Interestingness-Based Interval Merger for Numeric Association Rules

Ke Wang and Soon Hock William Tay and Bing Liu
Department of Information Systems and Computer Science
National University of Singapore
{wangk taysoonl,liub}@iscs.nus.edu.sg

Abstract

We present an algorithm for mining association rules
from relational tables containing numeric and categori-
cal attributes. The approach is to merge adjacent inter-
vals of numeric values, in a bottom-up manner, on the
basis of maximizing the interestingness of a set of asso-
ciation rules. A modification of the B-tree is adopted
for performing this task efficiently. The algorithm takes
O(kN) 1/O time, where k is the number of attributes
and N is the number of rows in the table. We evaluate
the effectiveness of producing good intervals.

Introduction

An association rule (Agrawal, Imielinski, and Swami
1993a) Y = X (e.g. {tea,coffee} — {sugar}) repre-
sents the knowledge that customers buying all items in
Y also buy all items in X. The applicability of the rule
is measured by the proportion of transactions buying all
items in Y U X, called the support, and the association
level is measured by the proportion of transactions buy-
ing all items in Y U X out of those buying all items in
Y, called the confidence. The user will specify the min-
imum support and minimum confidence. Association
rules have applications in areas such as analyzing pur-
chase patterns, marketing promotion, document clus-
tering, catalog design, predicting telecommunications
order failures and medical test results.

In this paper we consider association rules in a re-
lational table. A transaction is a row in the table
and an item corresponds to an attribute/value pair.
The antecedent Y and consequent X in association rule
Y — X are conjunctions of attribute/value pairs (e.g.
Education = high A Bankrupt = no — Loan = yes).
Very often, an attribute i1s numeric instead of categori-
cal, such as Age and Salary. For a numeric attribute, it
is certain intervals of the attribute, not individual val-
ues, that have strong associations with other attributes.
For example, the ownership of driving liences is strongly
associated with the age 18 and above (the driving age in
Singapore). Without priori knowledge, however, deter-
mining the “right” intervals can be a tricky and difficult

Copyright ©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

task due to the following “catch-22” situation, as called

in (Srikant and Agrawal 1996):

e Small support: if an interval is too small, a rule con-
taining this interval may not have the minimum sup-
port. As a result, either very few rules are generated
or rules are nearly as specific as the data itself.

e Small confidence: if an interval is too large, a rule
containing this interval in the antecedent may not
have the minimum confidence. As a result, many
rules with little information are generated.

The interval finding task 1s further challenged by sev-
eral other issues. First, numeric attributes may inter-
act with other attributes, in which case it does not
work to search for intervals one attribute at a time.
For example, the normal weight for taller persons is
larger than that for shorter persons, thus, the defi-
nition of being normal depends on both height and
weight. Second, most algorithms are exponential in
the dimensionality of data, due to the explosion of
the number of hyper-rectangles. It is too expensive
to extend such algorithms to high dimensions that are
very common in real-world applications. Third, the
antecedent and consequent of an association rule can
be any combination of items, thus, often sparsely dis-
tributed in an interval. As a result, statistical methods,
such as the x? test (Brin, Matwani, Silverstein 1997;
Kerber 1992), that often require a dense distribution
of data are inapplicable. In this paper, we will address
these issues.

A motivating example

Every time two adjacent intervals are merged into one
interval, some information may be lost. The idea of our
approach is to merge “good” intervals so that the infor-
mation loss is justified by the improved interestingness
of association rules.

Example 1 Consider the simplified data in Table 1.
Age is a numeric attribute. Initially, every age forms
an interval of its own and each row maps to an associ-
ation rule. See Table 2. If we merge ages [40, 40] and
[45,45] into interval [40,45], there is an information loss
on how personnel from this age group are associated

[35,35] A FastTrack = Yes — Married = No

[40,40] A FastTrack = No — Married = No
Age € [45,45] A FastTrack = No — Married = Yes

[50,50] A FastTrack = No — Married = Yes.

Table 2: Initial rules

Age | FastTrack | ... | Married
35 Yes . No
40 No . No
45 No . Yes
50 No . Yes

Table 1: A simplified dataset

with the marital status. This is reflected by the de-
crease in confidence of rule 2) and rule 3) from 100%
down to 50% in the new rules

Age € [40,45| A FastTrack = No — Married = No
Age € [40,45] A FastTrack = No — Married = Yes
On the other hand, if we merge ages [45,45] and [50, 50]

into interval [45,50], no information is lost because all
personnel in this interval are married. In fact, the use of
interval [45,50] improves the interestingness by having
a larger support while maintaining the same confidence
in the new rule

Age € [45,50] A FastTrack = No — Married = Yes.

