of the four indexes, only BzTree provides
inlined support for variable-length keys with slotted pages.

None of the surveyed pre-Optane indexes handles NUMA effect.
Most of them also do not have a well thought-out design for manag-
ing PM. FPTree uses PMDK [29], the current de facto standard PM
library, to avoid issues such as PM leaks. For better performance,
FPTree has to use customized slabs (large chunks allocated from
PMDK allocator) to amortize PM allocation cost. Still, our previous
work [44] has identified PM allocation in all these indexes as a main
bottleneck that should be avoided by future designs.

4 STATE-OF-THE-ART PM RANGE INDEXES

We survey five representatives of recent PM indexes optimized for
Optane PMem: LB+-Tree [46], DPTree [77], 𝜇Tree [13], ROART [49]
and PACTree [34]. They can be categorized as B+-tree based, trie
based and hybrid which makes use of both B+-trees and tries.5

4.1 B+-Tree based: LB+-Tree and 𝜇Tree
We survey two representative B+-tree based PM range indexes,
LB+-Tree [46] and 𝜇Tree [13], which represent designs that mainly
optimize for high throughput and low tail latency, respectively.

LB+-Tree. As evaluated by previous work [33, 44, 72], Optane
PMem uses 256-byte granularity internally: accesses smaller than
256 bytes will still incur 256-byte of traffic to/from the physical
media. It then becomes important to (1) coordinate PM accesses
in 256-byte granularity and (2) reduce unnecessary PM accesses
(to save PM bandwidth) [33, 72]. To reach these goals, as shown
in Tables 1 and 2, LB+-Tree starts with several useful techniques
proposed by FPTree: fingerprinting, DRAM+PM architecture and
optimistic concurrency with HTM and locking. Compared to FP-
Tree, it uses hand-rolled RTM transactions instead of TBB. We
highlight the impact of this design decision later in Section 6.

On top of these existing techniques, LB+-Tree proposes new ones
to further optimize PM accesses. First, node sizes are set to align
with and be multiples of 256 bytes for better CPU cache and PM
utilization. Second, to minimize PM writes during inserts, LB+-Tree

5In addition to traditional indexes, learned indexes [36] are also being adapted for
PM [47]. However, they are still in very early stage. We thus leave it as future work to
evaluate them to avoid pre-mature conclusions.

proposes entry moving to bound the number of cacheline writes
per insert. As Figure 1(a) shows, a 256-byte leaf node is divided
into four 64-byte cachelines. Upon insert, LB+-Tree first attempts
to insert the record into Line 0 if an empty slot is available in it.
Since the header is also in Line 0, only one cacheline write to PM is
needed to persist both the record and header. Otherwise, LB+-Tree
moves data from Line 0 to another line where the new entry is
inserted. This proactively spares empty slots in the first cacheline,
which will reduce flush operations incurred by future inserts.

Write-ahead logging (WAL) is widely used for crash recovery [29],
but incurs additional PM writes. LB+-Tree disposes of WAL with
logless node splits by storing two sibling pointers in each leaf
node and uses an alt bit in node header to indicate the valid pointer.
Upon split, a new leaf node is first allocated and tracked by the
unused pointer, followed by a redistribution of entries to the last
two cachelines of the new node. Then the alt bit and bitmap in
the original node are updated using an 8-byte atomic PM write to
ensure the tree is always in a consistent state even across failures.

𝜇Tree. Different from most PM indexes, 𝜇Tree mainly optimizes
for tail latency caused by PM’s high latency. It places B+-tree inner
nodes in DRAM, but redesigns leaf nodes to use both DRAM and PM.
As shown in Figure 1(b), leaf nodes in 𝜇Tree consist of two layers:
an array layer and a list layer. The former consists of traditional
B+-tree nodes which store pointers to list layer nodes; the latter is a
PM-resident singly-linked list where each node stores a key-value
pair. 𝜇Tree uses optimistic locking [43] for the DRAM-resident
B+-tree and manages the PM-resident linked list in a lock-free
manner. To insert a record, the thread first traverses the in-DRAM
B+-tree optimistically without holding any locks, and then inserts
a node representing the key-value pair in the linked list using the
compare-and-swap (CAS) instruction [20, 23]. It then acquires the
lock in the corresponding leaf node in the B+-tree to insert the
key, which may trigger splits that will in turn acquire locks from
the bottom up in DRAM. This way, B+-tree structural modification
operations (SMOs) and actual key-value inserts/removals (which
incur PM flushes in the list layer) are decoupled, and multiple
threads inserting into the same leaf node could proceed in parallel
in the list layer. This could allow more concurrency and removes
flushes from the critical path, thus reducing tail latency.

4.2 Trie based: ROART and PACTree

Newer designs have also explored tries on PM. They are mostly PM-
only (instead of DRAM-PM hybrids) and based on ART [42]. We sur-
vey two representative proposals, ROART [49] and PACTree [34].

ROART. Based on ART, ROART optimizes for range scans,
which are known to be a weak point of tries [49]. Figure 1(c) shows
the overall architecture of ROART. It is purely on PM but selectively
persists metadata entries and reconstructs the inconsistent ones
upon recovery (similar to NV-Tree’s selective consistency [73]).
To optimize scan, ROART compacts small sub-trees (< 64 entries)
into leaf arrays that store pointers to records. This reduces pointer
chasing overhead during scan and makes the index shallower. The
downside is splits become expensive, as all the keys in a leaf array
are divided into subsets based on the first differentiating byte, fol-
lowed by a node allocation for each subset. This requires more PM
writes and fences, and puts higher pressure on the PM allocator.

�� � �� � � � 	 ��
 � � �� � �	 �� �
�

������

�� � �� � � � 	 ��
 � � �� � �	 ��

���� � ���� � ���� 	 ���� �

��

� ��� 	�
� ���� ����

���� 	�
� ���� ����

�� ! 	�
�"�����"�����

###

�

�

$! � % 	�
� ���� ����� ��&���' (�������

�� !

����)"��)��

����"��)��

*�)

�+�����

��, ��-���		

###
(��

��
###����

$!

����"����

.������ (��
� � �

�

�
, ���		

�����"�����

&����((��

�"(������"�����

���'��(���� �������

��
�

 �/$!

�

###

###

###

����"����)

###��

��, ���

�+�����

###

��, ��0��		

$!

 �/

�	, ����		

�� !

$!

����1�"��)��

###

###

����"��)��

��1���"*�)""�������""��%�"(��""(��."(��""&����(

���'��(����"����)

.������"��1*"����"(���������

*. ����)

(���2������"����)".������"����"(���������

(���2������"����)"����"(���������

�����"&2����"���� ������"&2����"���� &���"����
���������)� ���������)�

32��)

����

32��)

��������������
2(����

###

�+����� �+����� ����

���� ��)��
(������� ���'���' ������ ��&��

###

(�
���
���
��
� ###

###
����

.����

��.����

�((���

����� ����� *.� *.�

�
'��&�� .������

1�����1��������� ��1�����21��&��

###

32��)

�������

Figure 1: Architecture of five state-of-the-art PM indexes.

To this end, ROART reduces the number of fences by relaxing the
order of split steps and using a depth field to detect and resolve
inconsistency. It also proposes delayed check memory management
(DCMM) to cope with the high PM allocation demand. DCMM per-
forms fast allocations using thread-local pools but delays garbage
collection by traversing the entire index at a later time, potentially
increasing PM usage. Since ROART is fully in PM, it supports true
instant recovery, and natively supports variable-length keys with-
out extra pointer chasing using its trie-based design.

PACTree. PACTree is a PM-only two-layer persistent trie with
B+-tree styled leaf nodes. As shown in Figure 1(d), PACTree consists
of a search layer and a data layer. The search layer is a durable trie
based on concurrent ART that uses read-optimized write exclusion
(ROWEX) [43]. The data layer is a doubly-linked list of B+-tree leaf
nodes, each of which contains 64 key-value pairs and an anchor key
to indicate the smallest key in the node. PACTree stores fingerprints
and indirection arrays in leaf nodes to facilitate search and scan, but
they are not persisted to reduce PM writes. Upon split, the target
leaf node in the data layer is first locked, and then a log entry is

Table 2: Main design choices of state-of-the-art PM range indexes (LB+-Tree, DPTree, 𝜇Tree, ROART and PACTree). They

base on Intel Optane PMem and inherit designs from pre-Optane proposals, by using DRAM (sometimes more aggressively),

lightweight concurrency control and unsorted nodes. Some also advocate customized PM allocators to reduce PM accesses.

