Tabular: Efficiently Building Efficient Indexes

Ziyi Yan

Mohamed Farouk Drira
Tianxun Hu

Tianzheng Wang

Ok 0
g%ggg;‘%glm SFU Data-Intensive Systems Lab
https://github.com/sfu-dis E .

https://github.com/sfu-dis
https://github.com/sfu-dis
https://github.com/sfu-dis

Building DBMSs: a Black Art

+ DBMS research
DD N D

e Hand-crafted data structures

* Hard to code up, hard to debug
* Pretend correctness until it crashes

Know the basics Know the hardware 'ﬂ‘ 'n‘ 'w

Database Management

+ Neighbouring areas
EER

Need to know multiple areas very well; rare

Vs

Ramakrishnan -+ Gehrke

T e ASER Tabular: Efficiently Building Efficient Indexes 2

Let’s hand-craft a concurrent B+-tree

* Memory-friendly layout + optimistic lock coupling

VLDB/SIGMOD papers

> ~
_ ¥
p— A read_lock
— N <«
/! ~
I N
I \
I 1
I B |read lock
I
' \
I
I C
read_lock

— —» Retry path

Complex stuff!

SIMON FRASER
UNIVERSITY

2 restart:

3 epoch_enter() ——,
4 retry = false

6
7

10
11
12
13

16

Epoch manager

ver = n.read_lock(retry)
if retry or n != root: goto restart

n.verify read(ver, retry)
if retry: goto restart
ver_next = next.read lock(retry)

if retry: goto restart \\x

implementation...

PPoPP/SOSP papers

PPoPP/SIGMOD/VLDB papers

Optimistic lock

implementation...

17 epoch_exit()

Tabular: Efficiently Building Efficient Indexes

Building DBMSs: a Black Art

+ DBMS research

Know the basics Know the hardware NN TN D

Database Management

intel) Ime\'MamlA‘-éz AiBhitectures Optim

)

+ Neighbouring areas

=2 1T
* Low-level programming

* Hard to code up, hard to debug
* Pretend correctness until it crashes

But many more know how to use a DBMS!
+ DBMS internal basics

T e ASER Tabular: Efficiently Building Efficient Indexes

DB Transactions vs. Manual Parallel Programming

* Transactions Locks/lock-free algorithms

* Tables and records Explicit memory management

* Transparent write-ahead-logging
* Buffered tables

Manual persistence, I/0

Manual caching solutions

Can We dO the Same for parallel programmlng? *To Lock, Swap or Elide: On the Interplay of Hardware

Transactional Memory and Lock-free Indexing, VLDB 2015

T e ASER Tabular: Efficiently Building Efficient Indexes

Modelling Data Structures as Relational Tables

A “B-tree node table”
struct BTreeNode {

int n_keys; RID | n_keys | is_leaf | right_child | kvs
bool is leaf; 10 False
int lock; ‘ o - .
BTreeNode *right child; a_.se
KVPair kvs[16]; 2 4 True INVALID RID
}s

e Struct/class = Table

 Member variables > Table columns
* Defined by a schema, just like a DB app

* Instances of struct/class - Table records

* Index operations - Transactions
* An OLTP engine takes care of concurrency and persistence

Modelling Data Structures as Relational Tables

Before

Allocation:

struct *mynode = (Node *)malloc(sizeof(Node));

Concurrency:

{\ (r == false)
r = acquire_sh(&A.lock, v) =

l (r == true)) o

r = acquire_sh(&B.lock, v?)
r = release_sh(&A.lock, v)

acquire_ex(&C.lock)
r = release_sh(&B.lock, v’)

“Wasn’t this tried and failed?”

After

Allocation:
struct *mynode = table.insert(..)

Concurrency: Single-
threaded logic
Transaction {
table.read(A); e 2 2 .
table.read(B);
table.read(C); *

table.update(C);

Just need
Cowbook

T e ASER Tabular: Efficiently Building Efficient Indexes

Past Failed Aspirations

* Object-on-DB / Object-oriented DBMSs
* High overhead over full RDBMSs

* Hardware transactional memory (HTM)

* No persistence
e Hard to use —“weird” aborts

* Software transactional memory (STM)
* High overhead
* No persistence
* “Research toy”

It’s different this time: in-memory OLTP since 2010+

Engine

MOCC
FOEDUS
2PL
ERMIA

TPC-C TPS

17 million

17 million

9 million
4 million

Much more headroom for objects-over-DB

*What Are We Doing With Our Lives?: Nobody Cares About Our Concurrency Control Research, SIGMOD 2017 Keynote

SSSSSSSSSSS
IIIIIIIIII

Tabular: Efficiently Building Efficient Indexes

On a 16-socket,
288-core HPE
server

“Who need these?”

