
User-De�ned Association MiningKe Wang1 and Yu He21 Simon Fraser Universitywangk@cs.sfu.cahttp://www.cs.sfu.ca/ wangk2 National University of Singaporehey@comp.nus.edu.sghttp://www.comp.nus.edu.sg/ heyAbstract. Discovering interesting associations of events is an importantdata mining task. In many real applications, the notion of association,which de�nes how events are associated, often depends on the particularapplication and user requirements. This motivates the need for a generalframework that allows the user to specify the notion of association ofhis/her own choices. In this paper we present such a framework, calledthe UDA mining (User-De�ned Association Mining). The approach isto de�ne a language for specifying a broad class of associations and yete�cient to be implemented. We show that (1) existing notions of associ-ation mining are instances of the UDA mining, and (2) many new ad-hocassociation mining tasks can be de�ned in the UDA mining framework.1 IntroductionInteresting association patterns could occur in diverse forms. Early work hasde�ned and mined associations of di�erent notions in separate frameworks. Forexample, association rules are de�ned by con�dence/support and are searchedbased on the Apriori pruning [1]; correlation rules are de�ned by the �2 statisticstest and are searched based on the upward-closed property of correlation [4];causal relationships are de�ned and searched by using CCC and CCU rules[14]; emerging patterns are de�ned by the growth ratio of support [6]. Withsuch an \one-framework-per-notion" paradigm, it is di�cult to compare di�erentnotions and identify commonalities among them.More importantly, the user maynot �nd such pre-determined frameworks suitable for his/her speci�c needs. Forexample, at one time the user likes to �nd all pairs < p; c > such that p issome above mentioned association pattern and c is a condition under whichp occurs; at another time the user likes to know all triples < p; c1; c2 > suchthat association pattern p occurs in the special case c1 but not in the generalcase c2; at yet another time the user wants something else. Even for this simpleexample, it is not clear how the above existing frameworks can be extended tosuch \ad-hoc" mining. The topic of this paper is to address this extendibility.Our approach is to propose a language in which the user himself/herselfcan de�ne a new notion of association (vs. choose a pre-determined notion).

In spirit, this is similar to database querying in DBMS, in that it does notpredict the mining tasks that the user might require to perform; it is the ex-pressive power of the language that determines the class of associations speci-�able in this approach. The key is the notion of \user-de�ned associations"and its speci�cation language. Informally, a user-de�ned association has twocomponents, events and their relationship. An event is a conjunction of atomicdescriptors, called items, for transactions in the database. For example, eventFEMALE ^ Y OUNG ^MANAGER is a statement about individuals, whereitems FEMALE, Y OUNG, and MANAGER are atomic descriptors of indi-viduals 1. A relationship is a statement about how events are associated. Weillustrate the notion of \user-de�ned associations" through several examples.Example I. A liberate notion of association between two events X and Ycan occur in the form that X causes Y . As pointed out by [14], such causal rela-tionships, which state the nature of the relationships, cannot be derived from theclassic association rules X ! Y . [14] has considered the problem of mining causalrelationships among 1-item events, i.e., events containing a single item. In the in-terrelated world, causal relationships occur more often among multi-item eventsthan among 1-item events. For example, 2-item event MALE ^ POSTGRADmore likely causes HIGH INCOME than each of the 1-item events MALEand POSTGRAD does. Though the concept of causal relationships remainsunchanged for multi-item events, the search for such causal relationships turnsout to be more challenging because it is unknown in advance which items forma meaningful multi-item event in a causal relationship. In our approach, suchgeneral causal relationships are modeled as a special case of user-de�ned associ-ations.Example II. The user likes to know all three events Z1; Z2; X such thatX is more \associated" with Z1 than with Z2, where the notion of associationbetween X and Zi could be any user-de�ned associations. For example, if X =HIGH INCOME is more correlated with Z1 = POSTGRAD ^MALE thanwith Z2 = POSTGRAD ^ FEMALE, the user could use it as an evidence ofgender discrimination because the same education does not give woman the samepay as man. Again, multi-item events like POSTGRAD ^MALE are essentialfor discovering such associations.Example III: Sometimes, the user likes to know all combinations of eventsZ1; Z2; X1; : : : ; Xk such that the association of k events X1; : : : ; Xk, in whatevernotion, has su�ciently changed when the condition changes from Z1 to Z2. Forexample, X1 = BEER and X2 = CHIPS could be sold together primarilyduring Z1 = [6PM; 9PM] ^ WEEKDAY . Here, Z2 is implicitly taken as ;,representing the most general condition.This list can go on, but several points have emerged and are summarizedbelow.1. User-de�ned associations. A powerful concept in user-de�ned association isthat the user de�nes a class of associations by \composing" existing user-1 A better term for things like FEMALE, Y OUNG, and MANAGER is perhaps\feature" or \variable". We shall use the term \items" to be consistent with [1].