Variable-length keys and NUMA-awareness are still less considered.

Architecture Node Structure Concurrency
Var.

Keys
PM Allocator

NUMA-

Aware

LB+-Tree [46]
B+-tree; DRAM (inner) +
PM (leaf)

Unsorted leaf; fingerprints;
extra metadata

HTM (inner) + lock-
ing (leaf)

Pointer Customized/PMDK No

𝜇Tree [13]
B+-tree; DRAM (B+-tree)
+ PM (linked list)

Sorted
Locking (array layer)
+ lock-free (list layer)

Pointer PMDK No

DPTree [77]
Hybrid; DRAM (B+-tree,
trie inner) + PM (trie leaf)

Unsorted leaf; fingerprints;
indirection; extra metadata

Optimistic lock [43] +
async. updates

Pointer PMDK No

ROART [49] Trie; PM-only
B+-tree like unsorted leaf;
fingerprints

ROWEX [43] Inlined Customized/PMDK No

PACTree [34]
Trie; PM-only or option-
ally DRAM+PM

Unsorted leaf; fingerprints;
indirection

Optimistic lock [43] +
async. update

Inlined Customized/PMDK Yes

written to a per-thread SMO log in PM. The thread then splits the
leaf node and commits without modifying inner nodes in the search
layer. A background thread will then finish the remaining SMO in
the search layer. This allows worker threads to commit early right
after modifying leaf nodes. However, it also creates inconsistencies
between the search and data layers. Thus, query threads may need
to perform a “last-mile” search after arriving at the data layer to find
the correct leaf node using anchor keys. PACTree is the only index
that mitigates NUMA effect. It uses separate pools for the search
layer, data layer and logs in each NUMA node. It also advocates
the use of snooping-based CPU coherence protocols (instead of the
default directory-based protocol on most platforms) to avoid poor
performance when PM accesses cross NUMA boundaries.

4.3 Hybrid: DPTree

As shown in Figure 1(e), DPTree is a PM-DRAM hybrid index that
combines up to two B+-trees (a front and a middle buffer tree) in
DRAM, a trie (base tree) that places inner nodes in DRAM and
leaf nodes in PM. To search for a key, DPTree first visits the front
buffer tree. If the target key is not found, the middle buffer tree (if
exists) will be further searched. If the key does not exist in the buffer
trees, the base tree will have to be searched. To reduce unnecessary
traversals, DPTree maintains a bloom filter per buffer tree. For
range queries, DPTree has to search and merge results from all the
trees. When the size ratio between the front buffer tree and base
tree reaches a pre-defined threshold, DPTree creates a new front
buffer tree and turns the previous front buffer tree into a middle
buffer tree. Tree merge operations are triggered when the size ratio
between the front buffer tree and the base tree reaches a pre-defined
threshold, and are performed by background threads. Using the
version number and extra set of metadata, DPTree ensures changes
are invisible to concurrent queries when a merge is in progress.
After merging, the middle buffer tree is destroyed and the inner
nodes of the base tree (ART) are rebuilt. Then the global version
bit is flipped to expose changes to incoming requests. DPTree also
uses selective metadata persistence with reconstructible metadata
(e.g., record count and fingerprints) in DRAM.

5 ANALYZING THE STATE-OF-THE-ART

With the high-level designs laid out, now we analyze the new PM
indexes in detail and distill common building blocks which can
be useful for future PM indexes. We analyze them from the six
dimensions in Table 2, followed by empirical evaluation in Section 6.

5.1 Index Architecture

New PM indexes often inherit the PM+DRAM architecture with
new optimizations, and consider tries and hybrid structures.

(More Extensive) Use of DRAM.New PM indexes based on B+-
tree and hybrid structures (LB+-Tree, DPTree and 𝜇Tree) continue
to use DRAM to store part of the index. We also observe more
aggressive use of DRAM, e.g., DPTree and 𝜇Tree place entire tree
structures in DRAM to get more performance gains. The tradeoffs
are (1) longer recovery time, (2) more complex programming and
(3) higher DRAM consumption which we quantify in Section 6.

Beyond B+-Trees and Monolithic Indexes. New PM indexes
also adapt tries (PACTree and ROART), but they default to pure
PM designs, potentially leading to suboptimal performance but
preserving instant recovery. Notably, PACTree stores keys in both
inner and leaf nodes, but it is possible to place inner nodes in
DRAM to improve performance. We expect to see more B+-tree
based PM indexes utilize DRAM for faster access/write speed, as PM
servers will still feature DRAM in the foreseeable future.6 As amajor
departure from just adapting one type of data structure, DPTree
combines B+-trees and tries. When it comes to node structure, new
indexes are also introducing new designs that no longer use pure
trie or B+-tree nodes, which we highlight next.

5.2 Node Structure

New PM indexes base their designs on Optane PMem with node
alignment of 256 bytes to reduce unnecessary PM accesses. Several
pre-Optane designs—fingerprinting, unsorted (leaf) nodes and se-
lective consistency for metadata—continue to be used by new PM
indexes. But they are further optimized with new techniques.

6DRAM must be present for PMem to work, even if the software does not need it [26].

Fingerprinting on Steroids. As PM accesses are slow, finger-
printing becomes the most popular approach used by four out of the
five new PM indexes. Meanwhile, new techniques are introduced
to better store and use fingerprints. LB+-Tree uses SIMD instruc-
tions to compare up to 64 one-byte fingerprints in one instruction.
ROART embeds a two-byte fingerprint inside pointers to key-value
pairs, minimizing pointer chasing at the leaf level.

Extra and Selectively Persisted Metadata. LB+-Tree and DP-
Tree both use an extra set of metadata per leaf node to avoid logging
(thus reducing PM writes). For LB+-Tree, this allows it to achieve
logless split. DPTree uses the extra metadata to track PM allocations
and hide incomplete changes during tree merge operations.

Not all metadata entries have to be persisted when modified. For
instance, version locks in PACTree leaf nodes are only meaningful
at runtime; fingerprints and indirection arrays can be rebuilt during
recovery (DPTree and PACTree) or on demand at runtime by query
threads (ROART). Keeping them volatile can significantly reduce
PM writes and improve performance, at the cost of slower recovery.

Hybrid Leaf Nodes.All the surveyed PM indexes that adopt trie
(DPTree, ROART and PACTree) use B+-tree like leaf nodes where a
node stores multiple records to reduce insert overhead, as the leaf
node is only split when it is full. This design also reduces pressure on
the PM allocator, as trie-based indexes typically incur more frequent
allocations with varying node sizes compared to B+-trees. Scan
performance is also improved with less pointer chasing. Different
from other proposals, 𝜇Tree introduces a linked list layer in PM,
making its “leaf node” logical. Although this design decouples SMOs
and data movement to potentially enable more parallelism, it adds
more overhead to scans due to more pointer chasing.

5.3 Concurrency Control

All the surveyed new PM indexes use optimistic concurrency con-
trol. They optimize traversals using lock-free read or HTM for inner
nodes; locks are only acquired at the leaf level and/or as needed in
inner nodes to reduce PM writes. Further, they tend to use back-
ground threads for SMOs (e.g., PACTree and DPTree). The benefit
of offloading SMOs to the background is potentially lower latency
for index operations. However, it can be tricky to determine the
appropriate number of background threads. Also, with a given CPU
budget (e.g., in the cloud), the machine may not have enough re-
sources to spare for the background threads, which may then fall
behind the foreground threads and affect the overall progress.

5.4 Functionality and PM Management

As Table 2 lists, among the new PM indexes, only trie-based ROART
and PACTree natively support variable-length keys; the others
follow pre-Optane proposals to use pointers to keys. With real
hardware and libraries like PMDK, all the indexes have taken into
account PM management issues (e.g., avoiding persistent leaks and
optimizing allocation performance). However, many need a cus-
tomized allocator for performance reasons. Finally, only PACTree
is designed to mitigate NUMA effect. Other indexes would have to
use general-purpose approaches [66] that can be applied on any
PM index, but they come with limitations (e.g., focus on certain
workloads). Such facts indicate that in terms of functionality, new
PM indexes have been mainly sticking with the status quo.

6 EVALUATING THE STATE-OF-THE-ART

Now we empirically evaluate new PM indexes and compare them
with FPTree, the best-performing pre-Optane PM range index.

