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Outline

• Part 1 - The memory/storage landscape
• Why new memory technologies?

• Persistent memory hardware/software

• Part 2 - Range indexes

• Part 3 - Hash tables

• Part 4 - Implications and outlook
• Especially, life after Optane
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Part 1: PM and Storage 

Landscape
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The (Traditional) Storage Hierarchy

CPU 

caches

SRAM

Memory

DRAM

Storage

SSDs, HDDs

Layers with clear boundaries

• Memory: fast but volatile

• Storage: slower than memory but persistent

Caching stores hugely successful

• Hot (index) pages in buffer pool (DRAM)

• Persist to SSDs

• Cost-effective

Facing several major challenges
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Issues with in (Traditional) Storage Hierarchy

CPU 

caches

SRAM

Memory

DRAM

Storage

SSDs, HDDs

Hitting scalability limits (the “scaling wall”) [1]

Energy consumption

Chip area limits

Energy consumption

High access latency

Need new storage/memory media – mainly for better scalability/higher capacity + save energy



Emerging Memory Techniques to the Rescue

• Phase change memory (PCM) [8]
• Including Intel’s 3D XPoint/Optane

• Micron (with Intel and initially pre 2015)

• Spin-Transfer Torque Magnetic RAM (STT-RAM) [5]
• Everspin

• Memristor [2]
• Notable attempt by HP(E)’s The Machine [3, 4]

• Carbon NanoTube RAM (NRAM, NanoRAM) [6]
• Nantero

• Ferroelectric RAM (FeRAM) [7]
• Fujitsu

• Various new flash/DRAM technologies – more on this later
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They just all happen 

to be non-volatile!
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Persistent Memory

Aside: Terminology

• Non-volatile RAM (NVRAM)

• Non-volatile memory (NVM)*

• Persistent memory
* Except flash memory

➔ The same thing: durable + byte-addressable



Persistent Memory Properties

• Byte-addressable, durability
+ Energy efficient

+ Scales, high density, cheaper

• Performance varies depending on particular memory technology
• E.g., STT-RAM as an alternative to SRAM cache

• Tradeoffs between persistence/retention/speed/energy profile [9]

• In most cases, biased towards PCM/3D XPoint (Optane) and compare with 
DRAM:
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Can be faster 

or slower 

than DRAM

Can be used to 

build both memory 

and storage

+ Energy efficient

+ Scales, high density, cheaper

– Higher read/write latency than DRAM

– Read/write asymmetry

– Limited lifetime (but not a big concern)



Persistent Memory

• Available today: Intel 3D XPoint (Optane) since 2019
• But winding down, more on this later

• (future slides – Optane-specific marked with          )

• Other candidates
• Work-in-progress, or

• Failed previous attempts, or 

• Do not scale (yet), or

• Do not scale economically, or
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CPU 

caches

SRAM

Volatile memory

Persistent memory



Persistent Memory

• Available today: Intel 3D XPoint (Optane) since 2019
• But winding down, more on this later

• (future slides – Optane-specific marked with          )

• Other candidates
• Work-in-progress, or

• Failed previous attempts, or 

• Do not scale (yet), or

• Do not scale economically, or
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Aside: Non-Volatile DIMMs (NVDIMMs) [9]
• DRAM + flash + supercapacitor

• Flush data to flash upon power failure, load back 

when powered on again

• SNIA standardized: NVDIMM-F, NVDIMM-N, etc.

• Also “persistent” and available today but:

• Doesn’t scale (due to DRAM)

• Same speed as DRAM (NVDIMM-N)

• Expensive

➔ A major research vehicle pre-Optane
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CA$

• High capacity – easily TB level

• “Economical” (more later)

• ~CA$750 / 128GB Optane PMem

• ~CA$2000 / 128GB DRAM

Socket 1 Socket 2

DRAM DIMMs

75ns latency

BW >60-100 GB/s

(16 threads)

Optane PMem 100

300ns read latency

Read BW 7.4-40GB/s

Write BW 5.3-10GB/s

(16 threads)

~July 2019

Optane PMem
Aka “Optane DCPMM”

PMem 

200: ~30% 

higher



System Architecture and Operation Modes
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[41] J. Yang et al. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory

Still volatile CPU caches

Persistent

Volatile

(main focus)



Programming Model without eADR

• ADR: Asynchronous DRAM Refresh
• Includes write buffer and PMem, but not the CPU caches
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PM Cache

