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Abstract—Cloud computing has emerged as a compelling vision
for managing data and delivering query answering capability
over the internet. This new way of computing also poses a
real risk of disclosing confidential information to the cloud.
Searchable encryption addresses this issue by allowing the cloud
to compute the answer to a query based on the ciphertexts of data
and queries. Thanks to its inner product preservation property,
the asymmetric scalar-product-preserving encryption (ASPE) has
been adopted and enhanced in a growing number of works to
perform a variety of queries and tasks in the cloud computing
setting. However, the security property of ASPE and its enhanced
schemes has not been studied carefully. In this paper, we show a
complete disclosure of ASPE and several previously unknown
security risks of its enhanced schemes. Meanwhile, efficient
algorithms are proposed to learn the plaintext of data and queries
encrypted by these schemes with little or no knowledge beyond
the ciphertexts. We demonstrate these risks on real data sets.

I. INTRODUCTION

The current trend towards cloud based Database-as-a-
Service (DaaS) as an alternative to traditional on-site RDBMSs
has largely been driven by the perceived simplicity and cost
effectiveness. For example, Amazon Web Services let users
store personal data via its Simple Storage Service and perform
computations on stored data using the Elastic Compute Cloud.
For the privacy reason, the client data managed by the cloud
must be encrypted while the cloud is allowed to compute a
query on behalf of the clients. Sending the whole encrypted
data to the user for each query obviously does not conform
to the spirit of delegating the data processing to the cloud.
A promising direction is Symmetric Searchable Encryption
(SSE) [19], which enables the cloud to search directly on
encrypted data. Traditionally, SSE schemes focus on the
study of provable security, notably semantic security [6][9].
Most semantic security solutions require scanning the entire
database for answering each query, which is not suitable for
large applications.

To address the scalability requirement, the Asymmetric
Scalar-product-preserving Encryption (ASPE) [25] was pro-
posed as an encryption technique for efficient query processing
while adopting an ad hoc security approach. A key property
of ASPE is the preservation of the inner product between data
and query, which makes it particularly suitable for designing
a sub-linear search for distance and similarity based queries.
More details are presented in Section II. For this reason, a
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Fig. 1: A typical SSE system

growing number of recent works have adopted or enhanced
ASPE to support a variety of important queries in cloud
computing, including range queries [23], nearest neighbor
queries [25], similarity based ranking queries [S][20][27][13],
fuzzy multi-keyword match queries [22][8], privacy preserving
computation of inner product [15], secure image search [29]
and privacy-preserving biometric identification [28][24].

On the other hand, the security property of ASPE has not
been carefully studied. Until now, the most known security
claim is Theorem 6 in [25], which shows that ASPE is resilient
to a level-3 attack where the adversary is allowed to acquire
knowledge on some plaintext-ciphertext pairs for records in
the database. In this paper, we show a complete disclosure
of ASPE under the level-3 attack, that is, the adversary can
recover the entire plaintext database. To our knowledge, this is
the first work systematically demonstrating this vulnerability.
In particular, we pointed out that the previous attack on
textsfASPE shown in [26] is not effective. Furthermore, our
finding suggests that ASPE does not even resist the weakest
adversary who knows nothing more than the ciphertexts. This
study implies that the works based on ASPE are potentially
under similar security risks.

A. Adversary Models

To explain our contributions, we adopt the SSE system in
Figure 1. Data owners and authorized users are on the trusted
client side, whereas the cloud server is “honest-but-curious”.
The data owner encrypts each record into a ciphertext and
uploads the ciphertexts to the cloud server. Subsequently, each
query request from a user is also encrypted and submitted
to the cloud server in the form of trapdoor. The cloud



server is responsible for computing the user query using the
ciphertexts and the trapdoor. In this work, the terms “server”,
“cloud”, and “adversary” are interchangeable. The following
adversary models are based on additional information, beside
ciphertexts, available to the adversary. Please refer to [7] for
the motivations of these models.

Ciphertext-only attack model (COA): In this model, the
adversary has only access to the ciphertexts. This is the
weakest adversary model.

Known-plaintext attack model (KPA): In addition to the
ciphertexts, the adversary also has the ability to acquire (or
observe) pairs of plaintext-ciphertext for some number of
records in the database. For example, if the adversary knows
that someone joins a club and observes a new encrypted record
afterward, the adversary can associate this person’s plaintext
record with the new ciphertext observed.

Chosen-plaintext attack model (CPA): A more powerful
adversary has the ability to obtain the pairs of plaintext-
ciphertext for some records of the adversary’s choice. For
example, the adversary may be able to influence the client
side to encrypt certain plaintext records.

In the above list, the adversary is getting more powerful
because of having access to more information. A security risk
under a less powerful adversary is also a security risk under
a more powerful adversary. In this paper, we consider COA
and KPA models for adversaries and demonstrate the security
risks of ASPE and its subsequent enhanced schemes. These
security risks are also security risks under any more powerful
adversary model.

B. Contributions

We present the following security risks of ASPE and its
enhanced schemes:

e Security risk of ASPE: We show that ASPE is sub-
ject to the complete disclosure of plaintext information to
a KPA adversary. In particular, we give an efficient attack
algorithm to reconstruct the plaintext of the entire database and
all processed queries, once the adversary acquires plaintext-
ciphertext pairs for a small number of records under the KPA
model. This finding implies that the security claim about
ASPE presented in [25] does not hold. We point out that the
previous attack in [26] was not effective and does not imply
our finding. The details are presented in Section III.

e Security risk of ASPE with noise enhancement: The
security of ASPE was enhanced by injecting random noises
in recent works, such as MRSE [5]. Despite this additional
security mechanism, we give an efficient algorithm for a KPA
adversary to reconstruct the plaintext of queries. We focus
on data over the binary domain because they are common in
many applications such as bloom filters [4], implicit feedback,
text documents. We present this attack in Section IV and
demonstrate its risk on real life data in Section VI.

e Security risk of ASPE with camouflaging enhance-
ment: Recent enhancement of ASPE, such as MKFSE [22],
camouflages data and queries into secret binary vectors be-
fore applying ASPE, which renders the KPA adversary’s

knowledge on plaintext-ciphertext pairs useless. Despite this
additional security mechanism, we give an efficient algorithm
for a COA adversary to reconstruct the binary vectors without
requiring any knowledge on plaintext-ciphertext pairs. We
present this attack in Section V and demonstrate how it could
lead to the disclosures of plaintext information in Section VI.

