
Tabular: Efficiently Building Efficient Indexes

SFU Data-Intensive Systems Lab
https://github.com/sfu-dis

Ziyi Yan
Mohamed Farouk Drira
Tianxun Hu
Tianzheng Wang

https://github.com/sfu-dis
https://github.com/sfu-dis
https://github.com/sfu-dis

Building DBMSs: a Black Art

2Tabular: Efficiently Building Efficient Indexes

• Hand-crafted data structures
• Hard to code up, hard to debug
• Pretend correctness until it crashes

Know the basics Know the hardware

+ DBMS research

+ Neighbouring areas

Need to know multiple areas very well; rare

Let’s hand-craft a concurrent B+-tree

• Memory-friendly layout + optimistic lock coupling

3Tabular: Efficiently Building Efficient Indexes

Complex stuff!

1 bool BTree::Insert(Key k, Value v):
 2 restart:
 3 epoch_enter()
 4 retry = false
 5 n = root
 6 ver = n.read_lock(retry)
 7 if retry or n != root: goto restart
 8 while n is inner:
 9 next = n.children[findChild(n, k)]
10 n.verify_read(ver, retry)
11 if retry: goto restart
12 ver_next = next.read_lock(retry)
13 if retry: goto restart
14 if next is inner node: ...
15 else: ...
16 ...
17 epoch_exit()

Epoch manager
implementation…

Optimistic lock
implementation…

PPoPP/SOSP papers

PPoPP/SIGMOD/VLDB papers

VLDB/SIGMOD papers

Building DBMSs: a Black Art

4Tabular: Efficiently Building Efficient Indexes

• Low-level programming
• Hard to code up, hard to debug
• Pretend correctness until it crashesBut many more know how to use a DBMS!

+ DBMS internal basics

Know the basics Know the hardware

+ DBMS research

+ Neighbouring areas

DB Transactions vs. Manual Parallel Programming

5Tabular: Efficiently Building Efficient Indexes

• Transactions
• Tables and records
• Transparent write-ahead-logging
• Buffered tables

* To Lock, Swap or Elide: On the Interplay of Hardware
Transactional Memory and Lock-free Indexing, VLDB 2015

Can we do the same for parallel programming?

• Locks/lock-free algorithms
• Explicit memory management
• Manual persistence, I/O
• Manual caching solutions

Modelling Data Structures as Relational Tables

• Struct/class → Table
• Member variables → Table columns
• Defined by a schema, just like a DB app

• Instances of struct/class → Table records
• Index operations → Transactions

• An OLTP engine takes care of concurrency and persistence

6Tabular: Efficiently Building Efficient Indexes

A “B-tree node table”

7

Modelling Data Structures as Relational Tables

Tabular: Efficiently Building Efficient Indexes

Allocation:
struct *mynode = (Node *)malloc(sizeof(Node));

Concurrency:

Before

Concurrency:

Transaction {
 table.read(A);
 table.read(B);
 table.read(C);
 …
 table.update(C);
}

After
Allocation:
struct *mynode = table.insert(…)

“Wasn’t this tried and failed?”

Single-
threaded logic

Just need
Cowbook

Past Failed Aspirations

• Object-on-DB / Object-oriented DBMSs
• High overhead over full RDBMSs

• Hardware transactional memory (HTM)
• No persistence
• Hard to use – “weird” aborts

• Software transactional memory (STM)
• High overhead
• No persistence
• “Research toy”

8Tabular: Efficiently Building Efficient Indexes

Perhaps 100s of
papers

It’s different this time: in-memory OLTP since 2010+

9Tabular: Efficiently Building Efficient Indexes

Much more headroom for objects-over-DB

Engine TPC-C TPS

MOCC 17 million
FOEDUS 17 million

2PL 9 million
ERMIA 4 million

“Who need these?”
“Very few!”

*What Are We Doing With Our Lives?: Nobody Cares About Our Concurrency Control Research, SIGMOD 2017 Keynote

On a 16-socket,
288-core HPE
server

First try: B+-tree over ERMIA*

10Tabular: Efficiently Building Efficient Indexes

Multi-versioning considered harmful

Pointer chasing dominates: 80% slower

Handcrafted

ERMIA/MVCC

* ERMIA: Fast Memory-Optimized Database System for Heterogeneous Workloads, SIGMOD 2016

Transaction context

One more time: B+-tree over Single-Versioned OCC

11Tabular: Efficiently Building Efficient Indexes

Just plain flat space

Handcrafted

Memory copy considered harmful

~50% cycles on memcpy, still a ~30% gap:

Local copy of B

…other data…

memcpy

Single-
version OCC

• Flat table space to avoid versioning/pointer chasing overhead
• An old trick – ship the function, not data – to remove unnecessary memcpy

Tabular: Single-Version + (Near) Zero Memory Copy

12Tabular: Efficiently Building Efficient Indexes

. . .
Node n = table.read(rid);
k, v = search(&n)…
. . .

. . .
k, v = table.read(rid, search);
. . .

Before:

After:

Applies to writes, too
Only need simple tweaks in OCC protocol to make this work

Handcrafted Tabular

As a Drop-in Replacement

• Masstree in ERMIA ➔ Tabular B+-tree

13Tabular: Efficiently Building Efficient Indexes

Over 95% of hand-crafted

TPC-C

Summary

• Building a DBMS is hard
• Have to know much more beyond DBMS itself: Parallel programming, hardware…

• Tabular: Objects-on-DB via modern OLTP techniques
• Single-versioning + OCC + zero-copy transactions
• Database concurrency control for data structures
• Various benefits – easier programming, debugging, migration, transparent

persistence…

14Tabular: Efficiently Building Efficient Indexes

More in our paper and code repo:
https://github.com/sfu-dis/tabular Thank you!

SFU Data-Intensive Systems Lab
https://github.com/sfu-dis

https://github.com/sfu-dis/tabular
https://github.com/sfu-dis/tabular
https://github.com/sfu-dis/tabular
https://github.com/sfu-dis
https://github.com/sfu-dis
https://github.com/sfu-dis

	Slide 1: Tabular: Efficiently Building Efficient Indexes
	Slide 2: Building DBMSs: a Black Art
	Slide 3: Let’s hand-craft a concurrent B+-tree
	Slide 4: Building DBMSs: a Black Art
	Slide 5: DB Transactions vs. Manual Parallel Programming
	Slide 6: Modelling Data Structures as Relational Tables
	Slide 7: Modelling Data Structures as Relational Tables
	Slide 8: Past Failed Aspirations
	Slide 9: It’s different this time: in-memory OLTP since 2010+
	Slide 10: First try: B+-tree over ERMIA*
	Slide 11: One more time: B+-tree over Single-Versioned OCC
	Slide 12: Tabular: Single-Version + (Near) Zero Memory Copy
	Slide 13: As a Drop-in Replacement
	Slide 14: Summary

