User-Defined Association Mining

Ke Wang! and Yu He?

! Simon Fraser University
wangk@cs.sfu.ca
http://www.cs.sfu.ca/ wangk
2 National University of Singapore
hey@comp.nus.edu.sg
http://www.comp.nus.edu.sg/ hey

Abstract. Discovering interesting associations of events is an important
data mining task. In many real applications, the notion of association,
which defines how events are associated, often depends on the particular
application and user requirements. This motivates the need for a general
framework that allows the user to specify the notion of association of
his/her own choices. In this paper we present such a framework, called
the UDA mining (User-Defined Association Mining). The approach is
to define a language for specifying a broad class of associations and yet
efficient to be implemented. We show that (1) existing notions of associ-
ation mining are instances of the UDA mining, and (2) many new ad-hoc
association mining tasks can be defined in the UDA mining framework.

1 Introduction

Interesting association patterns could occur in diverse forms. Early work has
defined and mined associations of different notions in separate frameworks. For
example, association rules are defined by confidence/support and are searched
based on the Apriori pruning [1]; correlation rules are defined by the y? statistics
test and are searched based on the upward-closed property of correlation [4];
causal relationships are defined and searched by using CCC and CCU rules
[14]; emerging patterns are defined by the growth ratio of support [6]. With
such an “one-framework-per-notion” paradigm, it is difficult to compare different
notions and identify commonalities among them. More importantly, the user may
not find such pre-determined frameworks suitable for his/her specific needs. For
example, at one time the user likes to find all pairs < p,¢ > such that p is
some above mentioned association pattern and ¢ is a condition under which
p occurs; at another time the user likes to know all triples < p, ¢y, ce > such
that association pattern p occurs in the special case ¢; but not in the general
case cz; at yet another time the user wants something else. Even for this simple
example, 1t 1s not clear how the above existing frameworks can be extended to
such “ad-hoc” mining. The topic of this paper is to address this extendibility.
Our approach is to propose a language in which the user himself/herself
can define a new notion of association (vs. choose a pre-determined notion).

In spirit, this is similar to database querying in DBMS, in that it does not
predict the mining tasks that the user might require to perform; it is the ex-
pressive power of the language that determines the class of associations speci-
fiable in this approach. The key 1s the notion of “user-defined associations”
and its specification language. Informally, a user-defined association has two
components, events and their relationship. An event is a conjunction of atomic
descriptors, called items, for transactions in the database. For example, event
FEMALEANYOUNG AN MANAGER is a statement about individuals, where
items FEMALE, YOUNG, and MANAGER are atomic descriptors of indi-
viduals !. A relationship is a statement about how events are associated. We
illustrate the notion of “user-defined associations” through several examples.

Example I. A liberate notion of association between two events X and Y
can occur in the form that X causes Y. As pointed out by [14], such causal rela-
tionships, which state the nature of the relationships, cannot be derived from the
classic association rules X — Y. [14] has considered the problem of mining causal
relationships among 1-item events, 1.e., events containing a single item. In the in-
terrelated world, causal relationships occur more often among multi-item events
than among 1-item events. For example, 2-item event M ALE A POSTGRAD
more likely causes HIGH _INCOME than each of the 1-item events M ALE
and POSTGRAD does. Though the concept of causal relationships remains
unchanged for multi-item events, the search for such causal relationships turns
out to be more challenging because it is unknown in advance which items form
a meaningful multi-item event in a causal relationship. In our approach, such
general causal relationships are modeled as a special case of user-defined associ-
ations.

Example II. The user likes to know all three events 7y, 75, X such that
X 1s more “associated” with Z; than with Z5, where the notion of association
between X and Z; could be any user-defined associations. For example, if X =
HIGH_INCOME is more correlated with 77 = POSTGRAD AN MALFE than
with 7o = POSTGRAD N FEMALE, the user could use it as an evidence of
gender discrimination because the same education does not give woman the same
pay as man. Again, multi-item events like POSTGRAD AN M ALE are essential
for discovering such associations.

Example III: Sometimes, the user likes to know all combinations of events
71,29, X1, ..., X such that the association of k events Xy, ..., X, in whatever
notion, has sufficiently changed when the condition changes from Z; to Z». For
example, X; = BEER and Xy = CHIPS could be sold together primarily
during Z; = [6PM,9PM|A WEEK DAY . Here, Z5 is implicitly taken as {,
representing the most general condition.

This list can go on, but several points have emerged and are summarized
below.