A

PM Cache

A

B

Thread 1 Thread 2

PM

A

B

Unreachable

Case 1: Optane PMem 100, pre- Ice Lake

Actually persisted state:

Need explicit cacheline writeback (clflush, clflushopt, clwb)

Visible != durable

Restart



Enhanced ADR – no need to flush; fence still needed

Visible == durable

Programming Model with eADR

• eADR: Enhanced Asynchronous DRAM Refresh
• Includes write buffer and PMem, and the CPU caches
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PM Cache

A

PM Cache

A

B

Thread 1 Thread 2

PM

A

B

Case 2: Optane PMem 200, pre- Ice Lake

Actually persisted state:

Restart

All reachable



Software Tools: PM Programming

• Access via load/store instructions

• Add fences and flushes (without eADR)

• Guaranteed: 8-byte atomic write
• Atomics (CAS, XCHG, etc.) also work

• Allocating/deallocating PMem
• malloc doesn’t work!

• Handling (persistent) memory leaks

• Solutions

• Ownership transfer protocol: application provides a tracked location for allocator

• “Transactions” (for durability): use logging

• Guaranteed by PM programming libraries
• Intel PMDK (https://pmem.io/pmdk)

• Research: NVHeaps [10], Mnemosyne [11], PMwCAS [12]
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DRAM PM

Application address space

PM DIMMs

mmap

https://pmem.io/pmdk


Software Tools: Index Evaluation

• PiBench [18]
• Unified benchmarking framework

• Pluggable index shared lib

• Issue synthetic workloads
• R/W ration, varying core count

• Stats information
• Throughput, tail latency, bandwidth

• Not limited to PM; used by various recent index work

• Open-source: 
• https://github.com/sfu-dis/pibench

16VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory 

https://github.com/sfu-dis/pibench
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Part 2: PM Range Indexes



Part Two: Outline

• Common range index choices: B+-Tree vs Trie

• Range indexes on PM
• Pre-Optane PM indexes

• State-of-the-art PM indexes
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Btree vs Trie
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BTree:

• O(log n) access time

• Range scan locality

• Variable-length key support

Trie:

• O(L) access time (L = key length)

• Variable-length key support

• Pointer chasing during scan

https://cdn.programiz.com/sites/tutorial2program/files/b-tree.png

Inner node

Leaf node

[13] The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases
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Range Indexes on Persistent Memory

Challenges:
• Consistency - 8-byte atomic write

• Performance - scarce write bandwidth

• Recovery - avoid persistent memory leak

Key optimization goal: 
• Reduce PM accesses ➔ higher 

performance

Perhaps 10s-100s of proposals by now
• Even before real devices appeared

• Even more with real devices

Root

Inner 

node
Inner 

node

KV pairs KV pairs KV pairs KV pairs

• No serialization/deserialization

• Directly persist on PM

• Tailor-made for Optane DCPMM

• (Near) Instant recovery

Could be 

in DRAM

PM-

resident
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Pre-Optane: wBTree [14]

• Unsorted leaf with atomic update

• Indirection array

• 1 bit to indicate validity

• Logging during split

• Single-threaded
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[14] Persistent B+-trees in non-volatile main memory, VLDB 2015

*



Pre-Optane: NVTree [15]

• Selective consistency

• Contiguous inner nodes

• Gaped array to absorb split

• Unsorted leaf

• Append-only strategy

• Scan backwards to find key
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[15] NV-Tree: Reducing Consistency Cost for NVM-based Single Level Systems, FAST 2015

*

Inners can 

reside on 

DRAM



Pre-Optane: BzTree [16]

• Lock-Free (PMwCAS – Persistent Multi-word Compare And Swap)

• Unsorted leaf

• Periodically sort records

• Search method

• Binary search sorted area

• Linear search unsorted area
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[16]  Bztree: a high-performance latch-free range index for non-volatile memory, VLDB 2018

*



Pre-Optane: FPTree [17]

• Selective persistence

• Unsorted leaf + fingerprints (one byte hash of key)

• Selective concurrency

• HTM for inner node update

• Locks for leaf node update
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[17]  FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Storage Class Memory, SIGMOD 2016

*



Pre-Optane PM Range Indexes (Pre-2019) [18]

• Proposed under emulation, evaluated under Optane PMem

25

Index Architecture Node Architecture Concurrency

wBTree [VLDB ’15] PM-only Unsorted;