If we merge ages [35,35] and [40, 40] instead, there will
be no change in information and interestingness be-
cause there is no change on the confidence and support.
Therefore, if we are to minimize the loss of information,
the second and third mergings are better than the first
merging. O

The above information-based merging criterion forms
the basis of the work in this paper. We will formally
define this criterion by some interestingness measures
of association rules in Section 3.

Our approach

Assume that there 1s a way to evaluate a given interval
partitioning, the brute-force method for finding the op-
timal interval partitioning is in O(NP1 =1 .. .« NP&—1),
where N is the number of rows in the database and p;
is the number of intervals for the ith numeric attribute.
This is prohibitively expensive for large databases. Our
approach is greedily merging two adjacent intervals at
a time, initially one value per interval, by locally op-
timizing some interestingness-based merging criterion.
Several questions need to be answered.

First, what association rules will be used for evaluat-
ing the merging criterion. Using all potential associa-
tion rules will diverse the optimization goal and is too
expensive as well. We adopt the template approach in
(Rastogi and Shim 1995) where only the instantiations

of a specified template are considered. This also ad-
dresses the impact of multiple attributes through con-
sidering association rules rather than single attributes.
Second, what is the stopping criterion of the merging
process. To avoid stopping at a local optimal, we pro-
pose that the merging process stop when the specified
number of intervals for each numeric attribute is ob-
tained. The number of intervals for a numeric attribute
can be either specified by the user or estimated such as
in (Srikant and Agrawal 1996). Third, how to find the
best merging at each step without scanning all intervals.
We adopt a modification of the B-tree for this purpose.
Using the modified B-tree, the merging process takes
time O(k x N) 1/O time, where k is the number of at-
tributes and N is the number of rows in the database.
The paper is organized as follows. Section 2 gives
an overview of the approach. Section 3 defines merging
criterion. Section 4 discusses the implementation of the
interval merging algorithm and presents a cost analysis.
Section b presents the experimental result. Section 6
reviews related works. Section 7 concludes the paper.

The overview

In our framework, the user specifies a template of the
form C'1 — C2, where C'1 and C2 are conjunctions of
uninstantiated and instantiated attributes, such that (i)
each attribute appears at most once in the template,
(i1) C2 contains only categorical attributes, and (iii)
all numeric attributes are uninstantiated. Each con-
junct has the form A € [[,u] (for numeric attributes)
or A = v (for categorical attributes). For an unin-
stantiated attribute, [, u, v are variables; for an instan-
tiated attribute, [, u,v are values. The template can
be instantiated by replacing all variables with values.
Each numeric association rule is an instantiation of the
template. We consider only partitionings of intervals
[/, u] that are not overlapping. The problem of mining
numeric association rules is finding a “good” interval
partitioning of numeric attributes with respect to some
evaluation criterion. This problem i1s decomposed into
four steps:

Step 1. Specify the template C'1 — C2 | the mini-
mum support, and the minimum confidence by the user.
All attributes not mentioned in the template and all
rows not matching the instantiated attributes in the
template can be removed from the database.

Step 2. Find all instantiations of the categorical at-
tributes in the template C'1 — C?2 that satisfy the min-
imum support. These instantiations are used to initial-
ize the association rules used by the interval merging

algorithm. The idea 1s that if a rule has the minimum
support, so does the set of categorical values in the
rule. Since the categorical attributes in the template
are fixed, we can find all these instantiations in one
scan of the database.

Step 3. Generate intervals for numeric attributes in
the template. This step greedily merges adjacent inter-
vals by evaluating some merging criterion on a set of
association rules. See Section 3.

Step 4. Return all numeric association rules that use
the intervals generated in Step 3 and have the mini-
mum support and minimum confidence. This is done
by scanning the final set of association rules maintained
in Step 3.

For the rest of the paper, we focus on the major step,
Step 3.

The merging criterion

We define the merging criterion based on the change of
interestingness of association rules.