1. User-defined associations. A powerful concept in user-defined association is
that the user defines a class of associations by “composing” existing user-

! A better term for things like FEMALE, YOUNG, and MANAGER is perhaps

“feature” or “variable”. We shall use the term “items” to be consistent with [1].

defined association. The basic building blocks in this specification, such as
support, confidence, correlation, conditional correlation, etc., may not be
new and, in fact, are well understood. What is new is to provide the user
with a mechanism for constructing a new notion of association using such
building blocks.

2. Unified specification and mining. A friendly system should provide a single
framework for specifying and mining a broad class of notions of association.
We do not expect a single framework to cover all possible notions of associ-
ation, just as we do not expect SQL to express all possible database queries.
What we expect 1s that the framework is able to cover most important and
typical notions of association. We will elaborate on this point in Section 3.

3. Completeness of answers. The association mining aims to find all associa-
tions of a specified notion. In contrast, most work in statistics and machine
learning, e.g., model search [18] and Bayesian network learning [7], is pri-
marily concerned with finding some but not all associations. To search for
such complete answers, those approaches are too expensive for data sets with
thousands of variables (i.e., items) as we consider here.

4. Unspecified event space. The event space is not fixed in advance and must
be discovered in the search of associations. This feature is different from
[3,4, 14] where only 1-item events are considered. Given thousands of items
and that any combination of items is potentially an event, it is a non-trivial
task to determine what items make a meaningful event in the association
with other events. This task is further compounded by the fact that any
combination of events is potentially an association.

In the rest of this paper, we present a unified framework for specifying and
mining user-defined associations. The framework must be expressive enough for
specifying a broad class of associations. In Section 2 and Section 3, we pro-
pose such a framework and examine its expressive power. Equally important,
the mining algorithm must have an efficient implementation. We consider the
implementation in Section 4. We review related work in Section 5 and conclude
the paper in Section 6.

2 User-Defined Association

2.1 Definitions

The database is a collection of transactions. Each transaction is represented by
a set of Boolean descriptors called items that hold on the transaction. An event
is a conjunction of items, often treated as a set of items. We do not consider
disjunction in this paper. @, called the empty event, denotes the Boolean constant
TRUE or the empty set. Given the transaction database, the support of an event
X, denoted P(X), is the fraction of the transactions on which event X holds,
or of which X is a subset. An event X is large if P(X) > mini_sup for the
user-specified minimum support mini_sup. Events that are not large occur too
infrequently, therefore, do not have statistical significance. The set of large events

is downward-closed with respect to the set containment[1]:if X is large and X’ is
a subset of X, X’ is also large. For events X and Y, XY is the shorthand for event
XAY or XUY, and P(X|Y) for P(XY)/P(Y). Thus, X1,..., X represents
k events whereas X ... X} represents one event X; A ... A Xj. The notion of
support can be extended to absence of events. For example, P(X—Y =7 denotes
the fraction of the transactions on which X holds but neither ¥ nor Z does.

A user-defined association is written as 71, ..., 7, = X1,..., Xp. X1,..., X}
are called subject events, whose association is of the primary concern. 71, ..., 7,
are called context events, which provide p different conditions for comparing
the association of subject events. Context events are always ordered because
the order of affecting the association is of interest. The notion of user-defined
association Zi,...,7, = Xi,..., X} is defined by the support filter and the
strength filter defined below.

— Support_Filter. 1t states that events Xi,..., X, Z; must occur together
frequently: if p > 0, P(X1...X37Z;) > mini_sup for 1 < ¢ < p; or if
p=0, P(Xy...Xg) > mini_sup. In other words, Xy ... X, Z;, or X1... X}
if p = 0, is required to be a large event. If this requirement is not sat-
isfied, the co-occurrence of X; under condition Z; does not have statisti-
cal significance. This condition is called the support filter and is written as
Support_Filter(z1,...,2, — #1,...,2x), where z; and x; are variables rep-
resenting the events Z; and X; in a user-defined association.

— Strength_Fhilter: It states that events 7y, ..., 7y, X1, ..., X; must hold the
relationship specified by a conjunction of one or more formulas of the form
Y; > mini_str;. Each 1; measures some strength of the relationship and
mini_str; is the threshold value on the strength. This conjunction is called
the strength filter and is written as Strength_Filter(z1, ..., 2, = 21,...,&5),
where z; and z; are variables representing the events Z; and X;.