Indirection array

Single-threaded

NV-Tree [FAST ’15] DRAM + PM Unsorted leaf;

Inconsistent inner node

Locking

FPTree [SIGMOD ’16] DRAM + PM Unsorted Leaf;

Fingerprints

HTM (inner) + 

Locking (leaf)

BzTree [VLDB ’18] PM-only Partially unsorted leaf Lock-free + 

PMwCAS

[18]  Evaluating Persistent Memory Range Indexes, VLDB 2020
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Pre-Optane PM Range Indexes (Pre-2019) [18]

• 6 channels (solid + shadow) vs. 2 channels (shadow only)

• 23 threads

Key takeaways: save write bandwidth + leverage DRAM + fingerprinting
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[18]  Evaluating Persistent Memory Range Indexes, VLDB 2020

*



Into the Era of Optane 2019-2022

• Even more indexes

• 10s of papers in VLDB/SIGMOD/SOSP, etc.

• More index structure choices

• B+-tree, trie, hybrid, learned

• Functionality

• NUMA-awareness, variable-length key support, etc.
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Optane: LB+-Tree [19]

• B+-tree based
• Inner nodes in DRAM

• Leaf nodes in PM

• HTM for traversal, locking for updates

• + New techniques to avoid:
• Excessive PM writes

• Logging overhead

28

[19]  LB+-Trees: optimizing persistent index performance on 3DXPoint memory, VLDB 2020

Unsorted leaf

Fingerprints 

(cf. FPTree)

256B: PMem

internal block 

size
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Optane: μTree [20]

• B+-tree based

• Optimized for tail latency

• Coordinated concurrency control:
• Traverse B+-Tree, find predecessor node

• Update list layer using atomic CAS

• Lock array layer leaf and update entry

29

[20] μTree: a Persistent B+-Tree with Low Tail Latency, VLDB 2020

Entire B+-tree in 

DRAM

Linked 

list in PM
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Optane: ROART [21]

• Based on ART

• Optimized for range scan

• Compact subtrees into leaf arrays

• Delayed Check Memory Management

• Concurrency
• ART-ROWEX

• Non-temporal stores

30

[21] ROART: Range-query Optimized Persistent ART, FAST 2021

Entirely in 

PM
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Optane: PACTree [22]

• Trie-based (ART)

• Search layer: persistent trie

• Data layer: linked list of leaves

• Asynchronous update

• SMOs by background threads

• NUMA-optimized

• Per-node PM pool

31

[22] PACTree: A High Performance Persistent Range Index Using PAC Guidelines, SOSP 2021

Entirely in 

PM

Runs in 

background

VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory 

*



Optane: DPTree [23]

• Hybrid B+-tree and trie

• Front Buffer Tree 
• B+-tree

• All modifications with logging

• Base Tree
• Read-only trie for inner nodes

• B+-Tree style leaf nodes

• Accumulates front buffer trees

• Lookup will traverse all trees

32

[23] DPTree: differential indexing for persistent memory, VLDB 2020

Entire B+-trees 

in DRAM
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*
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Optane: APEX [24]

[24] APEX: A High-Performance Learned Index on Persistent Memory, VLDB 2022

[25] ALEX: An Updatable Adaptive Learned Index, SIGMOD 2020

pos = a*key + b
• Learned, based on ALEX [25]

• Linear function to predict key location

• Probe-and-Stash collision handling
• Probe primary array up to 16 entries

• If empty slot found, insert into PA

• Otherwise insert to stashed array

• Concurrency
• Inner: Lock-free traversal

• Leaf: Optimistic locking 

pos = a*key + b

Root

…….
….

Inner node

key_pos = a*key + b

Leaf node

Up to 256KB 

in PM

Primary array

Stashed array

Volatile Metadata

Up to 16MB



Optane-Era PM Range Indexes (2019-2022) [26]

34

Architecture Node structure Concurrency

LB+-Tree [VLDB 20] B+-tree; DRAM (inner) +

PM (leaf)

Unsorted leaf; fingerprints;

extra metadata

HTM (traversal) + 

locking (update)

uTree [VLDB 20] B+-tree; DRAM (B+-tree)

+ PM (linked list)

Sorted Locking (array layer)

+ lock-free (list layer)

DPTree [VLDB 20] Hybrid; DRAM (B+-tree,

trie inner) + PM(trie leaf)