de�ned association. The basic building blocks in this speci�cation, such assupport, con�dence, correlation, conditional correlation, etc., may not benew and, in fact, are well understood. What is new is to provide the userwith a mechanism for constructing a new notion of association using suchbuilding blocks.2. Uni�ed speci�cation and mining. A friendly system should provide a singleframework for specifying and mining a broad class of notions of association.We do not expect a single framework to cover all possible notions of associ-ation, just as we do not expect SQL to express all possible database queries.What we expect is that the framework is able to cover most important andtypical notions of association. We will elaborate on this point in Section 3.3. Completeness of answers. The association mining aims to �nd all associa-tions of a speci�ed notion. In contrast, most work in statistics and machinelearning, e.g., model search [18] and Bayesian network learning [7], is pri-marily concerned with �nding some but not all associations. To search forsuch complete answers, those approaches are too expensive for data sets withthousands of variables (i.e., items) as we consider here.4. Unspeci�ed event space. The event space is not �xed in advance and mustbe discovered in the search of associations. This feature is di�erent from[3, 4, 14] where only 1-item events are considered. Given thousands of itemsand that any combination of items is potentially an event, it is a non-trivialtask to determine what items make a meaningful event in the associationwith other events. This task is further compounded by the fact that anycombination of events is potentially an association.In the rest of this paper, we present a uni�ed framework for specifying andmining user-de�ned associations. The framework must be expressive enough forspecifying a broad class of associations. In Section 2 and Section 3, we pro-pose such a framework and examine its expressive power. Equally important,the mining algorithm must have an e�cient implementation. We consider theimplementation in Section 4. We review related work in Section 5 and concludethe paper in Section 6.2 User-De�ned Association2.1 De�nitionsThe database is a collection of transactions. Each transaction is represented bya set of Boolean descriptors called items that hold on the transaction. An eventis a conjunction of items, often treated as a set of items. We do not considerdisjunction in this paper. ;, called the empty event, denotes the Boolean constantTRUE or the empty set. Given the transaction database, the support of an eventX, denoted P (X), is the fraction of the transactions on which event X holds,or of which X is a subset. An event X is large if P (X) � mini sup for theuser-speci�ed minimum support mini sup. Events that are not large occur tooinfrequently, therefore, do not have statistical signi�cance. The set of large events

is downward-closed with respect to the set containment[1]: ifX is large andX 0 isa subset ofX,X 0 is also large. For eventsX and Y ,XY is the shorthand for eventX ^ Y or X [Y , and P (XjY) for P (XY)=P (Y). Thus, X1; : : : ; Xk representsk events whereas X1 : : :Xk represents one event X1 ^ : : : ^Xk. The notion ofsupport can be extended to absence of events. For example, P (X:Y :Z) denotesthe fraction of the transactions on which X holds but neither Y nor Z does.A user-de�ned association is written as Z1; : : : ; Zp ! X1; : : : ; Xk.X1; : : : ; Xkare called subject events, whose association is of the primary concern. Z1; : : : ; Zpare called context events, which provide p di�erent conditions for comparingthe association of subject events. Context events are always ordered becausethe order of a�ecting the association is of interest. The notion of user-de�nedassociation Z1; : : : ; Zp ! X1; : : : ; Xk is de�ned by the support �lter and thestrength �lter de�ned below.{ Support F ilter. It states that events X1; : : : ; Xk; Zi must occur togetherfrequently: if p > 0, P (X1 : : :XkZi) � mini sup for 1 � i � p; or ifp = 0, P (X1 : : :Xk) � mini sup. In other words, X1 : : :XkZi, or X1 : : :Xkif p = 0, is required to be a large event. If this requirement is not sat-is�ed, the co-occurrence of Xi under condition Zi does not have statisti-cal signi�cance. This condition is called the support �lter and is written asSupport F ilter(z1; : : : ; zp ! x1; : : : ; xk), where zi and xi are variables rep-resenting the events Zi and Xi in a user-de�ned association.