II. PRELIMINARIES

We first present some notations and then describe briefly
how ASPE works. In this paper, all vectors are column
vectors.

e P, — A data record in DB represented as a d-dimensional
vector.

o I/ I; — The plaintext/ciphertext of the index associated
with P; (constructed for query testing), represented as
vectors.

e (); — A query represented as a d-dimensional vector.

o T;/ T; — The plaintext/ciphertext of the trapdoor for Q;
(constructed for query testing), represented as vectors.

Therefore, each record or query has three representations: the
plaintext record and query F; and ();, the plaintext index and
trapdoor I; and 7}, and the ciphertexts /; and T7.

ASPE [25] encrypts records and queries using different
encryption operations (thus, the term “asymmetric’’). Consider
a record P; and a query (@);, represented by d-dimensional
vectors. The index I; and the trapdoor 7} are generated by

I = (PP, —0.5||7]|%)T
T, =r;(Q) . )T

where vT denotes the transpose of the vector v, ||P;||? is
the length of F;, and r; is a value randomly chosen for each
Qj. I; and T} are (d+ 1)-dimensional column vectors. Notice
that I; and P; can be derived from each other and (); can be
derived from T}. Therefore, all of I;, T}, P;, Q; are considered
sensitive. To generate the ciphertext I; and 7}, ASPE has two
alternative schemes, the basic scheme or Scheme 1, and the
enhanced scheme or Scheme 2.

Scheme 1. This scheme uses a secret (d + 1) x (d + 1)
invertible matrix M as the secret key for encrypting the I;
and T} as follows.

(D

Il=M"I,

_ 2
T)=M 'T;

The encryption preserves the inner product between I; and 7',
ie.,
[TT) = 1Ty = ry(PFQ; — 0.5]| B ) 3)

Using this equality, Theorem 3 in [25] shows that a point P; is
nearer to a query point ¢; than another point P if and only if
(I{ = I3)"'Tj > 0. Thus, the server can rank points P; by their
distance to a query (), using the ciphertexts I] and T]f . On the
other hand, the asymmetric encryption does not preserve the
inner product between two indexes or between two trapdoors,
so the server cannot compare the distance between two records
or two queries [25], a property that is considered sensitive.
Theorem 4 in [25] shows that Scheme 1 does not resist the



KPA adversary: the adversary can find the (d 4+ 1) x (d + 1)
secret matrix M using Equation (2) if he can acquire (P;, I})
pairs for d + 1 linearly independent records P;.

Scheme 2. To fix this problem, the authors of [25] proposed
the enhanced scheme, i.e., Scheme 2, by employing two tricks.
The first trick is expanding the d+ 1 dimensional ; and T} to
d’ dimensional (d’ = d+ 1+ w) vectors I; and Tj by padding
w artificial attributes whose inner product is equal to 0. The
second trick uses a secret bit string S of length d’ to split I;
into two secret shares (I;-a, I;b) and split Tj into (T;-a, T;—b)
such that

AT a AT o AT 4
I Ty =1, Tjo+ 1y Tj €]
where each secret share is a d’ dimensional vector. See [25]
for details. The split index and trapdoor are now encrypted by

two d’ x d’ invertible matrices M; and M, as follows.
T T
Iz(a = M1 Lia z{b = M2 Lip

P 1 )]
T]{a = M1 1Tja _]{b = M2 1ij

Let I; denote the ciphertext (I}, I}, ), T} denote the ciphertext

ia’ ~ib
(T3,,T};,). We have

IiTT]/' = IZgTJ/’a + 1y T (6)

Since MM, I and MoMy L are equal to the identity matrix
and the inner product over the w padded attribute values is
equal to 0, Scheme 2 preserves the inner product between I;
and T} [25]:

’ / ’ ~ T ~ ~ T A~
LT =1ig Tj + Ly Tjy = Lia. Tja + Iy T
=I11"T;(=r;(PLQ; — 0.5]|P|]*))

For this reason, exactly same as for Scheme 1, Scheme 2 can
be used to compare the distance of record points to a query
point. Unlike Scheme 1, since the secret splitting injects
randomness into the split index (/;,, I;») and split trapdoor
(Tja» Tjp), it is infeasible to find M; and M, from Equation
(5) like in Scheme 1. [25] proved that Scheme 2 is resilient
to a KPA adversary, quoted below

(7

Theorem 6 in [25] claims: “Scheme 2 is resilient to a level-3
attack if the attacker cannot derive the splitting configuration.”

The level-3 attack in [25] is exactly our KPA adversary
model and the splitting configuration is the secret bit string S.
The above claim implies that a KPA adversary cannot learn the
plaintext information of data and queries that are encrypted by
Scheme 2. Below, we shall consider only Scheme 2 (because
it enhances the security of Scheme 1) and refer it as ASPE.
The rest of the paper focuses on the security risk of ASPE
and enhanced schemes in the literature.

III. SECURITY RISK OF ASPE

In this section, we show that Theorem 6 in [25] does not
hold, in fact, ASPE suffers from a complete disclosure for
a KPA adversary. First we argue that a previously identified
attack is not effect, and then we present our attack.