6.1 Experimental Setup

We run experiments on a 40-core (80-hyperthread) server equipped
with two Intel Xeon Gold 6242R CPUs clocked at 3.10 GHz with
36MB of cache. The server is fully populated with 12×32GB DRAM
DIMMs (384GB in total) and 12×128GB Optane PMem DIMMs
(1.5TB in total) for maximum bandwidth. Both DRAM and PMem
run at 2666MT/s.7 The server runs Arch Linux with kernel 5.14.9.
All the code is compiled using GCC 11.1 with all the optimizations.
Unless otherwise specified, we use PMDK [29]/jemalloc [19] for
PM/DRAM allocations.

Benchmarking Framework. We use PiBench [44], a unified
framework for benchmarking PM indexes, to stress test the in-
dexes. PiBench generates and issues synthetic workloads of given
distributions that consist of user-specified operations (lookup/in-
sert/update/delete/scan). It requires each index implement a set of
common interfaces, by extending an abstract C++ class. We create a
wrapper for each index that uses PiBench’s interfaces to invoke the
index’s internal operations. The wrapper is compiled as a shared
library and loaded into PiBench’s address space at runtime.

Metrics and Workloads. We measure throughput (operations
per second) and latency at various thread counts. Using PiBench,
we collect statistics such as cache misses and bandwidth to aid anal-
ysis. We test both fixed-length (8-byte) integer and variable-length
keys, following the setups used by previous work [44]. For point
queries we use keys chosen randomly under uniform or skewed
distributions; for range scans, we uniform randomly choose a start
key 𝐾 and scan 100 records following 𝐾 . We prefill each index with
100 million key-value pairs, after which we start to run individual
and mixes of index operations. The results across runs vary little
and so we report the average of three 10-second runs.

6.2 Index Implementations and Parameters

For all the indexes (except FPTree which we had to implement), we
use the original authors’ code obtained from their public reposito-
ries. We use parameters that lead to the best performance (described
below) and make necessary changes to each index for correctness,
functionality and fairness.

LB+-Tree. (1) The original insert and delete functions do not
guarantee persistence; we followed the authors’ suggestions to
fix them.8 (2) We implemented range scan (similar to FPTree) and
update with locking in leaf nodes. (3) We found the PMDK allocator
can provide sufficient performance after tuning PMDK parameters
and allocating 256-byte aligned leaf nodes, so we also use PMDK
for LB+-Tree. The inner/leaf nodes contain 15/14 entries (256-byte).

𝜇Tree. Instead of using chunk-based allocation, the original
code in fact uses PMDK’s POBJ_ZALLOC. We changed it to use
pmemobj_alloc for much better performance. We were not able to
verify the correctness of multi-threaded inserts (with keys missing
after successful inserts), so we only include 𝜇Tree in single-threaded
experiments. Inner/leaf node sizes are both set to 29 entries.

7DRAM has to be clocked down from 3200MT/s to 2666MT/s for PMem to work [28].
8Details at https://github.com/schencoding/lbtree/issues/2.

ROART. The open-source code of ROART supports both PMDK
and its customized DCMMallocator [49]; we present numbers under
both allocators. Leaf node size is set to 64 entries.

PACTree. We use PACTree’s own NUMA-aware PM allocation.
For fair comparison, we pin the background and worker threads to
the same CPU cores so that all the indexes use the same amount of
CPU cores. Node size is set to 64 entries.

DPTree. The original code misses PM allocator support, so we
ported it to use PMDK. We follow the original paper to use an equal
number of worker and merge threads. For fair comparison, we also
pin the merge and worker threads to the same cores (similar to
PACTree’s setup). Inner and leaf nodes contain 31 entries for buffer
trees; the base tree uses 256-entry leaf nodes.

FPTree. Since the original implementation is proprietary, we
implemented FPTree by strictly following the paper.9 We have
verified that our implementation performs similarly to the original
author’s binary does. We follow past work’s recommendations to
set inner/leaf node sizes to 128/64 entries [44, 56].

6.3 Single-threaded Performance

We begin with single-threaded experiments to avoid concurrency
complicating our analysis. We run lookup/insert/update/scan opera-
tions under the uniform random distribution and report throughput.

Point Queries. LB+-Tree, DPTree and 𝜇Tree perform similarly
for lookups in Figure 2(a). They are up to ∼2× faster than FPTree,
ROART and PACTree, which also perform similarly. Overall, DP-
Tree performs the best under single-threaded lookups, largely be-
cause of its extensive use of DRAM: if the search key is in the
DRAM-resident buffer tree, the entire query can finish without ever
accessing PM. If the base tree needs to be visited, only the search
in leaf node will incur PM access, which is mitigated by binary
search. The other two faster indexes (LB+-Tree and 𝜇Tree) also
benefit from placing inner nodes and the array leaf layer in DRAM.
LB+-Tree also extensively uses SIMD instructions and prefetching,
which as shown in Figure 3(a) drastically reduces cache misses
and our factor analysis showed that prefetching alone improves
performance by ∼10%. For inserts, B+-tree based FPTree/LB+-Tree
and hybrid DPTree are up to ∼2× faster than trie-based ROART and
PACTree in Figure 2(b). 𝜇Tree’s use of linked lists in the leaf level
cancels out some of B+-tree’s advantages due to high cache miss
rates in Figures 3(b–c). The performance of PM allocators is critical
for ROART as for each update it needs to allocate a new PM block,
and using its own DCMM can double the throughput for updates
in Figure 2(c). Compared to lookups, updates incur additional PM
writes to update the payload, but will not trigger SMOs compared
to inserts. As expected, the update performance of all indexes falls
between their lookup and insert performance, but follows the trend
of insert performance more closely because (1) PM exhibits higher
write latency, and (2) similar to inserts, leaf-level locks can only
be released after the new value is flushed, adding delays (although
being a constant amount of overhead under a single thread).

Range Scans. As Figure 2(d) shows, range scan performance
depends largely on the cost of scanningwithin and across leaf nodes,
i.e., whether the nodes are sorted and they are big or small. Although
DPTree needs to search multiple trees and combine results, it is

9Code available at https://github.com/sfu-dis/fptree.

(a) Lookup
0

0.3
0.6
0.9
1.2
1.5

T
hr
ou
gh
pu
t
(M

op
/s
)

(b) Insert
0

0.3
0.6
0.9
1.2
1.5

(c) Update
0

0.3
0.6
0.9
1.2
1.5

(d) Scan
0

0.1

0.2

0.3

FPTree

LB+-Tree

ROART-PMDK

ROART-DCMM

DPTree

PACTree

μTree

Figure 2: Single-threaded throughput (uniform distribution).

Overall, DPTree and LB+-Tree perform the best. FPTree can

be very competitive to (or even better than) newer indexes.

still the fastest. DPTree’s leaf nodes use indirection arrays, so the
result can be returned directly without sorting, as oppose to trees
that use unsorted nodes, e.g., FPTree. LB+-Tree inherited a lot from
FPTree, but is ∼30% slower than FPTree for scans, because its leaf
nodes are smaller (14 entries). To scan for the same number of
records, compared to FPTree which uses 64-entry nodes, more leaf
nodes have to be visited by LB+-Tree, causing more cache misses
in Figure 3(d). This result highlights the tradeoff between hardware
consciousness and optimization goals: using small nodes allows
LB+-Tree to perform well in point queries, but can penalize scans.

All the tested indexes except ROART first copy the scan results
to an array and then optionally sort them before they are returned
to the user. ROART, however, first returns an array of leaf point-
ers without copying. Moreover, to support variable-length keys,
it stores in leaf nodes pointers to keys. This mandates the sorting
pass to dereference pointers to keys, causing extra cache misses.
We note that as an optimization, if key size is known, one may
change ROART to copy keys first, which in our tests can double the
performance at the cost of supporting variable-length keys. Finally,
𝜇Tree exhibits low scan performance because every record is stored
in a linked list node, traversing them results in many cache misses.

Summary. The most effective technique to achieve high perfor-
mance remains leveraging DRAM, which newer PM indexes adopt
more aggressively, by putting more components or even complete
trees in DRAM. This is at the cost of higher memory consumption,
more complex recovery protocol and higher cost of ownership. Im-
portantly, FPTree remains very competitive. PACTree and ROART
are only marginally faster than FPTree for lookups. In Figure 2(b),
PACTree, ROART and 𝜇Tree are even slower than FPTree. Only
DPTree and PACTree perform better than FPTree for scans.

6.4 Multi-threaded Experiments

Now we measure index throughput with different thread counts
under uniform and skewed distributions. We start with one socket
and expand to NUMA with two sockets in Section 6.7.