{ Strength F ilter: It states that events Z1; : : : ; Zp; X1; : : : ; Xk must hold therelationship speci�ed by a conjunction of one or more formulas of the form i � mini stri. Each i measures some strength of the relationship andmini stri is the threshold value on the strength. This conjunction is calledthe strength �lter and is written as Strength F ilter(z1; : : : ; zp ! x1; : : : ; xk),where zi and xi are variables representing the events Zi and Xi.In the above �lters, variables xi and zi can be instantiated by events Xiand Zi, and the instantiation is represented by Support F ilter(Z1; : : : ; Zp !X1; : : : ; Xk) and Strength F ilter (Z1; : : :, Zp ! X1; : : : ; Xk). Observe thatSupport F ilter(Z1; : : : ; Zp ! X1; : : : ; Xk) implies that each Xi and Zi is a largeevent because of the downward-closed property mentioned earlier. It remains tochoose a language for specifying i, which will determine the class of associa-tions speci�ed and the e�ciency of the mining algorithm. We will study thisissue shortly. For now, we assume that such a language is chosen. As a conven-tion, we use lower case letters z1; : : : ; zp; x1; : : : ; xk for event variables and useupper case letters Z1; : : : ; Zp; X1; : : : ; Xk for events.De�nition 1 (The UDA speci�cation). A user-de�ned association speci�-cation (UDA speci�cation), written as UDA(z1; : : : ; zp ! x1; : : : ; xk), k > 0 andp � 0, has the form Strength F ilter(z1; : : : ; zp ! x1; : : : ; xk)^ Support F ilter(z1; : : : ; zp ! x1; : : : ; xk). (The End)We say that a UDA speci�cation is symmetric if variables xi's are sym-metric in Strength F ilter (note that variables xi's are always symmetric in

Support F ilter); otherwise, it is asymmetric. A symmetric speci�cation is desir-able if the order of subject events does not matter, such as correlation. Otherwise,an asymmetric UDA speci�cation is desirable. For example, an asymmetric UDAis that whenever events Z1; : : : ; Zp occur, X1 occurs but not X2. We consideronly symmetric speci�cation, though the work can be extended to asymmetricspeci�cation.De�nition 2 (The UDA problem).Assume that UDA(z1; : : : ; zp ! x1; : : : ; xk)is given for 0 < k � k0, where p(� 0) and k0(> 0) are speci�ed by theuser. Consider distinct events Z1; : : : ; Zp; X1; : : : ; Xk. We say that Z1; : : : ; Zp !X1; : : : ; Xk is a UDA if the following conditions hold:1. Xi \Xj = ;, i 6= j, and2. Xi \Zj = ;, i 6= j, and3. UDA(Z1; : : : ; Zp ! X1; : : : ; Xk) is true.k is called the size of the UDA. Z1; : : : ; Zp ! X1; : : : ; Xk is minimal if for anyproper subset fXi1 ; : : : ; Xiqg of fX1; : : : ; Xkg, Z1; : : : ; Zp ! Xi1 ; : : : ; Xiq is nota UDA. The UDA problem is to �nd all UDAs of the speci�ed sizes 0 < k � k0.The minimal UDA problem is to �nd all minimal UDAs of the speci�ed sizes k.(The End)Several points about De�nition 2 are worth noting.First, the number of context events, p, in a UDA Z1; : : : ; Zp ! X1; : : : ; Xk is�xed whereas the number of subject events, k, is allowed up to a speci�ed maxi-mum size km. This distinction comes from the di�erent roles of these events: forsubject events we do not know a prior how many of them may participate in anassociation, but we often examine a �xed number of conditions for each associ-ation. It is possible to allow the number of conditions p up to some maximumnumber, but we have not found useful applications that require this extension.Second, context events Zi's are not necessarily pairwise disjoint. In fact,it is often desirable to examine two context events Z1 and Z2 such that Z1is a proper superset, thereby a specialization, of Z2. Then we could specifyUDAs Z1; Z2 ! X1; : : : ; Xk such that the association of Xi's holds under thespecialized condition Z1 but not under the general condition Z2. Other usefulsyntax constraints could be the requirement on the presence or absence of somespeci�ed items in an event, a certain partitioning of the items for context eventsand subject events, the maximum or minimumnumber of items in an event, etc.In the same spirit, the disjointness in condition 2 can be removed to expresscertain overlapping constraints. Constraints have been exploited to prune searchspace for mining association rules [16, 13]. A natural generalization is to exploitsyntax constraints for mining general UDAs. In this paper, however, we focuson the basic form in De�nition 2.2.2 ExamplesIn this section, we intend to achieve two goals through considering several ex-amples of UDA speci�cation: to show that disparate notions of association can