A. Previous Attacks

[26] shows that if the adversary knows the pairs (Q;,7})
encrypted by ASPE for d queries Q;, 1 < j < d, the
adversary can learn the unknown index I; for a record P; with
d unknown variables (thus, learns the plaintext information) by
solving the following “d linear equations”, 1 < j < d:

LT =1]'T; @)

(i.e. Equation (7)) where the first d elements in I; are d
unknown variables. Refer to Equation (1) for the definition
of I; and T}. A closer look reveals that this attack cannot be
executed as suggested in [26] for two reasons: first, each T}
involves a random value r; unknown to the adversary, hence,
the above d equations actually contain 2d unknown variables
(instead of d unknown variables): d unknown variables for the
random values 71, - - - , 4 generated to randomize Q1, - - , Qq,
and the d unknown variables for the first d elements of I;.
Second, the (d + 1)th element in I; is a quadratic term
—0.5||P;||?, thus, these equations are not a linear system. For
these reasons, it is unclear that the above equations have a
unique solution for the unknown variables.

B. Vulnerability of ASPE

In the rest of this section, we present an efficient algorithm
for a KPA adversary to reconstruct the plaintext of the entire
database and all processed queries. Under our KPA adver-
sary model, we assume that the adversary acquires plaintext-
ciphertext pairs {(P;,I])}, therefore {(I;,I})}, for (d + 1)
records O = {Py,--- ,Pyy1} in DB, where Py, -+, Pyi1
are linearly independent. We further assume that the adversary
has access to the ciphertext T; of all processed queries @),
denoted by 7’. Moreover, we assume that 7' contains d + 1
ij such that their plaintexts 77 are linearly independent; this
assumption holds because the cloud is expected to process
many queries over time.

Algorithm 1 describes the steps that the above KPA ad-
versary may use to reconstruct the plaintext index I; for all
records P; € DB — O, and the plaintext trapdoor 7 of all pro-
cessed queries in 7. Step 1 applies Equation (9) to find Tj for
T € T'. Note that T} is a d+ 1 dimensional vector with d+1
unknown variables (indicated in red), and I;, I, Tj’ are known.
Since Py, - -+ , Pgy1 are linearly independent, I, --- , Iy are
linearly independent, thus form a (d 4+ 1) x (d + 1) invertible
matrix. Therefore, Equation (9) has a unique solution for T7.
The adversary can repeat this computation for T]’ € T’ until
finding (d + 1) trapdoors such that T}, --- ,Ty41 are linearly
independent. At the end of this step, the adversary obtains the
plaintext-ciphertext pairs (7j,T;) for 1 < j <d+ 1.

In the second step, with the obtained pairs (7;,7}), 1 <
7 < d+ 1, the adversary applies Equation (10) to learn I; for
every remaining record P; € DB — O. In this case, I; is the
only unknown vector (indicated in red) with d + 1 unknown
variables. Since T7,---,T;,, are linearly independent, as
mentioned above, Equation (10) has a unique solution for I;.

Therefore, Algorithm 1 enables a KPA adversary to learn
T} for every processed ); and I; for every P; € DB — O.



Algorithm 1 Linear Equation Program (LEP)
e Adversary model: a KPA adversary

e Input:
1) Acquired pairs {(I;,I])} for P, € O C DB, 1 < i <
d+ 1, where Py, --- , Py are linearly independent;

2) The set of ciphertext trapdoors 7’ for queries;

3) The ciphertext indexes I} for P, € DB — O;
e Output: The plaintext trapdoors 7} for T; € T'; The
plaintext indexes /; corresponding to P; € DB — O;
e Procedure:

Step 1. Given 7] € 7', the adversary infers the (d + 1)-
dimensional plaintext trapdoor 7; by solving the following
instances of Equation (7)

nrTy =177,
. ©)
I(/ij—;-lTj{ :IEHTJ

where {(I;,I])} for P; € O. For Equation (9), thisis a d + 1
linear equation system with d 4+ 1 unknown variables in 7},
which has a unique solution for 7. The adversary can stop
Step 1 once finding the d + 1 linearly independent trapdoors

{Tla e 7Td+1}'

Step 2. At the end of Step 1, the adversary obtains plaintext-
ciphertext pairs (77, 77), -+, (Tat1, Ty, ). With these pairs,
for each P, € DB — O, the adversary infers the (d + 1)-
dimensional index I; of P; using the following instances of
Equation (7)

' =1,"T

: (10)
Iz{TTc/Hl :IiTTdJrl

This system has a unique solution for I;.

Step 3. Output 7} for T} € 7" and I; for P; € DB — O.

According to Equation (1), the adversary learns @); and P;.
The following statement summarizes this security risk.

Security Risk 1. ASPE (i.e., Scheme 2) is vulnerable to a
KPA adversary: if the adversary acquires d + 1 plaintext-
ciphertext pairs (P;,I]) for P, € DB where these P; are

linearly independent, the adversary can recover the plaintext
of the entire database DB and all processed queries.

Remark 1. Security Risk 1 advances the state-of-the-art
because ASPE was previously claimed to be resilient to a
KPA adversary (i.e., Theorem 6 in [25]). For a d dimensional
database, with d + 1 plaintext-ciphertext pairs, the adversary
can solve the (d 4 1) linear equation systems in Algorithm 1
using Gaussian elimination with the complexity O((d + 1)3)
to recover the plaintext of entire database and all processed
queries encrypted by ASPE. This knowledge required and

complexity are a very low bar for a determined adversary. As
discussed at the beginning of this section, the attack shown
in [26] is ineffective. In fact, [26] assumes the adversary’s
knowledge on plaintext-ciphertext pairs for queries, which
is different from the adversary model in [25] that assumes
knowledge on plaintext-ciphertext pairs for records. To our
knowledge, Algorithm 1 is the first work demonstrating a
complete disclosure by assuming exactly the same adversary
model as in [25].

IV. SECURITY RISK OF ASPE WITH NOISE
ENHANCEMENT

The recent work [5] enhanced ASPE to protect additional
information about the query result through injecting both
additive and multiplicative random noises. In this section we
show that this noise enhanced scheme remains vulnerable to
a KPA adversary. Again, we first discuss the work in [5] and
then show the vulnerability.