The interestingness measures

For association rule ¥ — X, let p(X), p(Y), p(XY)
(XY means the conjunction of X and V') denote the
fraction of rows satisfying condition X, Y, XY | respec-
tively, and p(X|Y) = p(XY)/p(Y). Note that p(XY)
and p(X|Y) are the support and confidence of ¥ — X.
We will consider two interestingness measures, which
can be easily substituted by other interestingness mea-
sures without changing the framework. The first is the
well known J-measure used in (Smyth and Goodman

1992) defined as

JXY) = p(¥)p(X]Y)log, 2]
+(1 = p(X[Y))logs T2,

The first term p(Y) measures the generality of the
rule. The term inside the square bracket measures the
“discrimination power” of Y on X, i.e., how dissimilar
the priori p(X) and the posteriori p(X|Y) are about
X. The dissimilarity is “two-sided” in that p(X]|Y)
could be either larger or smaller than p(X), due to

10()(|Y)log2ﬂp)((7|§)/l and (1 — p(X|Y))log2%%l, re-
spectively. A useful rule implies a high degree of dissim-
ilarity. In our framework of association rules ¥ — X,
however, the larger the confidence p(X|Y) is, the more
interesting the rule is. Therefore, for association rules

we will use the “one-sided” J-measure:

p(X]Y)
p(X)

The second interestingness measure is

J2(X,Y) = p(Y)(p(X]Y) = minicon),

J1(X,Y) = p(Y)p(X|Y)log2

where miniconf is the minimum confidence in the as-
sociation rule problem. In words, J2(X,Y) is the “sur-
plus” of the association in the rule Y — X relative to

the association level specified by the minimum confi-
dence. For both J; and J, the larger the value is, the
more interesting the rule is. Note that both J; and
Ja can be negative, which indicates a negative associa-
tion in the case of Ji, or an association level below the
minimum confidence in the case of Js.

The merging criterion

Naturally, we can define the usefulness of merging two
adjacent intervals as the change of interestingness for
each rule in the two intervals. However, our experi-
ments show that this does not give a good result. This
is because if two original rules become the same rule
after the merging, the interestingness of the result rule
will be counted twice. To alleviate this problem, we
measure the change of interestingness for each pair of
rules that are merged into the same rule. Let us for-
malize this idea.

Consider two adjacent intervals I1 and I5. Let Iy U,
denote the merged interval of Iy and Iz. Let rules(l;)
be a set of association rules involving I;. rules(I;) will
be defined in Section 4. Consider a pair k of rules A €
I ANYy = X and A € I3 AYy — Xj, where Y}, is the
rest of the antecedant that does not involve attribute A.
After the merging, the new ruleis A € HUILAY, — X,
in place of the pair k.

We define the loss of the pair k& by merging I; and I
as:

LOSSk([l,[z) = Ulji(Xk,AEIl /\Yk)
+02Ji(Xk,A el A Yk)
—Ji(Xk,A enhul, /\Yk)

where J; 1s one of the interestingness measures defined
above. o; = 1if A € ; AY, — Xj is in rules(l;), and
o; = 0, otherwise. In words, Lossy (11, I2) measures the
interestingness loss of the rules in pair & caused by the
merging. From the definition of J;, we can see that, as
expected, Loss, = 0 if the merging does not reduce the
confidence of the involved rules. The loss of merging Iy
and Is 1s defined as

Loss(I1, I2) = Xy Lossk (11, I2)

for all such pairs k of rules in rules(I;).

The merging criterion: merge the two adjacent
intervals I3 and I such that Loss(/y, [2) is minimum
across all numeric attributes in the template.

Example 2

Consider Example 1. Assume miniconf = 80%. For
the merging of I; = [45,45] and Iy = [50, 50]: rules(I1)
contains rule 3) and rules(l2) contains rule 4). Rule 3)
and rule 4) form a pair of rules that only differ in the
interval. The rule after the merging is rules(l; U I3):

Age € [45,50] A FastTrack = No — Married = Yes.

p(Y) of rules 3) and 4) increases from 25% to 50%, and
p(X|Y) remains 100%. Therefore,
Ji: Loss(I1,Is) =2+ 0.25% 1 % log2(1/0.5)
—0.5%1%loga(1/0.5) =0
Ja: Loss(Iy, I2) = 2% 0.25(1 — 0.8)
—0.5(1— 0.8) = 0.

