
Rethinking the Performance/Cost of Persistent Memory and SSDs
Kaisong Huang1, Darien Imai1, Tianzheng Wang1, Dong Xie2
1 Simon Fraser University, Canada 2 The Pennsylvania State University, USA

1 THE STORAGE JUNGLE
For decades, the storage hierarchy consisted of layers with distinct
performance characteristics and costs: a higher level (in particular,
memory) is assumed to be strictly faster, less capacious, volatile,
and more expensive than a lower-level layer (e.g., SSDs and HDDs).

This good ol’ storage hierarchy, however, is becoming a jungle:
On the one hand, persistent memory (PM) breaks the boundary
between volatile and non-volatile storage with persistence on the
memory bus. On the other hand, modern SSDs’ high bandwidth
directly rivals PM, breaking the strict hierarchy from the perfor-
mance perspective. For example, the Intel Optane P4800X/P5800X
SSDs—using the same material as the Optane DCPMM’s but in
NVMe interfaces—offer up to 2.6–7.4GB/s of bandwidth and < 6𝜇s
latency [4]. Yet a server fully populated with the 100-series Optane
DCPMM can offer up to ∼7GB/s (random) to 40GB/s (sequential)
bandwidth for reads, and ∼4GB/s to 10GB/s peak bandwidth for
writes [5]. This naturally leads to a simple, motivating question:
Could a well-tuned SSD-based data structure (e.g., index) match or
outperform a well-tuned PM-tailored data structure under certain
workloads? In contrast to SSD-based systems, the CPU cost can be
non-trivial as PM requires relatively high-end CPU support, which
leads to the other question: How does the “real” cost of a PM-based
system stack up and compare to that of an SSD-based system?

These advances and questions signal the need to revisit the per-
formance/cost of persistent data structures. We take B+-trees and
hash tables for an initial inquiry. Our goals are to (1) understand the
relative merits of indexing on PM and SSD, (2) reason about the cost
of PM- and SSD-based systems, and (3) highlight the implications
of the storage jungle on future persistent indexes.

2 HOWMUCH DOES IT COST, REALLY?
When considering the cost of a storage system, we need to take into
account three factors: memory (DRAM), CPU and the actual storage
devices [7]. For fair comparison, we use a single server and vary the
storage (SSD/PM) components using common and recommended
setups. The server is equipped with a 20-core/40-thread Intel Xeon
Gold 6242R CPU. It supports NVMe over PCIe Gen3 and 100-series
DCPMMs. Each of the CPU’s six memory channels is populated
with one 32GB DRAM DIMM for a total of 192GB, leaving one slot
per channel for PM. As recommended [3], we populate all channels
with DRAM for maximum bandwidth. Both DRAM and DCPMM
frequencies are fixed to 2666 MT/s for all the configurations.

We compare various configurations using different numbers of
Optane DCPMMs and Optane SSD. As summarized in Table 1 (more
details in our full paper [2]), we make two key observations: (1)
A fully populated setup usually achieves the best cost/capacity
for PM-based systems thanks to interleaving. (2) Although Optane
DCPMM’s raw cost is only 1.6× the cost of Optane SSD, its gross cost
including CPU and DRAM can be over 4–5× the cost of Optane SSD;

∗ Full paper in CIDR 2022 [2]: http://cidrdb.org/cidr2022/papers/p64-huang.pdf.

Table 1: Storage cost (USD) of three configurations, using one/six
(PM1/PM6) DCPMMs and one P4800X (P4800X1)

Component PM1 PM6 P4800X1

CPU (Xeon Gold 6242R) $2,517 $2,517 $2,517
DRAM (6×32GB) $1,157.94 $1,157.94 $1,157.94
DCPMM (𝑛×128GB) $546.75 $3,280.50 N/A
P4800X SSD (𝑚×375GB) N/A N/A $999
Total $4,221.69 $6,955.44 $4,673.94
Per GB (storage-only) $4.27 $4.27 $2.66
Per GB without CPU $13.32 $5.78 $5.75
Per GB with full CPU $32.98 $9.06 $12.46
Per GB with 1 thread $13.81 $5.86 $5.92
Per GB with 5 threads $15.78 $6.19 N/A
Per GB with 10 threads $18.23 $6.60 N/A

this is largely a result of strict memory population rules, whereas
SSDs do not have similar restrictions.