A. Multi-keyword ranked search over encrypted data

[5] studied multi-keyword ranked search over encrypted
cloud data, called MRSE below. Consider a record P; and a
query (@, both represented by d-dimensional binary vectors.
The similarity of P; with respect to (); is defined by the inner
product PY'Q;. The top-k similarity search for a query Q;
is to retrieve k records P; in the database DB that have the
highest similarity with respect to ();. When this querying task
is outsourced to the cloud, besides plaintext information, the
similarity score PiTQj and similarity rank are also considered
sensitive. To protect such information, unlike ASPE, MRSE
generates the index I; for P; and the trapdoor T} for Q; by
injecting random noises E and V]T

I = (BTaEva 1)T
Tj = (r;Qf ,r; Vi )"
where El = (e},---,¢Y) and each ¥ (k € [1,U)) is a

70 1

noise following the uniform distribution in the range (27“ —

\/ 2O 27“ +1/&0), where 11 and o are the mean and standard

deviation of the normal distribution N (y, 0?); V" is a random
U-dimensional binary vector; r;, t; are random numbers.
Notice that I; and T} are (d + U + 1)-dimensional vectors.
MRSE encrypts /; and 7} into I; and 7} using an invertible
matrix, exactly as in ASPE shown in Section II. The details
are omitted.

A record FP; is ranked with respect to a (); by the noisy
similarity between P; and (); computed by

(1)

[;TT; =I'T; = r;(PFQ; + EI'V}) + ¢, (12)

For the purpose of ranking, r; is positive. Therefore, the
relative rank of two records P, and P> with respect to Q)
is distorted only by ET'V; because r; and t; are the same for
the same query ;. By randomly setting % bits of Vj; to 1,
and the resulting E]'V; is equal to the sum of % randomly
selected ¥ and follows the normal distribution N (u, o?) [5].
A larger o leads to more distortion of the relative rank of



two records P} and P», thus, o should be chosen carefully
so that the “noisy” top-k answers reasonably approximate the
true top-k answers.

B. Vulnerability of MRSE

With the U new unknown variables EI = (e},---,&Y),
Equation (9) has many possible solutions for 7} because
the number of unknown variables is more than the number
of equations. In this case, the attack algorithm proposed in
Section III cannot be applied to MRSE. In the rest of this
section, we describe a new algorithm to learn the plaintext
information of a query @); from the plaintext-ciphertext pairs
acquired by a KPA adversary. Suppose that the KPA adversary
has acquired m plaintext-ciphertext pairs (P;, I}), 1 <1i < m,
for some m. In addition, suppose that the adversary has access
to the ciphertext trapdoor TJ’ of some processed query Q;.
Both P; and (); are vectors over the binary domain. The
adversary’s goal is to learn the binary vector (); from the
acquired pairs (P, 1;), 1 <i < m, and the ciphertext T;. We
give an algorithm to learn such information.

First we rewrite Equation (12) as

ETV; —r]I’TT’—t - PrQ, (13)

where 7; = - and t . As discussed above, the noise
J

ET'V; in Equation (13) follows the distribution N (u,0?) [5]
with the parameters 1 and o being public. The adversary’s
strategy is to constrain the value of ET'V;, therefore, the value
of r]I’TT’ — t; — PTQ,, to the interval [u — lo, p + lo]
with a high probability in the search for the solution to
the unknown variables Fj,tAj, Q;. For example, according to
the 3-sigma rule, with [ = 3, ElT V; falls into the interval
[w—lo, n+1o] with 99% probability. Since each pair (P;, I}),
1 <4 < m, imposes one such constraint and since the actual
Q; satisfies all such constraints, a large enough m could
provide a sufficient constraint so that a solution of Q) is
identical or similar to the actual @);. Algorithm 2 formulates
the search of (); based on this idea as the mixed-integer linear
program problem.

In Algorithm 2, Fj,t/;,Qj [k] (k = 1,---,d) are unknown
variables (indicated in red) and the rest are known. We assume
both 7,1, are positive value. Constraints 3 and 4 ensure that
the query is not an all-zero binary vector. Constraint 5 bounds
the noise EI'V; to the interval [ — lo, i + lo]. Algorithm 2
will search for any solution in terms of 7@-,75;-7 Q; satisfying
all the constraints in Equation (14). A solution may not be
found, when the actual noises F; and V; for generating I; and
T; are such that EX'V; is outside the interval [y — lo, ju+ lo].
Otherwise, a solution will be found. The choice of [ serves a
trade-off between finding a solution and confining the solution
to the real answer @);.

Security Risk 2. For data P; and queries (Q; over the binary
domain, Algorithm 2 enables a KPA adversary to search for
the plaintext Q; from the ciphertexts I} and T]f produced by
MRSE and acquired (P;,I!) pairs, 1 < i < m. The risk of
this attack depends on m and is evaluated in Section VI-A.

Algorithm 2 Mixed Integer Linear Program (MIP)
o Adversary model: A KPA adversary
e Input:
1) (P, I/), where P, € O, 1 < i < m, and P; is a d-
dimensional binary vector;
2) TJf for a single d-dimensional binary vector Q;;
3) o, p and [;

e Output: 75, 6 and Q);;
e Procedure:

L 0<7y
2. 0<1
3. Qjkle{0,1},k=1---4d
d
4. QK =1
k=1
5. ZCT<TJI/TT/7t ZPH ikl <up+lo
where i =1---m
14

Remark 2. To our knowledge, Algorithm 2 is the first reported
work to search for sensitive information from the ciphertexts
encrypted by MRSE. While the worst-case complexity of
MIP is O(2%), where d is the vocabulary size, the state-
of-art optimization problem solvers such as Gurobi [2] can
solve the nontrivial mixed integer programming problems with
thousands of variables within a minute. Unlike the attack in
Section III that leads to a complete disclosure, the risk of this
attack depends on the similarity between the found solution
for (); and the actual ();. We will evaluate this risk in Section
VI

[16] and [11] proposed methods to reconstruct the original
value X from the noisy version ¥ = X + R where R is an
additive noise following a known distribution. Their methods
are inadequate to break MRSE that adds both multiplicative
and additive noises to the inner product X = HTQj as in
Equation (12) where r;, E;, V;, t; all are random noises. Even
if ElT V; follows a known distribution, the random values
r; and t; will alter this distribution, thus, invalidate the
assumption on a known distribution.