For the merging of Iy = [40,40] and I, = [45,45]:
rules(I1) contains rule 2) and rules(l3) contains rule
3). p(Y) of rules 2) and 3) increases from 25% to 50%,
and p(X|Y) decreases from 100% to 50%. Therefore,

Ji: Loss(I, Is) = 2((0.25 % 1 x log2(1/0.5)
—0.5%0.5%10g2(0.5/0.5)) = 0.5

Jo: Loss(Iy, Is) = 2(0.25(1 — 0.8)
—0.5(0.5—0.8)) = 0.4.

For the merging of Iy = [35,35] and I, = [40,40]:
p(Y) and p(X|Y) remain unchanged, so Loss(I1,I) =
0. Therefore, the merging criterion will equally favor
the merging of [45,45] and [50,50], and the merging of
[35,35] and [40,40]. O

The interval merging algorithm

The interval merging algorithm consists of an initial-
ization phase and a bottom-up merging phase. Let
A1, ..., A, be the numeric attributes and By, ..., By
be the categorical attributes in the template C'1 — C?2.
Let rows(I) be the set of rows that use interval [.

Initialization phase

Initially, each interval has the form [v, v], where v is a
numeric value in the database. For each such interval
I, we initialize rules(I) to the set of instantiations of
template C'l1 — C2 of the form By = by,..., B = b;
and Ay € I1,..., Ay € I, where

e By = by,...,Br = b; is an instantiation found in
Step 2 (Section 2) and is true for some row in rows([),

e Ay € Iy,..., A, € I, is true for some row in
rows(I), where I; are initial intervals.

Note that rules(]) are not necessarily disjoint for in-
tervals I of different attributes. Let Rules denote the
union of rules(I) for all intervals 7. Each rule Y — X in
Rules, together with its statistics p(X),p(Y), p(XY),
will be stored only once. Thus, in implementation
rules(I) is a set of pointers to the rules involved. With-
out confusion, we continue to talk rules(]) as a set of
rules.

Bottom-up merging phase

At each step, we merge the best pair of adjacent inter-
vals chosen from all mergeable attributes according to
the merging criterion defined in Section 3. If the num-
ber of intervals of the considered attribute has reached
the number specified by the user, the attribute becomes
non-mergeable. The merging process is repeated until
all numeric attributes become non-mergeable. See Fig-
ure 1.

As two intervals I; and [, are merged into Iy U Is,
the statistics of rules in rules(I; UIy) are obtained from
those of rules in rules(ly) and rules(I2) as follows. For
eachrule A€ L UL AY — X in rules(I; U I3),

p(AEIlLJIz/\Y) :p(AEIl /\Y)
+p(A€ L AY)
+p(A e L AYX).

The statistics on the right side of these equalities are
stored with rules in rules(l;) and rules(lz). At the end
of the merging phase, rules in Rules satisfying the min-
imum support and minimum confidence are returned as
the solution.

Finding the best merging

In the merging phase, line (1) for finding the best pair
of intervals is performed for each merging. The imple-
mentation of this operation will significantly affect the
efficiency of the algorithm. Simply sorting all poten-
tial mergings and processing them in the sorted order
does not work because an early merging will affect the
ranking of later mergings. Scanning all pairs of adja-
cent intervals at each merging leads to the quadratic
complexity because there are as many intervals as the
number of numeric values. For a large database, a rea-
sonable requirement is that finding the best merging
takes a time independent of the number of intervals.
We adopt a modification of the B-tree (Elmasri and
Navathe 1994), called the M-tree, to meet this require-
ment.

The M-tree. The idea is to index all potential merg-
ings by the Loss value so that it takes only a few B-tree
like operations to find the best merging and maintain
the index. Each entry indexed in the M-tree, denoted
by (I, I2), represents a potential merging of two ad-
jacent intervals Iy and I5. The search key value con-
sists of the Loss value of the merging. Like the B-tree,
all leaf entries are chained in the ascending order of
Loss values. This is called the goodness chain. The
best merging therefore is represented by the left-most
leaf entry in the goodness chain. Unlike the B-tree, all
leaf entries for the same numeric attribute are chained
by the adjacency of intervals. These chains are called
adjacency chains. After performing the best merging
(11, I), by following the adjacency chain we can find
the affected entries of the form (lp, I1) and (J2, I3), in
which intervals I; and I must be replaced with the
new interval Iy U I5. This is done by deleting the af-
fected entries and inserting entries for (o, I; U I5) and
(ILUI5, I3) using new Loss values. To compute the new
Loss values, each leaf entry (I1, [2) contains the list of
pointers to the rules in rules(ly).