3 PUTTING COSTS IN THE INDEX CONTEXT
Using the configurations from Section 2, we compare the through-
put and performance per dollar trends of PM and SSD based indexes.

3.1 Experimental Setup
Raw Bandwidth. Before testing indexes, we calibrate our expec-
tations by testing raw read/write bandwidth of different configu-
rations using the popular fio tool. For PM, we use fio’s libpmem
backend which uses DAX/mmap to bypass the file system and ex-
pose byte-addressability. For SSD we use the SYNC and io_uring
backends which represent the traditional O_SYNC and new asyn-
chronous I/O, respectively.

Persistent Indexes. We use FPTree [9] and BzTree [1] to re-
spectively represent PM trees that leverage DRAM to store inner
nodes and those that only use PM. For PM-based hash tables, we
use Dash [8]. For all indexes we use the settings recommended
by their original papers or more recent evaluations [6]. We im-
plemented a simple SSD B+Tree and a hash table that access data
through a buffer pool atop P4800X1. For simplicity, we support
concurrency with thread-partitioned key space; for fairness we use
the same strategy for PM indexes. All I/Os are done using POSIX
pread/pwrite with O_DIRECT to avoid OS caching. As we will see,
even sub-optimal implementations can give very competitive per-
formance/cost compared to very well-tuned PM-based indexes.

3.2 Evaluation
Raw Storage Performance. At first glance, PM setups outperform
P4800X1 in most cases (Figure 1), showing PM’s advantage of being
on the memory bus. However, a fair comparison to P4800X1 would
be PM1which consists of a single DCPMMwithout any interleaving,

http://cidrdb.org/cidr2022/papers/p64-huang.pdf

whereas PM4 and PM6 leverage interleaving to gain performance ad-
vantages. P4800X1 using io_uring (P4800X-IU) exhibits sustained,
stable performance regardless of access patterns (we only show
sequential in Figure 1) or the number of threads thanks to the
asynchronous programming model. This corroborates with prior
work that P4800X needs very few threads to be saturated. Since
newer SSDs typically utilize PCIe Gen4 which is not supported
by our server, we plot the advertised bandwidth (dashed lines) in
Figure 1 for reference. P5800X is expected to outperform PM4 un-
der most write workloads and can match PM6 at high concurrency
where PM6 does not scale well; notably, P5800X is priced similarly to
P4800X. These results verify the advantage of SSD’s asynchronous
programming model over PM’s synchronous programming model.

Index Performance/Cost. To obtain the performance/cost ratio
R under a particular workload and index, we divide the measured
throughput P by the storage system cost, including storage device
cost $S, DRAM cost $D, and CPU cost $E:

𝑅 =
𝑃

$𝑆 + $𝐷 + $𝐸
=

𝑃

$𝑆 + $𝐷 + (𝑊 ∗𝑈) ∗ ($𝐶 ∗ 1
𝑇
)

(1)

In Equation 1, $E is deduced from the number of worker threads
W, the average CPU utilization U (out of 100%, representing the
on-CPU time for data movement) during the run, the CPU’s price
$C and the number of total hardware threads T. Here, U is needed
because for P4800X1 the system is often I/O bound without fully
using the CPU; in many real applications such off-CPU time can
overlapwith computation. Thus,𝑈×𝑊 yields the “effective” number
of threads needed by a workload. $𝐶/𝑇 gives the per-thread cost.

As shown in Figure 2, we calculate performance/cost ratios and
make five observations: (1) A single P4800X SSD exhibits similar
cost per performance to one DCPMM. (2) Interleaving is necessary
for PM to perform well at high concurrency; this in turn requires
the server be equipped with enough (more) CPU cores to support
application logic. (3) Among the PM setups, PM4 can be more cost-
effective than PM6. (4) PM-based indexes should utilize the necessary
amounts of DRAM to increase performance and to amortize cost.
(5) For memory-resident workloads, an SSD-based system can be
fast at a low cost; for partial-memory workloads, it exhibits great
potential with new asynchronous I/O.