be speci�ed in the UDA framework, and to readily convey the basic idea thatunderly more complex speci�cation. Once these are understood, the user cande�ne any notion of association of his/her own choice, in the given speci�ca-tion language. We shall focus on specifying Strength F ilter because specifyingSupport F ilter is straightforward. In all examples, lower-case letters zi and xirepresent event variables and upper-case letters Zi and Xi represent events.Example 1 (Association rules). Association rules Z ! X introduced in [1] canbe speci�ed bySupport F ilter(z ! x) : P (zx) � mini supStrength F ilter(z ! x) : (z; x) � mini conf ,where (z; x) = P (xjz) = P (xz)=P (z) is the con�dence of rule Z ! X [1]. Tofactor in both \generality" and \predictivity" of rules in a single measure, thefollowing (z; x), called the J-measure [15], can be used:P (z)[P (xjz)log2P (xjz)P (x) + (1� P (xjz))log21� P (xjz)1� P (x)]:Here, P (z) weighs the generality of the rule and the term in the square bracketweighs the \discrimination power" of z on x. This example shows how easy it isto adopt a di�erent de�nition of association in the UDA framework. (The End)In the above speci�cation, the most basic constructs are the supports P (Z),P (X), P (ZX), P (:X), P (Z:X). Since Support F ilter(Z ! X) implies thateach of Z;X;ZX is a large event, these supports are readily available frommininglarge events (note that P (:X) = 1� P (X) and P (Z:X) = P (Z)� P (ZX)).Example 2 (Multiway correlation). The notion of correlation is a special case ofUDAs without context event. In particular, events X1; : : : ; Xk are correlated ifthey occur together more often than expected when they are independent. Thisnotion can be speci�ed by the �2 statistic test, �2(x1; : : : ; xk) � �2� [4]. LetR = fx1;:x1g � : : :� fxk;:xkg and r = r1 : : : rk 2 R. Let E(r) = N � P (r1) �: : :�P (rk), where N is the total number of transactions. �2(x1; : : : ; xk) is de�nedby: �r2R (N � P (r)� E(r))2E(r) :The threshold value �2� for a user-speci�ed signi�cance level �, usually 5%, canbe obtained from statistic tables for the �2 distribution. If X1; : : : ; Xk passesthe test, X1; : : : ; Xk are correlated with probability 1 � �. The uncorrelation ofX1; : : : ; Xk can be speci�ed by Strength F ilter of the form 1=�2(x1; : : : ; xk) �1=�2�, where � is usually 95%. If X1; : : : ; Xk passes the �lter, X1; : : : ; Xk areuncorrelated with probability �. (The End)The problem of mining correlation among single-item events was studied in[3,4]. One di�erence of correlation speci�ed as UDAs is that each event Xican involve multiple items, rather than a single item. One such example is

the correlation of X1 = INTERNET and X2 = Y OUNG ^MALE, whereY OUNG ^ MALE is a 2-item event. This generalization is highly desirablebecause single-item events like X1 = INTERNET and X2 = Y OUNG orX1 = INTERNET and X2 =MALE may not be strongly corrected. It is notclear how the mining algorithms in [3,4] can be extended to multi-item events.A more profound di�erence, however, is that, as UDAs, we can model \ad-hoc"extension of correlation. The subsequent examples shows this point.Example 3 (Conditional association). In conditional association Z ! X1; : : : ; Xk,subject events X1; : : : ; Xk are associated when conditioned on Z. For example,INT 0L ^BUSINESS TRIP ! CEO;FIRST CLASSsays that X1 = CEO and X2 = FIRST CLASS (