Example 3 Consider template
Age € [l1,uw1] A Salary € [la,us] = FastTrack = v

for a mining task. Figure 2 shows three leaf nodes
of the initial M-tree for numeric attributes Age and
Salary (non-leaf nodes are omitted for simplicity). For
clarity, we have displayed only entries for Age; en-
tries for Salary are left blank. Each node contains
five entries, though typically more. Each entry con-
tains only the first interval to be merged. For exam-
ple, the first entry in node 1 represents the merging
(I, = [30,30], Iz = [40,40]) of Age, where the second
interval [40, 40] can be found by following the adjacency
chain in that entry. All entries (including those for
Salary) are sorted according to Loss values.

Bottom-up merging phase:
while there are mergeable attributes do

select the best pair of adjacent intervals /; and I from all mergeable attributes;

merge [; and 75 into one interval Iy U I:

replace I; and I with interval I3 U I3 in all rules in rules(ly) and rules(lz);

update the statistics of rules in rules(l; U Iz);

if the number of intervals in the considered attribute reaches the threshold

(1)

(2)

(3) .

(4) create rules(l; U I3) as the union of rules(l;) and rules(I2);
(5)

(6)

then mark the attribute non-mergeable;

Figure 1: Bottom-up merging phase

Goodness chain

|

|

|

Age | Age \l'
1Ll
130,30] | [25,25]

[40,40] | [23,23] [24.24] | [22,22) [50,50]

Age Age Age Age Age

/ q
Firstinterval in a merging /
/
/
/

Adjacency chain for Age

N

Figure 2: The leaf level of the M-tree

Suppose that the best merging (I; = [30,30], 1> =
[40,40]) represented by the first entry is performed. We
need to delete this entry and update entries affected
by the merging. By following the adjacency chain in
the first entry, we can find the affected entries (Iy =
[25,25], I; = [30,30]) and (Iz = [40,40], Is = [45, 45]).
We delete these entries and insert two new entries; i.e.,
(Io, I1UI3) and ([;Uls, I3). The insertions are guided by
the Loss values of these new entries. Therefore, finding
the best merging and maintaining the index takes only
a few B-tree operations. O

Initialization of the M-tree. This is similar to
the loading of the B-tree. The main difference is creat-
ing adjacency chains for numeric attributes. We fo-
cus on this part only. First, for each numeric at-
tribute A, sort all values vy,...,v; and create an en-
try ([vi, vi], [vig1, vs41]) for merging every two adjacent
values v;, v;41. This entry is assigned identifier 7, which
indicates the position of the interval in the adjacency
chain. Second, sort all entries of all numeric attributes
in the ascending order of Loss values and store them
in a number of leaf nodes (determined by the degree of
the B-tree). Third, for each entry of attribute A with
identifier 7, store its leaf-node address into A[é]. There-
fore, array A[] contains the addresses of entries in the
adjacency of intervals of attribute A. Fourth, for each
entry of attribute A with identifier ¢, the two pointers
on the adjacency chain are found in A[i—1] and A[i+1].

The cost of the interval merging algorithm consists
of the cost of loading the M-tree and the cost of the
bottom-up merging phase. Assume that there are N
rows and k attributes in the database. The number of
entries or mergings is bounded by the maximum num-
ber of intervals, which is bounded by kN . The loading
of the M-tree is dominated by the work of sorting all
entries, thus, has the cost O(kNlog(kN)). Each merg-
ing needs a fixed number of insertions and deletions on
the M-tree. The height of the M-tree is usually no more
than 3 or 4 (like the B-tree), so these operations take
a constant time. Each merging also needs to access the
rules involving the intervals to be merged. Thus, the
total cost is O(kNlog(kN)+krN), where r is the aver-
age number of rules involving an interval. For most
databases in real applications, the (external) sorting
takes no more than 3 I/O scans of the database (i.e.,
log(kN) < 3). Therefore, assuming that the M-tree is
stored on the disk and rules are stored in the memory,

the /O cost is dominated by O(kN).