Individual Operations. Figures 4(a–d) show the throughput
of lookup/insert/update/scan under the uniform distribution; the
shaded areas (over 20 threads) indicate numbers obtained when
hyperthreads are also used. All indexes scale well for pure lookups
in Figure 4(a), with DPTree and LB+-Tree achieving higher raw
throughput than others. This result aligns with that obtained in
Section 6.3 under a single thread. DPTree uses optimistic lock cou-
pling for its buffer/base trees, and readers can traverse without
incurring PM accesses. Its bloom filter also helps avoid unnecessary

(a) Lookup(1t)
0
2
4
6
8

L
3
C
ac
he

M
is
s/
op

(b) Insert(1t)
0
3
6
9
12

(c) Update(1t)
0
2
4
6
8

(d) Scan(1t)
0
30
60
90
120

(e) Lookup(20t)
0
2
4
6
8

(f) Insert(20t)
0
1
2
3
4

(g) Update(20t)
0
2
4
6
8

(h) Scan(20t)
0
20
40
60
80

FPTree LB+-Tree ROART-PMDK ROART-DCMM DPTree PACTree μTree

Figure 3: Last-level cache misses per operation under a single (a–d) and 20 threads (e–h).

1 10 20 30 40
of threads

(a) Uniform Lookup

0

12

24

36

48

T
hr
ou
gh
pu
t
(M

op
/s
)

1 10 20 30 40
of threads

(b) Uniform Insert

0

5

10

15

20

1 10 20 30 40
of threads

(c) Uniform Update

0

5

10

15

20

1 10 20 30 40
of threads

(d) Uniform Scan

0

2

4

6

8

1 10 20 30 40
of threads

(e) Skewed Lookup

0

14

28

42

56

1 10 20 30 40
of threads

(f) Skewed Update

0

5

10

15

20

1 10 20 30 40
of threads

(g) Skewed Scan

0

2

4

6

8

FPTree LB+-Tree ROART-PMDK ROART-DCMM DPTree PACTree

Figure 4: Throughput under uniform (a–d) and skewed (e–g, self-similar with 80% accesses on 20% of keys) distributions.

lookups in the buffer trees. LB+-Tree uses HTM which without
write operations exhibits little/no aborts.

For inserts, although LB+-Tree does not perform the best un-
der a single thread, it scales the best under multiple threads, by
being 1.55×/1.96×/3.07×/2.23× faster than ROART-DCMM/ROART-
PMDK/DPTree/PACTree. Although LB+-Tree inherits many designs
from FPTree, its logless split, new node layout and inner node locks
to avoid re-traversals during split further make it 2.09× faster than
FPTree. DPTree’s performance stops scaling beyond 10 threads,
mainly due to its 7-phase merge: each time a merge occurs, records
in the middle buffer tree will be moved into the base tree, causing
the base tree’s inner nodes to be rebuilt. This in turn incurs high
garbage collection costs. ROART-DCMM achieves 1.27× higher
performance using its customized PM allocator compared to us-
ing PMDK. Not leveraging DRAM also contributes to its lower
performance compared to others that do leverage DRAM.

For updates, LB+-Tree outperforms others in Figure 4(c), thanks
to its fast traversal and node layout design. DPTree is also very com-
petitive, as updates are served in-place without triggering merge
operations. Similar to the single-threaded results, for all indexes,
updates behave more similarly to inserts (than lookups) as leaf-level
locks must be retained until the new value is flushed.

As shown in Figure 4(d), under multiple threads the relative
merits of different indexes on range scan are similar to the single-
threaded results. The only exception and best performing index is
PACTree. It scales to 40 threads, thanks to the combination of (1) its
leaf node design that inlines key-value pairs and leverages PM’s fast
sequential read, (2) indirection that avoids sorting, and (3) optimistic
concurrency that incurs no PMwrites for reads. The other trie-based
ROART performs the worst although it specifically optimizes for
scan since it does not use DRAM and incurs more cache misses
(Section 6.3); under high core counts, cache misses are further
exacerbated in Figure 3(h). For B+-tree variants, LB+-Tree performs
much worse for scans due to its use of small nodes (more cache

1 10 20 30 40
of threads

(a) Read Heavy

0

9

18

27

36

T
hr
ou
gh
pu
t
(M

op
/s
)

1 10 20 30 40
of threads

(b) Balanced

0

6

12

18

24

1 10 20 30 40
of threads

(c) Write Heavy

0

5

10

15

20

FPTree

LB+-Tree

ROART-PMDK

ROART-DCMM

DPTree

PACTree

Figure 5: Throughput of mixed workloads (lookups + inserts)

under uniform distribution.

misses). In contrast to the single-threaded results, FPTree performs
poorly: using larger leaf reduces cache misses, but increases lock
contention on leaf nodes. DPTree takes no locks for scans (OLC), but
needs to visit multiple indexes and merge results, which contributes
to its lower performance than PACTree.

Skewed Accesses. Under the self-similar distribution where
80% of accesses are focused on 20% of all the keys [21], lookups
as shown in Figure 4(e) exhibit a similar trend to uniform distribu-
tion but with higher raw throughput because of better CPU cache
utilization (the working set is smaller). For updates in Figure 4(f),
DPTree remains scalable as updates are all performed in the DRAM
buffer tree. FPTree shows unstable and low throughput for updates
due to frequent HTM aborts and more PM writes caused by SMOs
during update: updates to the same record are appended without
deduplication, so the node can become full and get split during
an update. No index scales under update workloads with hyper-
threading. Under contention, locking takes over to become the main
bottleneck in FPTree, despite the working set is smaller.

Like FPTree, LB+-Tree also uses locking for leaf nodes, but scales
under scan because of their different ways of using HTM: FPTree

m
in

50
%

90
%

99
%

99
.9
%

99
.9
9%

99
.9
99
%

(a) Lookup (1t)

0

2

4

6

8

10

L
at
en
cy

(μ
s)

m
in

50
%

90
%

99
%

99
.9
%

99
.9
9%

99
.9
99
%

(b) Insert (1t)

0

5

10

15

20

25

m
in

50
%

90
%

99
%

99
.9
%

99
.9
9%

99
.9
99
%

(c) Scan (1t)

0

19

38

57

76

95

m
in

50
%

90
%

99
%

99
.9
%

99
.9
9%

99
.9
99
%

(d) Lookup (20t)

0

2

4

6

8

10

m
in

50
%

90
%

99
%

99
.9
%

99
.9
9%

99
.9
99
%

(e) Insert (20t)

0

3

6

9

12

15

m
in

50
%

90
%

99
%

99
.9
%

99
.9
9%

99
.9
99
%

(f) Scan (20t)

0

15

30

45

60

75

FPTree LB+-Tree ROART ROART-DCMM DPTree PACTree μTree

Figure 6: Tail latency of PM indexes under uniform distribution and a single thread (a–c) and 20 threads (d–f).

delegates HTM and locking to TBB (Section 3.2) which has a global
fallback path after a pre-defined number (256) of aborts of HTM
transactions, whereas LB+-Tree directly uses HTM instructions
(e.g., xbegin/xend). Although scan is read-only, the first leaf node
lock (in PM) is acquired inside the HTM transaction at the end of tra-
versal. This incurs much contention under skewed workloads and
triggers HTM aborts, leading FPTree to use the slow fallback path
protected by a global mutex. DPTree’s optimistic locks allow high
scan throughput under skewed accesses as no locks are acquired.
PACTree scales with the best performance under skewed accesses
for scans, although the gain diminishes with more hyperthreads.
ROART scales slightly worse in skewed update: for each update it
creates a new leaf and replaces the original leaf pointer inside the
leaf array, which becomes more expensive under contention.

Mixed Workloads. We test mixed workloads with different
read/insert ratios: read heavy (90% lookups + 10% inserts), balanced
(50% lookups + 50% inserts) and write heavy (10% lookups + 90%
inserts). As Figure 5 shows, LB+-Tree exhibits the best performance
and scalability. DPTree scales worse with more inserts as tree merge
becomes a major overhead. Finally, FPTree again remains very
competitive with ROART, PACTree and DPTree.

6.5 Tail Latency

Like previous work, to balance overhead and accuracy [44] we,
sample 10% of all the operations during each run under uniform
distribution to rule out the impact of CPU caches. Figure 6 shows
the tail latency at varying percentiles under one thread (a–c) and
20 threads (d–f). As expected, we observe no obvious differences
between one and 20 threads for lookups.