Unsorted leaf; fingerprints;

indirection; extra metadata

Optimistic lock +

async. updates

ROART [FAST 21] Trie; PM-only B+-tree like unsorted leaf;

fingerprints

ROWEX

PACTree [SOSP 21] Trie; PM-only or option-

ally DRAM+PM

Unsorted leaf; fingerprints;

indirection

Optimistic lock +

async. Update

APEX [VLDB 22] Learned index; PM-mostly 

(metadata in DRAM)

Partially unsorted leaf; 

fingerprints; stashed array

Lock-free traversal + 

optimistic locking

NUMA-

optimized

Support 

var-keys 

naturally

FPTree

[SIGMOD 16]

DRAM (inner nodes) + 

PM (leaf nodes)

Unsorted leaf nodes;

fingerprints

HTM (inner nodes) + 

locking (leaf nodes)

(mostly) 

optimistic

(mostly)

unsorted +

Search techniques

B+-Trees: 

extensive use of 

DRAM  

Tries: B+-

Tree styled leaf
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Learned

Detailed performance comparison: Evaluating Persistent Memory Range Indexes: Part Two, VLDB 2022
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Part 3: PM Hash Tables



Part Three: Outline

• Range indexes vs hash tables

• Representative hashing schemes

• New challenges and new proposals 

• Design summary
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Range Indexes vs. Hash Tables

Range Indexes Hash Tables

Pros

Cons
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• Good at range queries

• Smooth growth (collision-

free)

• Average O(logN) time 

complexity for 

insertion/deletion/search

• Good at point queries

• Average O(1) time complexity for 

insertion/deletion/search

• Lack support for range queries

• Unavoidable collisions



PM Range Indexes vs. PM Hash Tables
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Range Indexes Hash Tables

Pros

Cons
Common frenemy: PM access!



PM Range Indexes vs. PM Hash Tables
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Range Indexes Hash Tables

Pros

Cons

Common challenges:

#1 Consistency – 8-byte atomic write

#2 Performance – scarce write bandwidth

#3 Recovery – avoid persistent memory leak



Recap

A hash table implementation = hashing scheme + hash function

Static hashing schemes
• Linear probing

• Cuckoo hashing

• …

Dynamic hashing schemes
• Extendible hashing

• Linear hashing

• …
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Most PM hash tables are also based on



Static Scheme – Linear Probing

(Key, Value)

(A, Val)

(B, Val)

(…, …)

(…, …)
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Hash Table

… …

A Val

B Val

… …

Hash(A)=Hash(B)

Collision



Static Scheme – Cuckoo Hashing
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(Key, Value)

(A, Val)

(B, Val)

(…, …)

(…, …)

HT2

… …

… …

B Val

HT1 

… …

A Val

… …

Hash1(A)
Hash2(A)

Hash1(B)

Hash2(B)Collision



So, we need to rebuild the entire hash table when it is full.

From Static to Dynamic
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But, rebuilding a hash table is very expensive even for DRAM.

How to smooth out the process?

Dynamic hashing schemes.
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Dynamic Scheme – Extendible Hashing

directory

0…

1…

1 global depth (00…, val)

(01…, val)

(empty)

1 local depth

(100…, val)

(101…, val)

(110…, val)

1 local depth

insert Hash(key) = 111…

bucket needs to split

before split

buckets
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Dynamic Scheme – Extendible Hashing

directory

00…

01…

10…

11…

2 global depth (00…, val)

(01…, val)

(empty)

1 local depth

(empty)

(empty)

(110…, val)

2 local depth

(100…, val)

(101…, val)

(empty)

2 local depth

after split

buckets

Split



So, we need to double the size of the directory when a bucket splits.

Dynamic Scheme – From Extendible to Linear

46VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory 

Oof, can we make the growth even smoother?

Linear hashing scheme. (Similar challenges in practice)



Hash Tables on PM

• Static hashing variants
• Level hashing [27]

• Clevel [28]

• Dynamic hashing variants
• Cacheline-conscious extendible hashing (CCEH) [29]

• Dash [30]
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[27] Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory, OSDI ’18

[28] Lock-free Concurrent Level Hashing for Persistent Memory, ATC ’20

[29] Write-Optimized Dynamic Hashing for Persistent Memory, FAST ’19

[30] Dash: scalable hashing on persistent memory, VLDB ’20



Pre-Optane, Static: Level Hashing [27]

• Emulation-based bucketized cuckoo hashing

• Challenge #1: heavyweight consistency guarantee
• Overcome by atomic token update

• Challenge #2: excessive PM write
• Overcome by two-level bucketized hash table & in-place resizing
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[27] Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory, OSDI ’18

*https://www.usenix.org/system/files/atc20-paper227-slides-chen.pdf

*



Optane, Static + Resizing: Clevel [28]

• Lock-free concurrent level hashing
implemented on Optane PMem

• Based on level hashing with new
challenges!