“Very few!”

9

First try: B+-tree over ERMIA*

Pointer chasing dominates: 80% slower

Ox7beed
A: keys, child % Handcrafted
RIDs (1...), ... 3 50 -
(a) Logical view 8"
Ox9bfed S
RID| Where? : = 25 1 ERMIA/MVCC
N Eem— A: keys, child —
X7bee
RIDs, ... >
1 |ox9bfeo r/ 0 | | 1
Oxfcoeo 1 12 24 36 48
6 |0xfcoed eg——(C: keys and Threads
values,...

(b) Indirection array

(c) Heap memory Multi-versioning considered harmful

* ERMIA: Fast Memory-Optimized Database System for Heterogeneous Workloads, SIGMOD 2016

Tabular: Efficiently Building Efficient Indexes 10

One more time: B+-tree over Single-Versioned OCC

Just plain flat space ~50% cycles on memcpy, still a ~30% gap:
Ox7beed
RID Records » 50 Handcrafted
O A: keys, child RIDs Q.]
(256..), ... o 0
256 = Single-
B: keys and values, ... | — _ . :: 25 - version OCC
memecpy
] meme =
1536 C: keys and values, ... ‘\/ 0 ' ' !
- 1 12 24 36 48
Local copy of B
Threads
...other data...
Transaction context Memory copy considered harmful

T e ASER Tabular: Efficiently Building Efficient Indexes 11

Tabular: Single-Version + (Near) Zero Memory Copy

* Flat table space to avoid versioning/pointer chasing overhead
* An old trick — ship the function, not data — to remove unnecessary memcpy

Before:

Coe » Handcrafted
Node n = table.read(rid); \g
kK, v = (&n)... o
. e . -
8
After: =
k, v = table.read(rid,); =

O | | | |
1 12 24 36 43

Threads

Applies to writes, too
Only need simple tweaks in OCC protocol to make this work

T e ASER Tabular: Efficiently Building Efficient Indexes 12

As a Drop-in Replacement

 Masstree in ERMIA = Tabular B+-tree

= TPC-C Original ERMIA
S 1 - rigina
3 I (Masstree)
-
2 0.5 - o ERMIA with
= Tabular B+-tree
=
0 | | | | |

1 12 24 36 48

Threads
Over 95% of hand-crafted

T e ASER Tabular: Efficiently Building Efficient Indexes

13

SFU Data-Intensive Systems Lab Ok
https://github.com/sfu-dis [m]g®

Summary

* Building a DBMS is hard

* Have to know much more beyond DBMS itself: Parallel programming, hardware...

* Tabular: Objects-on-DB via modern OLTP techniques
* Single-versioning + OCC + zero-copy transactions
* Database concurrency control for data structures

* Various benefits — easier programming, debugging, migration, transparent
persistence...

More in our paper and code repo:
https://github.com/sfu-dis/tabular Thankyou’

T e ASER Tabular: Efficiently Building Efficient Indexes 14

https://github.com/sfu-dis/tabular
https://github.com/sfu-dis/tabular
https://github.com/sfu-dis/tabular
https://github.com/sfu-dis
https://github.com/sfu-dis
https://github.com/sfu-dis

	Slide 1: Tabular: Efficiently Building Efficient Indexes
	Slide 2: Building DBMSs: a Black Art
	Slide 3: Let’s hand-craft a concurrent B+-tree
	Slide 4: Building DBMSs: a Black Art
	Slide 5: DB Transactions vs. Manual Parallel Programming
	Slide 6: Modelling Data Structures as Relational Tables
	Slide 7: Modelling Data Structures as Relational Tables
	Slide 8: Past Failed Aspirations
	Slide 9: It’s different this time: in-memory OLTP since 2010+
	Slide 10: First try: B+-tree over ERMIA*
	Slide 11: One more time: B+-tree over Single-Versioned OCC
	Slide 12: Tabular: Single-Version + (Near) Zero Memory Copy
	Slide 13: As a Drop-in Replacement
	Slide 14: Summary