For inserts, lookups and scans in Figures 6(a–c), 𝜇Tree shows
consistently higher latency (and skyrockets at 99.99% for inserts),
although its key design goal is to reduce tail latency (Section 4.1).
We observe the reason is in its use of PM-resident linked lists with
per-record nodes. To handle an insert, 𝜇Tree uses ∼2900 cycles
to allocate a list node and ∼2200 cycles to complete a CAS and
cacheline flush to insert the allocated node into the linked list. In
contrast, LB+-Tree only needs around 80 cycles to insert a key into
a leaf node. Moreover, the use of linked lists in the leaf layer causes
many cache misses during scans: as shown in Figure 3(d), 𝜇Tree
exhibits the highest cache miss ratio. ROART-DCMM exhibits lower
latency than ROART-PMDK for inserts, thanks to the better DCMM
allocator: in the worst case, a split in ROART could allocate 63 leaf
arrays and one inner node. ROART has relatively higher latency

1 10 20 30 40
of threads

(a) Lookup

0
6
12
18
24

T
hr
ou
gh
pu
t
(M

op
/s
)

1 10 20 30 40
of threads

(b) Lookup

0
6
12
18
24

1 10 20 30 40
of threads

(c) Lookup

0
6
12
18
24

1 10 20 30 40
of threads

(d) Lookup

0
2
4
6
8

1 10 20 30 40
of threads

(e) insert

synthetic

0
3
6
9
12

1 10 20 30 40
of threads

(f) Insert

names

0
3
6
9
12

1 10 20 30 40
of threads

(g) Insert

wiki

0
3
6
9
12

1 10 20 30 40
of threads

(h) Insert

uk-2005

0
2
4
6
8

FPTree LB+-Tree ROART-PMDK ROART-DCMM DPTree

Figure 7: Throughput under variable-length keys using syn-

thetic and real-world datasets [61].

for scans in Figures 6(c) and 6(f), due to pointer chasing at the leaf
level to dereference pointers to keys. The other trie-based PACTree
directly stores keys in leaf nodes, hence exhibiting lower latency.
PACTree also shows relatively low latency for all operations in
most cases (except inserts under 20 threads) because SMOs are
offloaded to background threads. Under 20 threads, the background
threads start to fall behind, requiring worker threads to traverse
extra nodes to reach the correct leaf node, thus increasing latency.

6.6 Support for Variable-Length Keys

Now evaluate variable-length key support. We first run the same
experiment as Section 6.4 with 8-byte keys, but force the indexes
to use their variable-length key support. This may limit the depth
of trie-based indexes (thus giving them advantages), but allows us
to reason about the efficiency of the variable-length key support
by comparing with the fixed-length key experiments; we use three
real-world datasets later. For most indexes, including FPTree, LB+-
Tree and DPTree this means allocating the key in the heap and
storing a pointer to the key in the index. ROART uses its own
native support to store keys in index nodes themselves. All indexes
are plotted except PACTree.10 As shown in Figures 7(a) and 7(e),

10PACTree assumes null-terminated strings. This is incompatible with PiBench which
may generate keys with \0, which will be wrongly treated as short keys.

ROART performs the best in all cases. This is exactly opposite to
the case using fixed-length keys (cf. Figure 4). In particular, cache
misses caused by pointer chasing (to access keys) dominate the
performance of FPTree, LB+-Tree and DPTree.

We further test the indexes with three representative real-world
datasets [61]: Reddit usernames (names) [52], Wikipedia (wiki) [69]
and URLs (uk-2005) [38]. They respectively consist of string keys
of up to 25, 256 and 2029 bytes; for space limitation we omit more
details about the datasets which can be found elsewhere [61]. As
shown in Figures 7(b–d) and 7(f–h), the gaps between ROART and
FPTree/LB+-Tree shrink, although ROART remains advantageous.
With longer keys, trie-based indexes will build more inner nodes to
form deeper traversal paths, while the depth of B+-tree variants is
not affected as they store pointers to keys. Among all the indexes,
DPTree performs much worse with longer keys. We found a main
reason is that most lookups (94% according to our profiling results)
needed to traverse the base tree and search leaf nodes. Since DPTree
maintains multiple indexes, it also requires more complex traversal
logic that incurs extensive key comparisons (on average 34 memcmp
calls vs. 22 in FPTree), further lowering its performance.

Overall, these results highlight the need to enhance variable-
length key support in future PM indexes, for example by combining
the best of tries and B+-trees without tradeoffs.

6.7 Impact of NUMA Effect

Now we extend our experiments to use both NUMA nodes on the
server. Except for PACTree, we allocate PM and DRAM from the
first socket. All the threads are pinned, and we first use all the 40
physical cores across two sockets, before using hyperthreading
beyond 40 threads. This allows us to stress the indexes with inter-
socket traffic and contrast their behavior with and without NUMA
effect. For PACTree, we include two variants which respectively
enable and disable its NUMA-aware per-node PM pools.

As shown in Figure 8, NUMA effect has major impact on all
indexes’ throughput, and no index scales well beyond one socket
for all operations. Although not specifically designed for NUMA,
LB+-Tree achieves the best scalability for lookups, and the highest
throughput for inserts and updates (with a dropping trend beyond
one socket). We attribute the reason to its frugal use of cacheline
flushes and careful node layout designs. Both reduce PM accesses
and cross-socket traffic. For lookups, FPTree also does not collapse,
whereas the performance of other indexes fluctuate and/or drop
beyond 20 threads. This implies HTM is robust to NUMA effect for
read-only workloads, thanks to its lightweight conflict detection
mechanism that piggybacks on the coherence protocol. Moreover,
HTM can use the extra last-level cache in the second NUMA node
to track reads [8, 57]. Other approaches (OLC, locking, ROWEX)
are unable to take good advantage of the coherence protocol like
HTM, contributing to more severe NUMA effect.

PACTree is the only PM index that takes NUMA effect into ac-
count by (1) using separate PM pools for each NUMA node and
(2) leveraging snooping coherence protocol. With separate PM
pools (PACTree-NUMA), PACTree maintains performance beyond
one socket without collapsing, but still does not scale as expected.
The main culprit is the directory-based coherence protocol that in-
curs additional PM accesses to update the directory. Thus, PACTree

1 10 20 30 40 80

of threads

(a) Lookup

0
10
20
30
40

T
hr
ou
gh
pu
t
(M

op
/s
)

1 10 20 30 40 80

of threads

(b) Insert

0
4
8
12
16

1 10 20 30 40 80

of threads

(c) Update

0
5
10
15
20

1 10 20 30 40 80

of threads

(d) Scan

0

2

4

6

FPTree

LB+-Tree

ROART-PMDK

ROART-DCMM

DPTree

PACTree

PACTree-NUMA

Figure 8: Impact of NUMA effect for PM indexes. No index

scales well under all operations due to additional PM accesses

by the directory-based CPU coherence protocol.

Table 3: PM and DRAM consumption (GB) after loading 100

million records with 8-byte keys and 8-byte values.

FPTree LB+-Tree ROART DPTree PACTree 𝜇Tree

DRAM 0.14 0.34 0.14 1.14 0.18 2.63
PM 2.69 2.54 18.92 4.79 3.2 3.2

advocates using snooping protocols for PM, which broadcasts co-
herence traffic across all cores, instead of using a directory to record
cacheline status, hence does not incur additional PM accesses. How-
ever, most platforms default to a directory-based protocol because
snooping may not scale to high core counts. Since our server does
not allow changing coherence protocols, we were unable to verify
the performance of PM indexes using snooping protocols; we leave
it as future work. As we have noted in Section 4.2, requiring a cer-
tain coherence protocol may inflict issues with other applications
and limit the applicability of the index.

6.8 PM and DRAM Space Consumption

New PM indexes are using DRAM more extensively to achieve
high performance. The downsides are (1) more complex recovery
protocols and (2) higher DRAM space consumption (hence higher
cost of ownership). Table 3 lists the amount of DRAM and PM
used by each index after loading 100 million records of 8-byte key
and values (1.6GB). DPTree and 𝜇Tree practically store complete
trees in DRAM, resulting in up to ∼18× higher DRAM consumption
when compared with FPTree and LB+-Tree. PACTree uses a similar
amount of PM to 𝜇Tree’s and is among the most frugal in using
DRAM (second to FPTree) because of its packed design.