V. SECURITY RiSK ASPE wiTH CAMOUFLAGING
ENHANCEMENT

The secure multi-keyword fuzzy search over encrypted data,
MKFSE, in [22] proposes to “camouflage” the index I; and
trapdoor T} so that they cannot be derived from the original
P; and Q);, therefore, a KPA adversary would not be able to
take advantage of the acquired pairs (P;, I7) for learning 7 as
in Section III. In the rest of this section, we show that if the
camouflaged I; and T} are binary vectors, as in MKFSE, the
adversary can still learn I; and T); without the help of acquired
pairs (P, I).

A. Multi-keyword fuzzy search over encrypted data

First, we describe MKFSE [22]. To support fuzzy keyword
search, each keyword in a record F; is transformed to a bigram



vector which is inserted into a d-dimensional binary vector
(e.g., a bloom filter) using ! locality-sensitive hash (LSH)
functions [17]. An extra security layer is proposed to break
the linkage between keywords and the bloom filter by using
a pseudo-random function f. The trapdoor T} of a query Q;
is generated in the same way. We represent this index and
trapdoor generation of MKFSE by the functions

I; = f(LSH(P;), K)
Tj = f(LSH(Qj), K)

where K is the secret key for the pseudo-random function
f, and I; and 7T; are both d-dimensional binary vectors.
Intuitively, f can be thought as permuting the positions of
the 0/1 string LSH(P;) or LSH(Q;) with the permutation
determined by the secret key K. MKFSE encrypts I; and
T into Ij and Tj as in ASPE in Section II. The following
equation holds

15)

LT = 17Ty (16)

which allows the server to approximate the relevance score of
P; to @); using I;TT;.

Unlike the attack on ASPE in Section III, I; and T}
produced by Equation (15) cannot be derived from P; and
Q; without knowing the secret key K (thus, the term “cam-
ouflaging”). Therefore, even with the acquired pairs (P;, I}),
without knowing I; the equation [ ;TT; = I'T; does not help
to learn 7} and Algorithm 1 cannot be used to attack MKFSE.
However, since the generation of bloom filters I; and T is
deterministic, Equation (16) enables the adversary to infer the
deterministic [; and T} directly without any acquired pairs
(P;, I}). The following discussion presents this attack.

B. Vulnerability of MKFSE

We show that an adversary can learn the information of
I; and T}, given only the ciphertexts I; and 77 produced by
MKFSE; in other words, MKFSE is vulnerable to the weakest
COA adversary. While learning I; and T} does not directly
lead to the disclosure of plaintext P; or ();, the deterministic
property of LSH and f implies that the similarity between I;
or T} reflects the similarity on plaintext. For example, similar
I, and I, will be generated from similar P, and P, with a
high probability; if the plaintext content of P is learnt by the
adversary, so is the plaintext content of P». In addition, the
deterministic property of I; and T} opens a door to statistical
analysis attack where the frequency distribution I; and T;
could disclose the plaintext content of F; and Q);. We will
evaluate these risks in Section VI. For now, we focus an
efficient algorithm to learn I; and T, given the ciphertexts
I} and T7.

Let us suppose that the adversary observes m encrypted
indexes /; for 1 <4 < m and n encrypted trapdoors 77 for
1 <j < n. Let R € Z™" denote the matrix for inner
products, R[i][j] = I;TT;. From Equation (16), R[i][j] =
ITT;. R[i][j] is a non-negative integer because I; and 7} are
binary vectors. The adversary wants to find two matrices Z €
{0,1}4*™ and T € {0,1}4%" such that each column in Z

is a reconstructed index I} of I; and each column in 7 is a
reconstructed trapdoor T3 of T}, and

R~ITT (17)

If I} are close to I; and T are close to T}, I; and T are
disclosed. Since only the ciphertexts I/ and ij are required,
this attack can be launched by the weakest COA adversary.

Finding the two matrices Z and 7 satisfying Equation (17)
is in fact the factorization of an integer matrix into two binary
matrices. We present this approach in Algorithm 3 based on the
sparse non-negative matrix factorization (sparse-NMF) [12]
with the following objective

1 T o Tz . AN (|2
min_|[R — T TIIF+§||IHF+§;HTJ-|I1 (18)

We choose the sparse non-negative matrix factorization for the
following reason: T} tends to be more sparse than I; due to a
small number of keywords in a query. This means that most
elements of 77" are expected to be close to zero while only few
are significantly non-zero values. This sparseness constraint is
enforced through the Frobenius norm in the second term and
the L1-norm in the third term. For a more detailed explanation,
please refer to [12]. n and A are constants heuristically chosen
to satisfy the sparseness constraint. It is to be noted that the
binary matrix factorization [18] is not suitable for our purpose
because it applies to the matrix R that itself is over the binary
domain whereas our R is over the integer domain.

Algorithm 3 Sparse Non-negative Matrix Factorization
(SNMF)

e Adversary model: A COA adversary;

e Input: R, d, 0, L, where R[i][j] = I;TTJ{ forl1 <i<m
and 1 <5 < mn;

e Output: Z € {0,1}4*™ and T € {0,1}9%" that satisfy
Equation (17) and the sparseness constraint;

e Procedure:

bestError < inf
for 1 <I<Ldo

(Z,T,error) «+ sparse_NMF(R,d)

if error < bestError then

bestI =T, bestT =T, bestError = error

end if
end for
(Z,T) « ConvertToBinaryM atriz(bestZ, bestT,0)

Algorithm 3 presents a search algorithm for finding I; and
T; from the ciphertexts I] and 7] produced by ASPE. R is
the ciphertext inner product matrix defined above, d is the
dimensionality of indexes and trapdoors, € is the threshold
for conversion to binary values, and L is the number of
runs. The sparse_N M F() function refers to the sparse non-
negative matrix factorization method proposed in [12], which
has R and d as the input parameters. sparse_NMF() is
a non-deterministic function and Algorithm 3 returns the
best result among L calls of sparse_NMF(). The function



ConvertToBinaryMatriz() converts each component in the
input matrixes to a binary value: converting a value below 6
to 0 and converting all other values to 1. We choose 6§ = 0.5.