ights) are associated forZ = INT 0L ^BUSINESS TRIP (international business trips). For example,if the association of X1; : : : ; Xk is taken as the correlation, we have conditionalcorrelation de�ned by Strength F ilter(z ! x1; : : : ; xk):P (x1 : : : xkjz)P (x1jz) � : : : � P (xkjz) � mini str (1)or alternatively, by the �2 statistic test after replacing P (r) and P (ri) in �2(X1; : : : ; Xk) ��2� with P (rjz) and P (rijz). (The End)Example 4 (Comparison association). In comparison association Z1; Z2 ! X,subject event X is associated di�erently with context events Z1 and Z2. Forexample,INT 0L ^BUSINESS TRIP; PRIVATE TRIP ! CEO ^ FIRST CLASSsays that X = CEO ^ FIRST CLASS is more associated with Z1 = INT 0L ^BUSINESS TRIP than with Z2 = PRIV ATE TRIP . To compare two as-sociations for di�erence, we can compare their corresponding strength j inStrength F ilter. In particular, suppose that UDA(! zi; x) speci�es the associa-tion of Zi and X, i = 1; 2. For each j(zi; x) in UDA(! zi; x), Strength F ilter(z1; z2 !x) for the comparison association contains the formula:Dist(j (z1; x); j(z2; x)) � mini strj: (2)Here,Dist(s1 ; s2) measures the distance between two strengths s1 and s2. Typicaldistance measures are Dist(s1; s2) = s1=s2 or Dist(s1; s2) = s1� s2. (The End)Example 5 (Emerging association). In emerging association Z1; Z2 ! X1; : : : ; Xk,the association of X1; : : : ; Xk has changed su�ciently when the condition changesfrom Z1 to Z2. Suppose that UDA(zi ! x1; : : : ; xk) speci�es the conditional as-sociation Zi ! X1; : : : ; Xk, i = 1; 2, as in Example 3. Then, for each strengthfunction j in UDA(zi ! x1; : : : ; xk), Strength F ilter(z1; z2 ! x1; : : : ; xk) foremerging association contains the formula:Dist(j (z1; x1; : : : ; xk); j(z2; x1; : : : ; xk)) � mini strj: (3)

The notion of emerging association is useful for identifying trends and changes.For example, the notion of emerging patterns [6] is a special case of emergingassociations of the form Z1; Z2 ! X, where Z1 and Z2 are identi�ers for the twooriginating databases of the transactions. An emerging pattern Z1; Z2 ! X saysthat the ratio of the support of X in the two databases identi�ed by Z1 and Z2is above some speci�ed threshold. To specify emerging patterns, we �rst mergethe two databases into a single database by adding item Zi to every transactioncoming from database i, i = 1; 2, and specify j(zi; x) = P (zix)=P (zi), where ziare variables for Zi, and Dist(s1; s2) = s1=s2 in Equation 3. With the generalnotion of emerging association, however, we can capture a context Zi as anarbitrary event (not just a database identi�er) and the participation of morethan one subject event. (The End)In Examples 3, 4 and 5, the \output" UDAs (i.e., conditional association,comparison association, emerging association) are de�ned in terms of \input"UDAs. These input UDAs are of the form! X1; : : : ; Xk in Example 3,! Zi; Xin Example 4, and Zi ! X1; : : : ; Xk in Example 5, which themselves can bede�ned in terms of their own input UDAs. The output UDAs can be the inputUDAs for de�ning other UDAs. In general, new UDAs are de�ned by \com-posing" existing UDAs. It is such a composition that provides the extendibilityfor de�ning ad-hoc mining tasks. We further demonstrate this extendibility byspecifying causal relationships.Example 6 (Causal association). Information about statistical correlation anduncorrelation can be used to constrain possible causal relationships. For example,if events A and B are uncorrelated, it is clear that there is no causal relationshipbetween them. Following this line, [14] identi�ed several rules for inferring causalrelationships, one of which is the so-called CCC rule: if events Z;X1; X2 arepairwise correlated, and if X1 and X2 are uncorrelated when conditioned on Z,one of the following causal relationships exists:X1 (Z) X2 X1) Z) X2 X1 (Z (X2,where (means \is caused by" and) means \causes". For a detailed accountof this rule, please refer to [14]. We can specify the condition of the CCC ruleby Strength F ilter(z ! x1; x2): 1(;; x1; x2) � mini str1 ^ 1(;; x1; z) � mini str1^ 1(;; x2; z) � mini str1 ^ 2(z; x1; x2) � mini str2.Here, 1(w; u; v) � mini str1 tests the correlation of u and v conditioned on w,and 2(w; u; v) � mini str2 tests the uncorrelation of u and v conditioned onw. These tests were discussed in Examples 2 and 3. (The End)In all the above examples, the basic constructs used by the speci�cation are thesupport of the form P (v), where v is a conjunction of terms Zi;:Zi; Xi;:Xi.This syntax of v completely de�nes the language for Strength F ilter becausewe make no restriction on how P (v) should be used in the speci�cation. In thenext section, we de�ne the exact syntax for v.