Surprisingly, ROART uses 18.92GB to index 1.6GB of data, while
others need 2.5–4.8GB. The reason is it requires cacheline-aligned
nodes and overprovisions leaf arrays: for 100 million records, it
allocates space for around one billion records (17 million leaf arrays)
occupying 10.89GB of PM as each leaf array is 640-byte. However,
most space (reserved for leaf pointers) are unused. Such overpro-
visioning is due to ROART’s split mechanism. In our experiment,
keys are uniform randomly generated, so the 64 records in a full leaf
array are usually very different despite they share a common prefix.
Then a split operation could allocate 63 leaf arrays in the worst
case, leaving each new leaf array with only few records, leading to
an average occupancy of ∼9% and a waste of over 9GB of PM.

F
P
T
re
e

L
B
+
-T
re
e

R
O
A
R
T
-P
M
D
K

R
O
A
R
T
-D
C
M
M

D
P
T
re
e

P
A
C
T
re
e

(a) Lookup

0

0.2

0.4

0.6

0.8

1.0

K
B
p
er

op
er
at
io
n

F
P
T
re
e

L
B
+
-T
re
e

R
O
A
R
T
-P
M
D
K

R
O
A
R
T
-D
C
M
M

D
P
T
re
e

P
A
C
T
re
e

(b) Insert

0

0.2

0.4

0.6

0.8

1.0

F
P
T
re
e

L
B
+
-T
re
e

R
O
A
R
T
-P
M
D
K

R
O
A
R
T
-D
C
M
M

D
P
T
re
e

P
A
C
T
re
e

(c) Scan

0

3

6

9

12

15

DRAM Reads DRAM Writes PM Reads PM Writes

Figure 9: Bandwidth consumption per operation under 20

threads with 100 million records of 8-byte keys and values.

6.9 Bandwidth Utilization and Requirements

Previous evaluation [44] has shown that PM bandwidth is scarce.
Since a database system also uses various other components, it is
desirable to keep the bandwidth consumption low for indexes. This
has been the main focus of newer indexes. We observe that the peak
usage across all indexes and operations does not reach the limit
(∼10GB/s/∼40GB/s for random write/sequential read). This shows
the effectiveness of the bandwidth saving techniques proposed by
the surveyed indexes. Due to space limitation, we omit the details
on total bandwidth utilization and focus on the bandwidth used per
operation, which is more indicative on how frugal (or not) an index
uses PM bandwidth. Figure 9 shows the results with 20 threads
when running lookups, inserts and scans under 8-byte keys and
8-byte values under the uniform distribution. Overall, LB+-Tree
exhibits the lowest number of bytes per operation, thanks to its
node layout and logless design. ROART exhibits the highest PM
reads as it overprovisions node space. In contrast, PACTree, which is
also trie-based, has a similar bandwidth requirement to LB+-Tree’s,
because of its layout designed to reduce unnecessary PM accesses.

7 OBSERVATIONS AND INSIGHTS

In this section, we summarize the major findings based on our
experimental results and analysis of the surveyed PM indexes.

1. The rule of thumb remains reducing PM accesses, which

was first set in the pre-Optane era. Almost all the design choices
(both pre-Optane and new ones) center around this goal, due to
PM’s lower bandwidth and higher latency. If the properties of future
PM hardware changes, the principles may be revisited.

2. Some building blocks from the pre-Optane era continue

to work well and are further optimized by new PM indexes.

Most indexes use DRAM to accelerate traversal; some (e.g., DPTree)
even place entire trees in DRAM. However, tries typically cannot
take the full advantage of DRAM to store reconstructible data. Fin-
gerprints are also widely used and enhanced by placing them in the
spare bits of pointers and accessing them using SIMD instructions.

3. Using extra metadata and selective persistence of meta-

data can further accelerate performance. The main reason is
these approaches can avoid usingWAL, which may incur additional
PM writes and complicate code logic.

4. Newly Proposed ≠ Better. Pre-Optane FPTree is still very
competitive and sometimes can even outperform newer indexes.
Although 𝜇Tree optimizes for tail latency, it exhibits the highest

latency in many cases. Such results call for careful benchmarking
and comprehensive evaluations.

5. All the new PM indexes are tailor-made for one product

(Intel Optane PMem), which can be a double-edged sword.

While this can deliver high performance, as exemplified by LB+-
Tree which performs the best in most cases, it could pose challenges
when the PM hardware landscape becomes more diverse.

6. Support for NUMA-awareness, efficient PM manage-

ment and variable-length keys remains inadequate. There
have been initial attempts (e.g., using pointers for variable-length
keys), but they are usually ad hoc or partial solutions with practical
limitations (e.g., requiring a specific coherence protocol).

7. There is no clear “winner” index architecture, but the

choice may affect how (efficiently) functionality can be sup-

ported. For example, B+-tree (trie) variants perform well for fixed-
length (variable-length) keys. But it remains to be explored whether
it is easier to add efficient variable-length key support in LB+-Tree
or to optimize PACTree to match LB+-Tree’s performance.

8. Linked lists with small nodes are a bad fit for PM indexes,

and cache misses in general should be minimized or hidden.

Accessing and scanning through a linked list of individual records
incur many cache misses which can dominate the performance
and lead to high latency (e.g., in 𝜇Tree), canceling out the positive
effects brought by other optimizations.

9. HTM can performwell under NUMA for read-onlywork-

loads, but is challenging to handle contention and debug. In
particular, the programmability issue is further complicated with
other system-level infrastructure: we observed extremely high abort
rates under glibc version 2.33 which does not use the right instruc-
tions that can work with HTM in memcpy.11 The bug was fixed in
glibc 2.34 [54] which is used in our experiments. It is noticeable
that the best performing LB+-Tree is based on HTM; it therefore
remains to be seen in future work whether other approaches can
overcome these issues while maintaining high performance.

8 ON THE NEXT PM AND DRAM INDEXES

We give the outlook of the PM indexing space and describe promis-
ing future directions for PM and DRAM indexing.

8.1 Future PM Indexes

We identify three promising areas of future work for PM indexes.
1. Efficient Support for Full Functionality. As we have dis-

cussed previously, variable-length keys and NUMA-awareness re-
main open problems for future PM indexes. Importantly, it is desir-
able to maintain the high performance obtained by existing designs
while better supporting full functionality.

2. Wider Applicability/Less Tailor-Made. There are various
ways to realize PM, by using new materials (e.g., memristor [62],
STT-RAM [24] and Intel 3D XPoint which PMem is based upon)
or NVDIMMs which combine flash and DRAM [1, 65]. However,
most (if not all) indexes aiming for real PM are tailor-made for Intel
Optane PMem; yet certain properties like 256-byte alignment may
even change across generations of the same product, and designs
based on them may not work well on NVDIMMs, diminishing their
applicability. Although some of the hardware efforts are in their

11Details at https://sourceware.org/bugzilla/show_bug.cgi?id=28033.

1 10 20 30 40
of threads

(a) Uniform Lookup

0

20

40

60

80

T
hr
ou
gh
pu
t
(M

op
/s
)

1 10 20 30 40
of threads

(b) Uniform Insert

0

20

40

60

80

1 10 20 30 40
of threads

(c) Uniform Update

0

20

40

60

80

1 10 20 30 40
of threads

(d) Uniform Scan

0

2

4

6

1 10 20 30 40
of threads

(e) Skewed Lookup

0

20

40

60

80

1 10 20 30 40
of threads

(f) Skewed Update

0

10

20

30

40

1 10 20 30 40
of threads

(g) Skewed Scan

0

2

4

6

FPTree LB+-Tree ROART HOT Masstree

Figure 10: Throughput of PM and DRAM indexes running on DRAM. Without the extra fences, cacheline flushes and PM

management code, PM-tailored indexes at least match the performance of HOT and Masstree. LB+-Tree performs even better

than HOT and Masstree on certain insert workloads (b), and FPTree tops scan performance under uniform distribution (d).

early stage, we argue it is important to consider applicability of
future designs on different PM devices.

3. Real-World Adoption and Cost-Effectiveness. Although
there have been numerous PM index proposals, we are yet to see
major adoption in real systems and applications. Part of the reason is
the low cost effectiveness of PM-based servers as identified by other
work [26], especially when compared to modern SSDs which can
deliver high bandwidth and microsecond-level latency. Therefore,
on the hardware side, we hope future work to lower the per GB cost
of PM servers. On the software side, PM indexes and data structures
in general should focus more on cost/performance.