Security Risk 3. For indexes I; and trapdoors T over the
binary domain, Algorithm 3 enables a COA adversary to
search for I, and T; from the ciphertexts I] and T] produced
by ASPE. The risk of this attack is evaluated in Section VI-B.

Remark 3. Algorithm 3 is the strongest attack on ASPE
because it applies to the weakest COA adversary that has
access only to the ciphertexts. Each iteration in the non-
negative matrix factorization has the complexity of O(mnd)
[10], thus, a polynomial time adversary can easily launch the
attack of Algorithm 3. This attack highlights the vulnerability
of MKFSE whose camouflaging mechanism has no effect on a
COA adversary who does not need any knowledge on plaintext
for the attack.

Attack Adversary .
Algorithm Target Scheme Model Data Domain
LEP ASPE KPA Real
MRSE
MIP KPA Bi
(ASPE with random noises) nary
SNMF MKFSE COA Binary

(ASPE with camouflaging)

TABLE I: Summary of attack algorithms

VI. EMPIRICAL ANALYSIS

Table IV summarizes the three attack algorithms, LEP,
MIP, and SNMF, presented in the previous three sections.
LEP always finds exactly the plaintext of all records and
queries assuming that the required condition is satisfied. The
effectiveness of MIP and SNMF must be evaluated empirically,
which is the goal of this section. We implemented them in
C++ and Matlab with the Gurobi optimization problem solver
[2] and the non-negative matrix factorization toolbox [14]. All
experiments were conducted on a machine with 3.07 GHz Intel
Xeon W550 CPU, 12G memory, and running Windows 7.

Metrics. MIP and SNMF aim to reconstruct the plaintext
indexes I; and trapdoors 7} represented by binary vectors. We
study the accuracy by precision and recall of reconstructing
the 1’s in a binary vector. Let v and v* be the actual and
reconstructed binary vectors respectively, and v [ v* represent
the intersection of v and v*. Let |v| and |v*| and |v[) V™
denote the number of 1’s in v, v* and v (] v*, respectively.

recision of v* is V"l ie the fraction of 1’s in v*
The of v* is | o]

which are actually 1’s in v. The recall of v* is |VQ‘V*| ,ie., the
fraction of 1’s in v that are found as 1’s. If an attack algorithm
reconstructs a binary vector with a high precision and recall
within a reasonable time, the attack shows a high risk because
the adversary can learn v through the reconstructed v*.
Parameters. We study three parameters of an attack: the
dimensionality d of a record or query binary vector v; the

density of 1’s in v defined as p = %l; the number m of

acquired (P;, I]) pairs for the MIP attack, or the number m
of ciphertexts I/ and the number n of ciphertexts T for the
SNMF attack. For simplicity, we assume m = n in the SNMF
attack.

Data sets. Both synthetic and real life data set were used
for our evaluation. m in our experiments refers to the number
of the records acquired by the adversary for an attack, which is
different from the full data cardinality | DB|. In fact, a smaller
m used in the attack algorithm implies a more vulnerability
of the encryption scheme. The IBM synthetic data sets are
generated by the IBM Quest Data Generator [3] with the input
of the total number of items d, the (average) density p of
items in a transaction, and the number of transactions m. We
converted each transaction into a binary vector of length d.
The real life data set is the Enron email data set [1] with
39,861 emails (i.e., |[DB| = 39,861). We represented each
email document by a length d bloom filter [4], as in [9] [22],
by hashing each keyword in the email using h hash functions
to set several positions in the bloom filter to 1 and all other
positions to 0. More details of data and query generation will
be discussed later.

We evaluate Security Risk 2 and Security Risk 3 through
the following claims.

> Claim 1 (Security Risk 2): If the noise injected by MRSE
is such that the noisy query result remains useful, MIP is able
to reconstruct the binary query vector 7; with a high accuracy,
given the ciphertext 7} and m pairs {(P;,I]) | Pi € O}
acquired by a KPA adversary, for a sufficiently large m.

> Claim 2 (Security Risk 3): SNMF is able to reconstruct
the binary vectors I; and T); with a high accuracy, given the
ciphertexts I/ and T' ]f, 1 <i<mand1 < j <n,produced by
MKFSE, for sufficiently large m and n. Having a large number
of ciphertexts I} and T]’ does not impose a real constraint since
ciphertexts are always available to the adversary.

A. Evaluation of Claim 1

MIP uses m acquired pairs (P;, I]) for P; € O to recon-
struct the plaintext of a given query (); by constraining the
noise injected within the interval [ — lo, u + lo] (Equation
(14)). We set | = 3 to ensure that the probability of the noise
falling into this interval is close to 99%. The mean u does not
affect this probability. As suggested in [5], we set ¢ = 0.5
and o = 1.