4 IMPLICATIONS AND OUTLOOK
We now distill several high-level implications on index/system
designs in the storage jungle:

Don’t forget about SSDs yet! The DRAM-SSD hierarchy is still
very cost-effective and should be considered first before using PM.
This is especially true for memory-resident workloads where the
benefits of adding DRAM far outweighs its cost. However, in case
the application does require PM-level latency, PM may be a better
(and likely the only) choice.

The PM stack can be equally or more expensive than the
storage stack. The latter is often blanketly blamed as having high
software overhead, but PM’s synchronous/memory nature and rigid
population rules require higher TCA with more cycles of high-
end CPUs for data movement. This also implies that in future PM
systems it is desirable to employ more CPU cores to satisfy the need
of running application logic and moving data around. In contrast,
the storage stack is increasingly lightweight and less CPU intensive.

1 5 10 15 20
of threads

(a) Sequential 4KB read

0
5

10
15
20
25

Ba
nd

w
id

th
 (G

B/
s)

1 5 10 15 20
of threads

(b) Sequential 4KB write

0
3
6
9

12
15

P4800X-SYNC
P4800X-IU

PM1
PM4

PM6
P5800X

Figure 1: Raw sequential read/write bandwidth.

1 10 20 30 40
of threads

(a) Uniform lookup

0
1
2
3
4
5
6

M
O

PS
/$

1 10 20 30 40
of threads

(b) Uniform insert

0

0.3

0.6

0.9

1.2

B+Tree-100%M
B+Tree-90%M
B+Tree-80%M

FPTree-PM6
FPTree-PM4
FPTree-PM1

BzTree-PM6
BzTree-PM4
BzTree-PM1

Figure 2: Performance/cost ratios of range indexes..

Co-design of hardware configuration and data structure is
(more) necessary for PM systems. Otherwise, overprovisioning
can considerably drive up TCA.

Outlook. Although both PM and SSDs are fast evolving, we be-
lieve that for PM to be truly cost-effective, it is necessary for its price
to further drop. Since caching stores remain very cost-effective, an
important direction is to explore how the cost-effectiveness equa-
tion changes when PM is used as an extension to DRAM (e.g., in
Optane DCPMM’s Memory mode). In addition, new SSDs are bring-
ing much more potential for building fast persistent data structures
and systems with the aforementioned performance characteristics
and new abstractions such as user-space I/O, ZNS and directives.

REFERENCES
[1] Joy Arulraj et al. 2018. BzTree: A high-performance latch-free range index for

Non-Volatile memory. PVLDB 11, 5 (Jan. 2018), 553–565.
[2] Kaisong Huang, Darien Imai, Tianzheng Wang, and Dong Xie. 2022. SSDs Striking

Back: The Storage Jungle and Its Implications on Persistent Indexes. In 12th Annual
Conference on Innovative Data Systems Research, CIDR. 9–12.

[3] Intel Corporation. 2020. Intel Optane Persistent Memory Start Up Guide.
[4] Intel Corporation. 2021. Optane SSD P5800X Series Product Brief.
[5] Joseph Izraelevitz et al. 2019. Basic Performance Measurements of the Intel Optane

DC Persistent Memory Module. CoRR abs/1903.05714 (2019).
[6] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas Will-

halm. 2019. Evaluating persistent memory range indexes. PVLDB 13, 4 (2019).
[7] David Lomet. 2018. Cost/Performance in Modern Data Stores: How Data Caching

Systems Succeed. DaMoN (2018).
[8] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable

Hashing on Persistent Memory. PVLDB 13, 8 (April 2020), 1147–1161.
[9] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang

Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree for
Storage Class Memory. SIGMOD (2016).

2

	1 The Storage Jungle
	2 How Much Does It Cost, Really?
	3 Putting Costs in the Index Context
	3.1 Experimental Setup
	3.2 Evaluation

	4 Implications and Outlook
	References