3 The speci�cation languageThe term \language" is more concerned with what it can do than how it is pre-sented. There are two considerations in choosing the language for strength func-tions i. First, the language should specify a wide class of association. Second,the associations speci�ed should have an e�cient mining algorithm. We startwith the e�ciency consideration. To specify UDAs Z1; : : : ; Zp ! X1; : : : ; Xk,we require each strength i to be above some minimum threshold, where iis a function of P (v) and v is a conjunction of Xi and Zj . The support �lterP (X1 : : :XkZj) � mini sup is used to constrain the number of candidate Zj andXi. The support �lter implies that a conjunction v consisting of any number ofsubject events Xi and zero or one context event Zj is large. Therefore, supportsP (v) for such v are available from mining large events if we keep the support foreach large events.The question is whether it is too restrictive to allow at most one Zj in eachv. It turns out that this is a desirability not a restriction. In fact, each Zj servesas an individual context for the association of X1; : : : ; Xk and there is no needto consider more than one Zj at a time. Another question is that, if absencesof events, i.e., :Xi and :Zj, are desirable in v, as in the examples in Section2.2, can P (v) be computed e�ciently? The next theorem, which is essentially avariation of the well known \inclusion-exclusion" theorem, shows that such P (v)can be computed by the supports involving no absence of events.Theorem 1. Let V = fV1; : : : ; Vqg be q events of the form Xi or Zi. Let U bea conjunction of events that do not occur in V . ThenP (U:V1 : : ::Vq) = �W�V (�1)jW jP (UW);where jW j denotes the number of Vi's in W . (The End)For example, assume that V = fX2; Z1g and U = fX1g, we have P (X1:X2:Z1) =P (X1)�P (X1X2)�P (X1Z1)+P (X1X2Z1). This rewriting conveys two impor-tant points: (1) the right-hand side contains no absence, (2) if X1X2Z1 is large(as required by the support �lter), the right-hand side contains only supports oflarge events, thus, is computable by mining large events. containing no absence.Based on these observations, we are now ready to de�ne the syntax of v forsupports P (v) that appear in a strength function.De�nition 3 (Individual-context assumption). Let Zj be a context eventand Xi be a subject event. v satis�es the ICA (Individual-Context Assumption)if v is a conjunction of zero or more terms of the form Xi and :Xi, and zeroor one term of the form Zj and :Zj. A support P (v) satis�es the ICA if vsatis�es the ICA. A strength function satis�es the ICA if it is de�ned usingonly supports satisfying the ICA. A strength �lter satis�es the ICA if it uses onlystrength functions satisfying the ICA. The ICA-language consists of all UDAsde�ned by the support �lter in Section 2.1 and the strength �lter satisfying theICA. (The End)

For example, X1X2, :X1X2, X1X2Z1, and X1X2:Z1 all satisfy the ICAbecause each contains at most one term for context events, but X1X2Z1Z2 andX1X2Z1:Z2 do not. We like to point out that the ICA is a language on supportP (v), not a language on how to use P (v) in de�ning a strength function .This total freedom on using such P (v) allows the user to de�ne new UDAs bycomposing existing UDAs in any way he/she wants, a very powerful conceptillustrated by the examples in Section 2.2. In fact, one can verify that all thestrength functions in Section 2.2 are speci�ed in the ICA-language.We close this section by making an observation on the \computability" ofthe ICA-language. The support �lter implies that any absence-free v satisfyingthe ICA is a large event. The rewriting by Theorem 1 preserves the ICA becauseit only eliminates absences. Consequently, the ICA-language ensures that allallowable supports can be computed from mining large events. This addressesthe computational aspect of the language.4 ImplementationWe are interested in a uni�ed implementation for mining UDAs. Given