1) MIP on synthetic data sets: We consider d €
{100, 500, 1000}, p € {5%,20%,35%}, and m = d. For
each (d, p) setting, we use the IBM data generator to produce
m = d records P; as d-dimensional binary vectors, and
O, p,m denotes this set of P;. For each d setting, we randomly
generated 100 queries @); using the same data generator with
the density being %, which was suggested in [5], and let
Queryq denote this set of ;. For each Oy, for o = 0.5
and 0 = 1, we run MIP with the input {(P;,I}) | P; € Oq,pm }
to find the plaintext of (); € Queryq. The averaged precision
and recall over @); are given in Table II.



d=m =100 d =m = 500 d =m = 1000

p=5% p=20% p=35% p=5% p=20% p=35% p=5% p=20% p=35%

o=0.5
P@query 0.3164 0.8418 0.8923 0.8266 0.9170 0.9014 0.9119 0.9649 0.9080
R@query 0.2208 0.7922 0.9140 0.8818 0.9922 0.9796 0.8687 0.9903 0.9853
Time (Seconds) 0.0079 0.0126 0.1439 0.0457 0.2389 7.7684 10.198 3.781 2.485

oc=1

P@query 0.0942 0.5045 0.5206 0.2198 0.7058 0.8107 0.2957 0.7283 0.8540
R@query 0.0771 0.2829 0.3827 0.1374 0.6324 0.7607 0.2295 0.6734 0.8757
Time (Seconds) 0.0059 0.0091 0.0110 0.0401 2.856 3.4241 0.144 1.701 3.854

TABLE II: MIP’s precision (P), recall (R), and runtime for different settings on synthetic data sets

Under each d setting, there are 6 (p, o) settings to run the
attack for each query in Queryy, so there are 600 MIP attacks.
With d = 100, 554 attacks find a solution. This number is 552
for d = 500, and 416 for d = 1000. One reason for not finding
a solution is that the injected noise falls outside the interval
[ —lo, p+1o]. Another reason is that the program terminates
after some pre-set limit of time is reached. The precision and
recall were collected when a solution was found. The chance
of finding a solution is high (i.e., 554, 552, 416 out of 600)
and when a solution is found, it took no more than 11 seconds.

With ¢ = 0.5, the reconstruction has precision and recall
higher than 0.8 in most cases, and sometime above 0.9. With
o = 1, precision and recall are much lower. According to [5],
this case is considered as “excessive noises”’, meaning that
the similarity rank is distorted so badly that the noisy top-k
answers returned are no longer a good approximation of true
answers. For the noisy query result to be useful, o = 0.5 is
the more realistic and representative case.

A lower density p (i.e., p = 5%) weakens the power of
MIP. In this case, fewer keywords occur in the data, the
true inner product 7 T; is smaller and the relative noise
is larger. This case is similar to the “excessive noises” case
where the returned noisy top-k answers are no longer a
good approximation of the true answers. For data and queries
represented as bloom filters, which compresses a sparse vector,
we believe that a higher density of p = 20% or p = 30% is
the more common case. In this case, precision and recall are
much higher, especially with o = 0.5.

2) MIP on real life data sets: For the Enron data
set, we generated five sets O,, = {P;} with m ¢€
{125, 250, 500, 1000, 2000} to simulate the records P; whose
pairs (P;, I!) were acquired by a KPA adversary. O,,, contains
m emails P; randomly selected from those in the Enron data
set that have a density p in the range [5%,35%]. We also
generated 100 queries (); with the length d = 500 by the IBM
data generator, exactly as in Section VI-Al, and let Query
denote this set of queries. Both P; and @; are represented in
a bloom filter of length d = 500. For each O,,, we run MIP
with the input {(P;,I}) | P; € O,,} to find the plaintext of
each ); in Query and we report the averaged precision and
recall of all Q; in Query where a solution was found.

As shown in Figure 2, higher precision and recall are

—A—  Precision —A—  Precision Recall

100 N 100
& 80 & 80 //‘/
[0} (0]
$ 60 © 60
9 404" S 40
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20 204

01 01
125 250 500 1000 2000 125 250 500

Number of observed pairs (m)

1000 2000
Number of observed pairs (m)

Fig. 2: MIP’s precision and recall vs the number of observed
pairs m on Enron data sets (d = 500, p € [5%, 35%)])

observed if the adversary observes more plaintext-ciphertext
pairs. For example, with m > 500, the precision and recall are
close to or higher than 0.8. For a small m € {125, 250,500},
the attacks have a high chance of finding a solution, ranging
from 74% to 100%, within some pre-set limit of time. For
a large m € {1000,2000}, the large number of constraints
increases the runtime and the chance of finding a solution
within the pre-set limit reduces. All runs of MIP terminated
within 10 seconds when a solution was found.

In summary, this study supports Claim I: despite injected
random noises as in MRSE, the accuracy of reconstructing
the plaintext of a query can be increased by acquiring more
plaintext-ciphertext pairs under the KPA adversary model (i.e.,
a larger m). While injecting more noises can deter this attack,
it also distorts the relative rank of answers, making the noisy
top-k answers less useful.

B. Evaluation of Claim 2

SNMF applies the sparse non-negative matrix factorization
to the inner product result matrix R, where R[i][j] = I;7T},
to reconstruct the indexes I; and trapdoors T; (1 <4 < m and
1 < j < n) represented by d-dimensional binary vectors. In
this experiment, we first study the accuracy of this attack with
respect to different d, m, n, and the density p on synthetic
data sets, and then we show the disclosures on the real Enron
data set.

1) SNMF on synthetic data sets: To produce the input R,
we generated m binary vectors I; and n binary vectors T}
in the same way as in Section VI-Al, but set m = n to 2d



d =100, m = 200

d = 500, m = 1000 d = 1000, m = 2000

p=5% p=20% p=35% p=5% p=20% p=35% p=5% p=20% p=35%
P@data - 0.3407 0.4250 0.1718 0.9694 0.9957 0.0746 0.9246 0.9823
R@data 0.0000 0.6471 0.4915 0.1585 0.9593 0.9512 0.0661 0.9016 0.9013
P@query - 0.6357 0.5082 0.1636 0.9621 0.9931 0.0453 0.8995 0.9452
R@query 0.0000 0.2069 0.1279 0.1201 0.9608 0.9774 0.0387 0.9035 0.9180
Time (Seconds) 261 264 238 28732 28649 29320 200890 188920 191749

TABLE III: SNMF’s precision (P), recall (R) and runtime for different settings on synthetic data sets
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Fig. 3: SNMF’s precision and recall vs the number of cipher-
texts m (n = m) on Enron data sets (d = 500, p € [5%, 35%))

(because factorizing a m x n matrix into two m X d and d X n
matrices generally requires m and n to be greater than d).
We encrypted I; into I, T; into T}, and computed R[i][j] =
I;TT;, 1 <i<mandl < j < n. Table III presents the
precision and recall of [ and 77} reconstructed from R.