Experiments

To test if the algorithm can produce right inter-
vals, we used synthetic data generated by Functions
1,2,3 described in (Agrawal, Imielinski, and Swami
1993b). There are six numeric attributes: Salary,
Commission, Age, Hvalue, Hyears, Loan, and three
categorical attributes: Elevel, Car, Zip_code. We set
the number of rows at 10,000. For each function, the

number of intervals appearing in the function (for a nu-
meric attribute) is used as the number of intervals in
our algorithm, and the minimum support and minimum
confidence are chosen as the smallest for all the rules
in the function. This 1s merely for the experimental
purpose; in the real case, these thresholds are specified
by the user. We list out the intervals generated by our
interval merging algorithm.

Function 1. This is a simple case with only one
numeric attribute. The rules used to generate the data
are:

Age < 40 — Group = A,
40 < Age < 60 = Group = B,
Age > 60 — Group = A.

These rules have minimum support 25% and minimum
confidence 100% (which can be easily found out by scan-
ning the database once). There are three intervals for
Age in these rules, so we specify 3 as the number of
intervals for Age in running our algorithm. The tem-
plate for these rules is Age € [l,u] — Group = g. For
both J; and J» interestingness measures, our algorithm
produces the following intervals:

I = [20,39], I, = [40,59], I5 = [60, 80].

After extending the upper bound wu; of the ith interval
[l;, u;] to cover values between u; and l;41 and remov-
ing the two extreme values, 1.e.; 20 and 80, we obtain
exactly the intervals in the above rules: I; = (—,40),
I, = [40,60), Is = [60, —).

Function 2. This function involves two numeric at-
tributes (Age) and (Salary) through rules:

Age < 40N 60K < Sdalary < 95K — Group = A,
40 < Age < 60 A9SK < Salary < 126K — Group = A,
Age > 60 A 25K < Sdalary < 60K — Group = A.

Note that we have modified the original Function 2 in
(Agrawal, Imielinski, and Swami 1993b) (by modifying
the data generation program) so that the Salary inter-
vals are non-overlapping. These rules have minimum
support 15% and minimum confidence 75%. The num-
ber of intervals is 3 for Age and 3 for Salary. The
template used 1s

Age € [l1,u1] A Salary € [la, us] = Group = g.
The intervals generated are

Ji: Salary : (—,61K), [61K, 96K), [96K, —)
Age : (—,40), [40,60),[60,—)

Jo: Salary : (=, 61K), [61K,95K), [95K,)
Age : (—,40), [40,60), [60,—).

These are very good approximation of those in the given
function.

Function 3. This function involves one numeric at-
tribute (Age) and one categorical attribute (Elevel) in
the antecedent, given by:

Age <40 A Elevel € [0..1] — Group = A,
40 < Age < 60 A Elevel € [1..3] — Group = A,
Age > 60 A Elevel € [2..4] — Group = A.

These rules have minimum support 3% and minimum
confidence 95%. The number of intervals is 3 for Age.
The template used is Age € [l,u] A Elevel = ¢ —
Group = g. For both J; and Js, the intervals generated
are identical to those in the function:

(—,40), [40,60), [60, —).

To summarize, the proposed interestingness-based in-
terval merging does produce the good intervals as ex-
pected.

Related work

Most works on association rules have focused on cate-
gorical values. Mining numeric association rules was
considered recently in a few papers. (Srikant and
Agrawal 1996) introduces the partial completeness as
a measure of information loss when going from values
to intervals, and proposes that the equi-depth partition-
ing minimizes the number of intervals required to satisfy
a partial completeness level. Our work was motivated
by the remark in (Srikant and Agrawal 1996): “equi-
depth partitioning may not work very well on highly
skewed data. It tends to split adjacent values with high
support into separate intervals though their behavior
would typically be similar”. (Fukuda et al. 1996) and
(Lent, Swami, and Widom 1995) consider association
rules in which two numeric attributes appear in the an-
tecedent and one categorical attribute appears in the
consequent. In our framework, any number of numeric
attributes and categorical attributes can appear in the
antecedent, and more than one categorical attributes
can appear in the consequent. More recently, (Rastogi
and Shim 1995) studies the problem of finding non-
overlapping instantiations of a template association rule
so that the combined support (confidence, resp.) meets
some threshold and the combined confidence (support,
resp.) is maximized. In (Rastogi and Shim 1995), a
heuristic 1s used to guide the search, but the worst-case
is exponential. We also use a template to focus the rules
to be optimized, but with a different goal: find the best
intervals that maximize the interestingness gain of as-
sociation rules. Our algorithm does not suffer from the
exponential worst-case.