• Challenge #1: performance degradation 
during resizing

• Overcome by replacing coarse-grained 
locks in level hashing with async rehashing

• Challenge #2: poor scalability of level 
hashing

• Overcome by lock-free
search/insertion/update/deletion

49VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory 

[28] Lock-free Concurrent Level Hashing for Persistent Memory, ATC ’20



Pre-Optane, Extendible: CCEH [29]

• Emulation-based extendible hashing

• Challenge #1: reducing cacheline accesses
• Overcome by the three-level structure which 

makes sure that record can be found within two 
cacheline accesses

• Challenge #2: crash consistency
• Overcome by keeping track of split history in 

the split buddy tree and reducing dirty writes 
through lazy deletion
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[29] Write-Optimized Dynamic Hashing for Persistent Memory, FAST ’19



Optane, Extendible/Linear: Dash [30]

• Optane-based extendible/linear hashing

• Challenge #1: excessive PM read
• For Optane, read latency > write latency

• Overcome by fingerprint

• Challenge #2: heavyweight concurrency 
control (read-write lock)

• Overcome by optimistic lock

• Challenge #3: load factor optimization
• Overcome by bucket load balancing

• Challenge #4: instant recovery
• Overcome by lazy recovery
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[30] Dash: Scalable Hashing on Persistent Memory, VLDB 2020

(a) Overview of Dash-EH

(b) Overview of Dash-LH



PM Hash Tables: Design Summary
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Level Hashing Clevel CCEH Dash

Reduce PM write ✅ ✅ ✅ ✅

Reduce PM read ✅

Lightweight concurrency control ✅ ✅

Lightweight consistency

guarantee

✅ ✅ ✅ ✅

Load factor optimization ✅ ✅ ✅

Resizing optimization ✅ ✅

NUMA optimization

Instant recovery ✅ ✅ ✅

Variable-length key support ✅
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Part 4: Implications and Outlook



Other Related/More-Recent Work

• This tutorial by no means exhaustive
• Still fast evolving

• Some more recent PM indexes
• Tree leveraging eADR: NB-Tree [34]

• Hash table: Plush [35]

• PM key-value stores
• Viper [38], FlatStore [39], Halo [40], etc.

• PMem-based full systems
• Tair [36], OpenMLDB [37]
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* https://www.techtarget.com/searchstorage/news/252523339/Intel-pulls-the-plug-on-Optane

* https://www.anandtech.com/show/17515/intel-to-wind-down-optane-memory-business

* https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good

Not the first time
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Recent Timeline

2009 20192014 2016

Emulation or 

NVDIMM

Didn’t come

but still 

hopeful

“5 years 

from now”

E
x
c
it
e
m

e
n
t

Proposals from 

architecture 

community

“Maybe another 

3-5 years”

Intel/Micron

Optane

2022

The only vendor 

drops off. 

What now?
Optane-tailored



Another Bubble Memory [32] (1960-1981)?

• Was the hope, like today’s PM [31]

• Did not make it due to 
• Scalability/price

• Complex to make

• Require memory controller help

• DRAM and magnetic disks caught up

• Optane with similar issues
• Performance per $: lower than SSDs [33]

• SSDs getting faster and faster

• More complex memory controller

• Single vendor
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Intel (!) 7110 bubble memory*

* https://en.wikipedia.org/wiki/Bubble_memory#/media/File:Bubble_memory_module.jpg

Relevance of today’s software techniques for PM?



Potential: PM Techniques on DRAM [26]

• Running PM range indexes on DRAM
• No extra flushes/fences, using DRAM allocator

1. PM index techniques also effective for DRAM

2. Should focus more on full functionality [26]
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Future: a Storage Jungle [33]

• NVDIMMs
• Always been there

• Carbon Nanotubes: WIP

• Optane PMem

• Storage
• Faster flash memory/SSDs

• SSDs with memory semantics

• 3D-stack DRAM

• CXL enabling pooled memory
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Thank you! + Q&A
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