First of all, compared to MIP, a SNMF attack took much
longer time to run. However, SNMF tends to reconstruct the
plaintext information with higher precision and recall, for
example, more than 90% when d > 500 with the density
p = 20% and p = 35%. In these cases, the adversary recovers
most of I; and T; that MKFSE intends to hide. The precision
and recall deteriorate significantly for the low density p = 5%;
in this case most positions in a sparse data vector are 0’s, so
many solutions are feasible.

2) SNMF on real life data sets: We used the 5 sets
0O,, in Section VI-A2 where d = 500 and m €
{125, 250, 500, 1000, 2000}. For each O,,,, we generated a set
Query, of n = m queries (); as binary vectors using the IBM
data generator with the density being %. Figure 3 showed the
average precision and recall of reconstructed I; and T7'. The
result is pretty consistent with those obtained on the synthetic
data sets, that is, more ciphertexts, i.e., larger m and n, would
help reconstruct the original indexes and trapdoors. Having
more ciphertexts is not a real constraint because the adversary
always has access to the ciphertext.

One may argue that the accurate reconstruction of I and
T'7 does not pose a risk because /; and T; are camouflaged
using LSH and pseudo-random functions f (Equation 15).
The risk comes from the fact that the generation of I; and T}
is deterministic (because LS H and f are deterministic), which
opens a door to learning the unknown content of other records

from the acquired content of some records, and to statistical
analysis attacks. Let us explain these points in details.

On average, the relative error of approximating the simi-
larity between two documents P; (measured by Jaccard Index
[21]) by the similarity of their bloom filters I; is 2.79% 10~*%.
Such a small relative error implies that if the reconstructed
I has superior precision and recall, the adversary has a good
chance to learn the plaintext P;. For example, the reconstructed
I35 and I3g, are identical and the precision and recall of
the reconstruction are 97.26% and 93.02%, respectively. Such
high precision and recall implies that I35 and Isgq are highly
similar. Then the small approximation error of bloom filters
implies that Psgs and Psgo are highly similar. The original
Ps65 contains the keyword “application approved”. If the
adversary acquires this information, he will further learn that
Psg also contains “application approved” based on the high
similarity of I3s; and I3g,. In this case, the adversary is
right because Psg9 does contain the keyword ‘“application
approved”. In the real attacking scenario, the adversary does
not know the exact precision and recall of reconstruction,
but he can always boost the accuracy of reconstruction by
using more ciphertexts I; and T7, i.e., larger m and n. This
effectiveness is confirmed by the findings in Table IIT and
Figure 3.

To explain the potential risk to statistical analysis attack,
Table IV shows the frequency distribution of the five most fre-
quent documents P; in the set Oz, as well as the frequency
distribution of their plaintext indexes I; and reconstructed
indexes I;. For example, P347 repeats 27 times in Ozgqp, SO
do their bloom filter I347 and the reconstructed I3,,. The table
shows that the frequency distribution of these five documents
is completely preserved on I; and I7. This is because a
bloom filter of the length 500 has a strong discriminative
power. Thanks to this preservation, the adversary could infer
the frequency information of P; through that of I, and and
use it to further infer the plaintext of P; through background
knowledge, such as “application approved” occurs 10% of the
time. A similar attack applies to a query @;.

In summary, our study supports Claim 2: with enough data
and not too low density, SNMF is able to recover the bloom
filter content from the ciphertexts alone with a high accuracy.
Unlike MIP, “enough data” here refers to the ciphertexts I/
and T]’ because only the ciphertexts are required by SNMF,
which is always available to the adversary. Also unlike MIP



Psq7  Piozg  Psrs  Pioss  Pra1
Frequency 27 11 9 8 7

Isaz  Ti9z9  Is73  Ii93s  Ir31
Frequency 27 11 9 8 7

I3z Toso 1873 Ilozs  I7a
Frequency 27 11 9 8 7

TABLE IV: The frequency distribution of five most frequent
documents P; in Osggo. This distribution is completely pre-
served on the indexes I; and the reconstructed indexes I

that may not find a solution due to the over-constrained
interval for noises, the SNMF attack always returns a solution,
whose quality can be improved using the unlimited ciphertexts.
Although the SNMF attack took a longer runtime, this does
not stop a determined adversary, not to mention that a more
powerful machine can reduce the runtime. The risk of this
attack is that the deterministic bloom filter generation opens
a door to learning the unknown content of other records from
the acquired content of some records, and to statistical analysis
attacks. Finally, since SNMF does not need anything other than
ciphertexts, it is a more general attack than MIP and LEP.

VII. CONCLUSION

A growing number of recent works were based on ASPE as
a searchable encryption technique for performing a variety of
queries and tasks in the cloud computing setting. In this work,
we showed that ASPE is not resilient to a KPA adversary,
by giving an efficient algorithm to reconstruct exactly the
plaintext of the entire database and processed queries once the
adversary acquires a small number of plaintext-ciphertext pairs
under the KPA adversary model (Section III). This finding
advances the state-of-the-art because ASPE was previously
shown to be resilient to a KPA adversary [25] and we pointed
out that the previous attack on ASPE demonstrated in [26] is
not effective (Section III). We further demonstrated security
risks for two enhanced schemes of ASPE, i.e., MRSE [5]
(Section IV) and MKFSE [22] (Section V). The demonstrated
security risk on MKFSE is particularly of concern because
it is based on ciphertext alone, which holds for all adversary
models. While a natural next step is to fix all identified security
risks, doing so requires more work and is beyond the scope
of this paper.
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