that anycombination of items can be an event and any combination of events can bea UDA, it is only feasible to rely on e�ective pruning strategies to reduce thesearch space of UDAs. Due to the space limitation,we sketch only the main ideas.Assume that the items in an event are represented in the lexicographical orderand that the subject events in a UDA are represented in the lexicographical order(we consider only symmetric UDA speci�cations). We consider p > 0 contextevents; the case of p = 0 is more straightforward. Our strategy is to exploitthe constraints speci�ed by Support F ilter and Strength F ilter as earlier aspossible in the search of UDAs. The �rst observation is that Support F ilterimplies that all subject events Xi and context events Zi are large. Thus, as the�rst step we �nd all large events, say by applying Apriori [1] or its variants. Weassume that the mined large events are stored in a hash-tree [1] or a hash tableso that the membership and support of large events can be checked e�ciently.The second step is to construct UDAs using large events. For each UDAZ1; : : : ; Zp ! X1; : : : ; Xk, Support F ilter requires that X1 : : :XkZi be largefor 1 � i � p. Therefore, it su�ces to consider only the k-tuples of the form(X1; : : : ; Xk; Zi), where Xi's are in the lexicographical order and X1 : : :XkZimakes a large event for all 1 � i � p. We can generate such k-tuples and UDAsof size k in a level-wise manner like Apriori by treating events as items: In thekth iteration, a k-tuple (X1; : : : ; Xk; Zi) is generated only if (X1; : : :Xk�1; Xk)and (X1; : : : ; Xk�1; Zi) were generated in the (k�1)th iteration and X1 : : :XkZiis large. The largeness of X1 : : :XkZi can be checked by looking up the hash-tree or hash table for storing large events. Also, the disjointness of Xk and Zi,required by Strength F ilter, and the lexicographical ordering ofX1; : : : ; Xk, canbe checked before generating tuple (X1; : : : ; Xk; Zi). After generating all k-tuplesin the current iteration, we construct a candidate UDA Z1; : : : ; Zp ! X1; : : : ; Xkusing p distinct tuples of the form (X1; : : : ; Xk; Zi), i = 1; : : : ; p, that share the

same pre�x X1; : : : ; Xk. Any further syntax constraints on Zi, as discussed inSection 2.1, can be checked here. A candidate Z1; : : : ; Zp ! X1; : : : ; Xk is aUDA if UDA(Z1; : : : ; Zp ! X1; : : : ; Xk) holds. The above is repeated until someiteration k for which no k-tuple is generated.For mining minimal UDAs, a straightforward algorithm is to �rst generateall UDAs and then remove non-minimal UDAs. A more e�cient algorithm is�nding all minimal UDAs without generating non-minimal UDAs. The strategyis to consider subsets of fX1; : : : ; Xkg for subject events Xi's before consideringfX1; : : : ; Xkg itself, and prune all supersets from consideration if any subset isfound to be a UDA. Since this is essentially a modi�cation of the above algorithm,we omit the detail in the interest of space.We have conducted several experiments to mine the classes of UDAs consid-ered in Section 2.2 from the census data set used in [14], which contains 63 itemsand 126,229 transactions. The result is highly encouraging: it discovers severalvery interesting associations that cannot be found by existing approaches. For ex-ample, some strong causal associations were found among general k-item events,as discussed in Example I, but were not found in [14] because only 1-item eventsare considered there. This fact re-enforces our claim that the uniform miningapproach does not simply unify several existing approaches; it also extends be-yond them by allowing the user to de�ne new notions of association. We omitthe detail of the experiments due to the space limit.5 Related WorkIn [8], a language for specifying several pre-determined rules is considered, butno mechanism is provided for the user to specify new notions of association. In[10], it is suggested to query mined rules through an application