8.2 Unifying PM and DRAM Indexing

In a similar vein to the point on wider applicability, we observe tech-
niques proposed for PM indexes can also be effective for DRAM.
We conduct preliminary experiments to compare the surveyed
state-of-the-art PM indexes (with the extra cacheline flushes and
fences removed) and two representative DRAM-optimized volatile
indexes (HOT [6] and Masstree [50]). Figure 10 shows the through-
put obtained by running the same workload as Section 6.4, but
purely on DRAM. Under both uniform and skewed distributions,
PM indexes perform competitively with DRAM-optimized indexes.
In certain cases, PM indexes perform even better than HOT and
Masstree which are specifically optimized for DRAM, e.g., LB+-Tree
for inserts in Figure 10(b) and FPTree (despite being a pre-Optane
proposal) in Figure 10(d) for scans. Although it remains to be seen
how the optimizations for PM and DRAM indexes compare, and
how PM techniques may be used by DRAM indexes (and vice versa),
our results indicate it is promising to devise future indexes that
would work on both volatile and non-volatile memory. This could
greatly simplify implementation and widen the applicability of
techniques proposed by both types of indexes.

9 RELATED WORK

Our work is most related to performance studies for PM devices
and data structures, PM indexes and PM management issues.

Performance Studies. Early work [33, 72] characterized the
performance of Optane PMem, exposing a set of properties different
from what were previously assumed by emulations. Gugnani et.
al [22] exposed more properties of Optane PMem under various
scenarios, e.g., eADR and NUMA, along with case studies. Beyond
range indexes, Hu et. al [25] evaluated PM-optimized hash indexes

on Optane PMem. Koutsoukos et. al [35] analyzed the performance
of PM-enhanced database engines under TPC-C and TPC-H, and
came up with guidelines of tuning the system for best performance.

PM Indexes. In addition to adapting specific indexes, general-
purpose approaches such as RECIPE [41], NAP [66] and TIPS [37]
present principled methods for converting DRAM indexes into PM
indexes. It is interesting future work to evaluate these approaches.
Some early efforts have adapted learned indexes [36] for PM. Chen
et. al [10] observe that the bigger nodes used by learned indexes
can cause excessive PM accesses. APEX [47] transforms the DRAM-
based updatable ALEX [18] with concurrency and instant recovery
on PM. Hash tables are also being re-designed for PM. CCEH [53]
is a failure-atomic variant of extendible hashing that reduces di-
rectory management overhead. Dash [48] integrates a set of useful
techniques to adapt extendible and linear hashing for PM; the key
insight is that both PM reads and writes should be minimized.
Clevel [14] is a lock-free version of level hashing [78] that performs
asynchronous resizing in the background.

PM Libraries. PMDK [29] is the de facto standard, but may not
be the optimal solution: ROART, DPTree and PACTree all devise
their own approaches. Designing better PM libraries remains an
open area, as seen by many recent alternatives [5, 7, 32, 60, 74].

10 CONCLUSION

We conducted a comprehensive evaluation of representative PM
range indexes proposed based on real Intel Optane PMem. These
new indexes inherited many useful designs from pre-Optane PM
indexes and proposed new building blocks that can be useful for
building future PM indexes. Based on our evaluation, we gave a list
of observations, insights and future directions. We found the new
indexes do not necessarily outperform the pre-Optane proposals,
and efficient designs for variable-length keys, PM management and
NUMA awareness are still lacking. We also discovered for the first
time that a PM range index can match or even outperform DRAM-
optimized indexes, highlighting the potential of unifying PM and
DRAM indexing to save design and implementation efforts.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and associate editor for their
constructive feedback. Thiswork is partially supported by anNSERC
Discovery Grant, Canada Foundation for Innovation John R. Evans
Leaders Fund and the B.C. Knowledge Development Fund.

REFERENCES
[1] AgigaTech. 2022. AGIGARAM NVDIMM-N. Retrieved May 15, 2022 from

http://agigatech.com/products/agigaram-nvdimms/.
[2] Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Åke Larson. 2018.

BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory.
PVLDB 11, 5 (2018), 553–565.

[3] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. 2015. Let’s Talk About
Storage & Recovery Methods for Non-Volatile Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’15). 707–722.

[4] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. 2021. Viper: An Efficient
Hybrid PMem-DRAM Key-Value Store. Proc. VLDB Endow. 14, 9 (may 2021),
1544–1556.

[5] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. 2016. Makalu: Fast
Recoverable Allocation of Non-Volatile Memory. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. 677–694.

[6] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. 2018.
HOT: A Height Optimized Trie Index for Main-Memory Database Systems. In
Proceedings of the 2018 International Conference on Management of Data (SIGMOD
’18). 521–534.

[7] Wentao Cai, HaosenWen, H. Alan Beadle, Chris Kjellqvist, Mohammad Hedayati,
and Michael L. Scott. 2020. Understanding and Optimizing Persistent Memory
Allocation. In Proceedings of the 2020 ACM SIGPLAN International Symposium on
Memory Management (ISMM 2020). 60–73.

[8] Zixian Cai, Stephen M. Blackburn, and Michael D. Bond. 2021. Understanding
and Utilizing Hardware Transactional Memory Capacity. In Proceedings of the
2021 ACM SIGPLAN International Symposium on Memory Management (ISMM
2021). 1–14.

[9] Cheng Chen, Jun Yang, Mian Lu, Taize Wang, Zhao Zheng, Yuqiang Chen,
Wenyuan Dai, Bingsheng He, Weng-Fai Wong, Guoan Wu, Yuping Zhao, and
Andy Rudoff. 2021. Optimizing In-Memory Database Engine for AI-Powered
on-Line Decision Augmentation Using Persistent Memory. PVLDB 14, 5 (2021),
799–812.

[10] Leying Chen and Shimin Chen. 2021. How Does Updatable Learned Index Per-
form on Non-Volatile Main Memory?. In 2021 IEEE 37th International Conference
on Data Engineering Workshops (ICDEW). 66–71.

[11] Shimin Chen, Phillip B. Gibbons, and Suman Nath. 2011. Rethinking Database
Algorithms for Phase Change Memory. In 5th Biennial Conference on Innovative
Data Systems Research, CIDR 2011, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings.

[12] Shimin Chen andQin Jin. 2015. Persistent B+-Trees in Non-VolatileMainMemory.
PVLDB 8, 7 (2015), 786–797.

[13] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. uTree:
a Persistent B+-Tree with Low Tail Latency. PVLDB 13, 11 (2020), 2634–2648.

[14] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo. 2020. Lock-free Concur-
rent Level Hashing for Persistent Memory. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 799–812.

[15] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through Byte-
Addressable, Persistent Memory. In Proceedings of the ACM SIGOPS 22nd Sympo-
sium on Operating Systems Principles (SOSP ’09). 133–146.

[16] Intel Corporation. 2021. Intel Optane Persistent Memory (PMem). https:
//www.intel.ca/content/www/ca/en/architecture-and-technology/optane-dc-
persistent-memory.html

[17] Rob Crooke and Mark Durcan. 2015. A Revolutionary Breakthrough in Memory
Technology. 3D XPoint Launch Keynote (2015).

[18] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned
Index. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’20). 969–984.

[19] Jason Evans. 2006. A Scalable Concurrent malloc (3) Implementation for FreeBSD.
In Proceedings of the BSDCan Conference.

[20] Keir Fraser. 2004. Practical lock-freedom. Technical Report UCAM-CL-TR-579.
University of Cambridge, Computer Laboratory. https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-579.pdf

[21] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J.
Weinberger. 1994. Quickly Generating Billion-Record Synthetic Databases. In
Proceedings of the 1994 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’94). 243–252.

[22] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. 2020. Understanding the
Idiosyncrasies of Real Persistent Memory. PVLDB 14, 4 (2020), 626–639.

[23] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-Blocking Linked-
Lists. In Proceedings of the 15th International Conference on Distributed Computing
(DISC ’01). Springer-Verlag, Berlin, Heidelberg, 300–314.

[24] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H.
Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. 2005. A

novel nonvolatile memory with spin torque transfer magnetization switching:
spin-ram. IEEE International Electron Devices Meeting (IEDM) (2005), 459–462.

[25] Daokun Hu, Zhiwen Chen, Jianbing Wu, Jianhua Sun, and Hao Chen. 2021.
Persistent Memory Hash Indexes: An Experimental Evaluation. PVLDB 14 (2021),
785–798.

[26] KaisongHuang, Darien Imai, TianzhengWang, andDongXie. 2022. SSDs Striking
Back: The Storage Jungle and Its Implications on Persistent Indexes. In 12th
Annual Conference on Innovative Data Systems Research, CIDR 2022, Chaminade,
CA, USA, January 9-12, 2022, Online Proceedings.

[27] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018.
Endurable transient inconsistency in byte-addressable persistent B+-tree. In 16th
USENIX Conference on File and Storage Technologies (FAST 18). 187–200.