Less related are the work on classification rules
with numeric attributes, e.g., (Agrawal et al. 1992;
Kerber 1992; Wang and Goh 1997). In these works,
the intervals of an attribute are produced by examin-
ing only the current attribute (and the class attribute),
therefore, interaction with other attributes is not ad-
dressed. We address the interaction by considering as-
sociation rules (which involve the attributes of inter-
est),rather than individual attributes. A more funda-
mental difference between these works and ours is that
of the objective: for classification rules, the task of in-
terval generation aims at minimizing the predictive er-
ror; for association rules, it aims at improving the in-
terestingness of rules.

Conclusion

Relational tables containing both numeric and categor-
ical values are very common in real-life applications.
We have proposed a new algorithm for mining numeric
association rules from relational tables. There are sev-
eral contributions in the development of the algorithm.
We proposed an interestingness-based criterion for de-
termining intervals to be merged. To address the im-
pact of multiple attributes on interval generation, the
interestingness-based criterion was defined with respect
to association rules to be discovered, rather than a sin-
gle attribute being considered. We dealt with the com-
plexity explosion due to high dimensionality of data
by considering mergings of intervals rather than hyper-
rectangles. We adopted a modification of the B-tree,
the M-tree, for performing the merging process effi-
ciently for large databases. Though we have considered
two specific interestingness measures, the M-tree by no
means depends on the interestingness measures used,
and can be used as a general data structure for merg-
ing intervals using any interestingness measure. The
experiments show that our interestingness-based inter-
val merger is highly effective in discovering right inter-
vals. Our algorithm is scalable for very large databases
because it is linear in the database size and in the di-
mensionality.

Further researches are needed in several areas. The
current method requires the number of intervals for a
numeric attribute to be specified by the user. It is de-
sirable to automatically determine the number of inter-
vals. Also, our method produces only non-overlapping
intervals. Thus, rules like

40 < Age < 60 A Salary < 95K — Group = A,
50 < Age < T0A Elevel € [1..3] - Group= B

cannot be generated. Finally, more datasets and more
interestingness measures can be tested to characterize
the applicability of different interestingness measures to
different data characteristics.

References
Agrawal, R.; Ghosh, S.; Imielinski, T.; Iyer, B.; &
Swami, A. 1992. An interval classifier for database
mining applications. In Proceedings of VLDB.

Agrawal, R.; Imielinski, T.; & Swami, A. 1993a. Min-
ing association rules between sets of items in large

databases. In Proceedings of SIGMOD, 207-216.

Agrawal,

R.; Imielinski, T.; & Swami, A. 1993b. Database min-
ing: a performance perspective. IEEE Transactions on
Knowledge and Data Engineering, Vol. 5, No. 6, Dec
1993 (http://www.almaden.ibm.com/cs/quest/).
Brin, S.; Matwani, R.; & Silverstein, C. 1997. Beyond
market baskets: generalizing association rules to cor-
relations. In Proceedings of SIGMOD.

Kerber, T. 1992. ChiMerge: discretization of numeric
attributes. In Proceedings of Ninth National Confer-
ence on Artificial Intelligence, 123-128.

Elmasri, R.; & Navathe, S.B. 1994. Fundamentals
of Database Systems. The Benjamin/Cummings Pub-
lishing Company, Inc.

Fukuda, T.; Morimoto, Y.; Morishita, S.; &
Tokuyama, T. 1996. Data mining using two-
dimensional optimized association rules: scheme, algo-
rithms, and visualization. In Proceedings of SIGMOD,
13-23.

Lent, B.; Swami, A.; & Widom, J. 1995. Clustering
association rules. In Proceedings of ICDE.

Rastogi, R.; & Shim, K. 1995. Mining optimised asso-
ciation rules with categorical and numeric attributes”.
In Proceedings of ICDE.

Srikant, R.; & Agrawal, R. 1996. Mining quantitative
association rules in large relational tables. In Proceed-
ings of SIGMOD, 1-12.

Smyth, P.; & Goodman, R. 1992. An information
theoretic approach to rule induction from databases.
IEEE Transactions on Knowledge and Data Engineer-
ing, Vol. 4, No. 4, Aug 1992.

Wang, K. and Goh, H.C. 1997. Minimum splits based
discretization for continuous features. In Proceedings

of IJCAT, 942-947