programminginterface. In [12,17], some SQL-like languages are adopted for mining associationrules. The expressiveness of these approaches is limited by the extended SQL.For example, they cannot specify most of the UDAs in Section 1 and 2. In [11, 9],a generic data mining task is de�ned as �nding all patterns from a given patternclass that satisfy some interestingness �lters, but no concrete language is pro-posed for pattern classes and interestingness �lters. Finding causal relationshipsis studied in [5, 14]. None of these works considers the extendibility where theuser can de�ne a new mining task.6 ConclusionThis paper introduces the notion of user-de�ned association mining, i.e., theUDA mining, and proposes a speci�cation framework and implementation. Thepurpose is to move towards a uni�ed data mining where the user can mine adatabase with the same ease as querying a database. For the proposed approachto work in practice, however, further studies are needed in several areas. Ourcurrent work has considered only limited syntax constraints on events, and it isimportant to exploit broader classes of syntax constraints to reduce the search

space. Also, a uni�ed mining algorithmmay be inferior to specialized algorithmstargeted at speci�c classes of UDAs. It is important to study various optimizationstrategies for typical and expensive building blocks of UDAs. In this paper, wehave mainly focused on the semantics and \computability" (in no theoretic sense)of the speci�cation language. A user speci�cation interface, especially mergedwith SQL, is an interesting topic.References1. R. Agrawal, T. Imielinski, and A. Swami: Mining Association Rules between Setsof Items in Large Datasets. SIGMOD 1993, 207-2162. R. Agrawal and R. Srikant: Fast Algorithm for Mining Association Rules. VLDB1994, 487-4993. C.C. Aggarwal and P.S. Yu: A New Framework for Itemset Generation. PODS 1998,18-244. S. Brin, R. Motwani, and C. Silverstein: Beyond Market Baskets: Generalizing As-sociation Rules to Correlations. SIGMOD 1997, 265-2765. G.F. Cooper: A Simple Constraint-based Algorithm for E�ciently Mining Observa-tional Databases for Causal Relationships. Data Mining and Knowledge Discovery,No. 1, 203-224, 1997, Kluwer Academic Publishers6. G. Dong, J. Li: E�cient Mining of Emerging Patterns: Discovering Trends andDi�erences. SIGKDD 1999, 43-527. D. Heckerman: Bayesian Networks for Data Mining. Data Mining and KnowledgeDiscovery, Vol. 1, 1997, 79-1198. J. Han, Y. Fu, W. Wang, K. Koperski, O. Zaiane: DMQL: A Data Mining QueryLanguage for Relational Databases. SIGMODWorkshop on Research Issues on DataMining and Knowledge Discovery, 1996, 27-349. T. Imielinski and H. Mannila: A Database Perspective on Knowledge Discovery.Communications of ACM, 39(11), 58-64, 199610. T. Imielinski, A. Virmani, and A. Abdulghani: DataMine: Application Program-ming Interface and Query Language for Database Mining. KDD 1996, 256-26111. H. Mannila: Methods and Problems in Data Mining. International Conference onDatabase Theory, 1997, 41-55, Springer-Verlag12. R. Meo, G. Psaila, S. Ceri: A New SQL-like Operator for Mining Association Rules.VLDB 1996, 122-13313. R.T. Ng, L. V.S. Lakshmanan, J. Han, A Pang: Exploratory Mining and PruningOptimizations of Constrained Associations Rules. SIGMOD 1998, 13-2414. C. Silverstein, S. Brin, R. Motwani, J. Ullman: Scalable Techniques for MiningCausal Structures. VLDB 1998, 594-60515. P. Smyth, R.M. Goodman: An Information Theoretic Approach to Rule Inductionfrom Databases. IEEE Transactions on Knowledge and Data Engineering, Vol. 4,No. 4, 301-316, August 1992.16. R. Srikant, Q. Vu, and R. Agrawal: Mining Association Rules with Item Con-straints. KDD 1997, 67-7317. D. Tsur, J. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, A. Rosen-thal: Query Flocks: a Generalization of Association-Rule Mining. SIGMOD 1998,1-1218. T.D. Wickens: Multiway Contingency Tables Analysis for the Social Sciences.Lawrence Brlbaum Associates, 1989.