[28] Intel. 2021. Brief: Intel® Optane™ Persistent Memory – The Challenge of
Keeping Up with Data. https://www.intel.ca/content/www/ca/en/products/
docs/memory-storage/optane-persistent-memory/optane-dc-persistent-
memory-brief.html

[29] Intel. 2021. Persistent Memory Development Kit. (2021). http://pmem.io/pmdk/.
[30] Intel Corporation. 2021. Intel 64 and IA-32 Architectures Software Developer’s

Manual. (2021). https://software.intel.com/content/www/us/en/develop/articles/
intel-sdm.html

[31] Intel Corporation. 2021. Optane DCPMM 200 Series Product Brief. Retrieved
August 17, 2021 from https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/optane-persistent-memory-200-series-brief.pdf.

[32] Keita Iwabuchi, Karim Youssef, Kaushik Velusamy, Maya Gokhale, and Roger
Pearce. 2022. Metall: A persistent memory allocator for data-centric analytics.
Parallel Comput. 111 (2022).

[33] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module. arXiv:1903.05714 [cs.DC]

[34] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap, and Chang-
woo Min. 2021. PACTree: A High Performance Persistent Range Index Using
PAC Guidelines. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles. 424–439.

[35] Dimitrios Koutsoukos, Raghav Bhartia, Ana Klimovic, and Gustavo Alonso. 2021.
How to use Persistent Memory in your Database. CoRR abs/2112.00425 (2021).
arXiv:2112.00425 https://arxiv.org/abs/2112.00425

[36] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). 489–504.

[37] R. Madhava Krishnan,Wook-Hee Kim, Xinwei Fu, Sumit KumarMonga, HeeWon
Lee, Minsung Jang, Ajit Mathew, and ChangwooMin. 2021. TIPS: Making Volatile
Index Structures Persistent with DRAM-NVMM Tiering. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 773–787.

[38] Laboratory for Web Algorithms. 2022. UK Domain from 2005. http://data.law.
di.unimi.it/webdata/uk-2005/uk-2005.urls.gz

[39] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
Phase Change Memory as a Scalable Dram Alternative. In Proceedings of the 36th
Annual International Symposium on Computer Architecture (ISCA ’09). 2–13.

[40] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H. Noh.
2017. WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems.
In 15th USENIX Conference on File and Storage Technologies (FAST 17). 257–270.

[41] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. 2019. RECIPE: Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP ’19). 462–477.

[42] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The Adaptive Radix
Tree: ARTful Indexing for Main-Memory Databases. In Proceedings of the 2013
IEEE International Conference on Data Engineering (ICDE ’13). 38–49.

[43] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016.
The ART of Practical Synchronization. In Proceedings of the 12th International
Workshop on Data Management on New Hardware (DaMoN ’16). Article 3, 8 pages.

[44] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating Persistent Memory Range Indexes. PVLDB 13, 4
(2019), 574–587.

[45] Gang Liu, Leying Chen, and Shimin Chen. 2021. Zen: A High-Throughput
Log-Free OLTP Engine for Non-Volatile Main Memory. PVLDB 14, 5 (2021),
835–848.

[46] Jihang Liu, Shimin Chen, and LujunWang. 2020. LB+Trees: Optimizing Persistent
Index Performance on 3DXPoint Memory. PVLDB 13, 7 (2020), 1078–1090.

[47] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng Wang.
2021. APEX: A High-Performance Learned Index on Persistent Memory. PVLDB
15, 3 (2021), 597–610.

[48] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable
Hashing on Persistent Memory. PVLDB 13, 8 (2020), 1147–1161.

[49] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hongbo
Kang, and Yongwei Wu. 2021. ROART: Range-query Optimized Persistent ART.
In 19th USENIX Conference on File and Storage Technologies (FAST 21). 1–16.

[50] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage. In Proceedings of the 7th ACM european
conference on Computer Systems. 183–196.

[51] Chris Mellor. 2019. Is Optane DIMM endurance good enough? Quick an-
swer. . . Yes, Intel has delivered. https://blocksandfiles.com/2019/04/04/enduring-
optane-dimm-question-is-its-endurance-good-enough-yes-intel-has-
delivered/

[52] Colin Morris. 2017. Reddit Usernames. https://www.kaggle.com/datasets/
colinmorris/reddit-usernames

[53] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and Beomseok Nam.
2019. Write-Optimized Dynamic Hashing for Persistent Memory. In 17th USENIX
Conference on File and Storage Technologies (FAST 19). 31–44.

[54] Carlos O’Donell. 2021. The GNUC Library version 2.34 is now available – [28033]
libc: Need to check RTM_ALWAYS_ABORT for RTM. https://sourceware.org/
pipermail/libc-alpha/2021-August/129718.html.

[55] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas
Willhalm. 2014. SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data
Recovery. In Proceedings of the Tenth International Workshop on Data Management
on New Hardware (DaMoN ’14). Article 8, 7 pages.

[56] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage Class Memory. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD. 371–386.

[57] Jinsu Park and Woongki Baek. 2018. Quantifying the Performance and Energy-
Efficiency Impact of Hardware Transactional Memory on Scientific Applications
on Large-Scale NUMA Systems. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 804–813.

[58] Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge. 2013. Storage
Management in the NVRAM Era. PVLDB 7, 2 (2013), 121–132.

[59] Raghu Ramakrishnan and Johannes Gehrke. 2003. Database Management Systems
(3 ed.).

[60] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and Hasso Plattner.
2015. nvm malloc: Memory Allocation for NVRAM.. In ADMS@VLDB. 61–72.

[61] Benjamin Spector, Andreas Kipf, Kapil Vaidya, Chi Wang, Umar Farooq Minhas,
and Tim Kraska. 2021. Bounding the Last Mile: Efficient Learned String Indexing
(Extended Abstracts). In 3rd International Workshop on Applied AI for Database
Systems and Applications, AIDB Workshops.

[62] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. 2008. The missing
memristor found. Nature 453, 7191 (2008), 80–83.

[63] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing Non-Volatile Memory in Database Systems. In Proceedings of the 2018
International Conference on Management of Data (SIGMOD ’18). 1541–1555.

[64] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (FAST’11).

[65] Viking Technology. 2017. DDR4 NVDIMM. Retrieved August 17, 2021 from
http://www.vikingtechnology.com.

[66] QingWang, Youyou Lu, Junru Li, and Jiwu Shu. 2021. Nap: A Black-Box Approach
to NUMA-Aware Persistent Memory Indexes. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 21). 93–111.

[67] Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging through Emerging
Non-Volatile Memory. PVLDB 7, 10 (2014), 865–876.

[68] Tianzheng Wang, Justin Levandoski, and Per-Åke Larson. 2018. Easy Lock-Free
Indexing in Non-Volatile Memory. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). 461–472.

[69] Wikimedia Dump Service. 2022. Wikipedia Dump 20220420. https://dumps.
wikimedia.org/enwiki/20220420/enwiki-20220420-all-titles.gz

[70] H. S P Wong, S. Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg, B. Rajen-
dran, Mehdi Asheghi, and Kenneth E. Goodson. 2010. Phase Change Memory.
Proc. IEEE 98, 12 (2010), 2201–2227.

[71] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index
Key-value Store for DRAM-NVM Memory Systems. In Proceedings of the 2017
USENIX Annual Technical Conference (USENIX ATC ’17). 349–362.

[72] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. 2020. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory. In Proceedings of the 18th USENIX Conference on File and Storage Tech-
nologies (FAST’20). 169–182.

[73] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: reducing consistency cost for NVM-based single
level systems. In 13th USENIX Conference on File and Storage Technologies (FAST
15). 167–181.

[74] Lu Zhang and Steven Swanson. 2019. Pangolin: A Fault-Tolerant Persistent
Memory Programming Library. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). 897–912.

[75] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A Durable and Energy
Efficient Main Memory Using Phase Change Memory Technology. In Proceedings
of the 36th Annual International Symposium on Computer Architecture (ISCA ’09).
14–23.

[76] Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David Cohen. 2021. Spitfire: A
Three-Tier Buffer Manager for Volatile and Non-Volatile Memory. In Proceedings
of the 2021 International Conference on Management of Data (SIGMOD/PODS ’21).
2195–2207.

[77] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:
Differential Indexing for Persistent Memory. PVLDB 13, 4 (2019), 421–434.

[78] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-Optimized and High-Performance
Hashing Index Scheme for Persistent Memory. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). 461–476.