In the above filters, variables x; and z; can be instantiated by events X;
and Z;, and the instantiation is represented by Support_Filter(Z:,...,Z, —
Xi1,...,Xx) and Strength_Filter (Z1,..., Z, — Xi,...,Xx). Observe that
Support_Filter(Z1,...,Z, — X1,..., Xy) implies that each X; and Z; is a large
event because of the downward-closed property mentioned earlier. It remains to
choose a language for specifying ¢;, which will determine the class of associa-
tions specified and the efficiency of the mining algorithm. We will study this
issue shortly. For now, we assume that such a language is chosen. As a conven-
tion, we use lower case letters z,...,2p,21,..., 2 for event variables and use
upper case letters 7y, ..., 7Z,, X1, ..., X} for events.

Definition 1 (The UDA specification). A user-defined association specifi-
cation (UDA specification), written as UDA(z1,...,2, = ®1,...,2x), k > 0 and
p > 0, has the form Strength_Filter(z1,...,2, = ®1,...,25)A Support_Filter
(z1,...,2p > 21,...,25). (The End)

We say that a UDA specification is symmetric if variables z;’s are sym-
metric in Strength_Filter (note that variables x;’s are always symmetric in

Support_Filter); otherwise, it is asymmetric. A symmetric specification is desir-
able if the order of subject events does not matter, such as correlation. Otherwise,
an asymmetric UDA specification is desirable. For example, an asymmetric UDA
is that whenever events 7, ..., 7, occur, X; occurs but not X,. We consider
only symmetric specification, though the work can be extended to asymmetric
specification.

Definition 2 (The UDA problem). Assume that UDA(z1,...,2p — 21, ..., 2k)
is given for 0 < k < k', where p(> 0) and k'(> 0) are specified by the
user. Consider distinct events 71,...,7,, X1,..., X;. Wesay that 7;,..., 7, —
X1,..., X 18 a UDA if the following conditions hold:

1. XiﬂXj:Q),i;éj,and
2. XiﬁZj:Q),i;éj,and
3. UDA(Z:,...,Z, = X1, ..., Xg) is true.

k is called the size of the UDA. 71, ..., 7, — Xy, ..., X is mumal if for any
proper subset {X; ,..., X; } of {X1,..., Xy}, Z1,..., 2, = X;,,..., X, is not
a UDA. The UDA problem is to find all UDAs of the specified sizes 0 < k < k.
The minimal UDA problem is to find all minimal UDAs of the specified sizes k.
(The End)

Several points about Definition 2 are worth noting.

First, the number of context events, p,in a UDA 71,..., 7, = X1,..., X} is
fixed whereas the number of subject events, £, 1s allowed up to a specified maxi-
mum size k,,. This distinction comes from the different roles of these events: for
subject events we do not know a prior how many of them may participate in an
assoclation, but we often examine a fixed number of conditions for each associ-
ation. It is possible to allow the number of conditions p up to some maximum
number, but we have not found useful applications that require this extension.

Second, context events Z;’s are not necessarily pairwise disjoint. In fact,
1t 1s often desirable to examine two context events Z; and 75 such that 7,
is a proper superset, thereby a specialization, of Z5. Then we could specify
UDAs 71,75 — X1,..., X, such that the association of X;’s holds under the
specialized condition Z; but not under the general condition Z5. Other useful
syntax constraints could be the requirement on the presence or absence of some
specified items in an event, a certain partitioning of the items for context events
and subject events, the maximum or minimum number of items in an event, etc.
In the same spirit, the disjointness in condition 2 can be removed to express
certain overlapping constraints. Constraints have been exploited to prune search
space for mining association rules [16,13]. A natural generalization is to exploit
syntax constraints for mining general UDAs. In this paper, however, we focus
on the basic form in Definition 2.

2.2 Examples

In this section, we intend to achieve two goals through considering several ex-
amples of UDA specification: to show that disparate notions of association can

be specified in the UDA framework, and to readily convey the basic idea that
underly more complex specification. Once these are understood, the user can
define any notion of association of his/her own choice, in the given specifica-
tion language. We shall focus on specifying Strength_Filter because specifying
Support_Filter is straightforward. In all examples, lower-case letters z; and z;
represent event variables and upper-case letters Z; and X; represent events.

Ezample 1 (Association rules). Association rules 7 — X introduced in [1] can
be specified by

Support_Filter(z = x) : P(zx) > mini_sup
Strength_Filter(z — x) : ¢(z,x) > mini_conf,

where Y(z,x) = P(x|z) = P(xz)/P(z) is the confidence of rule 7 — X [1]. To
factor in both “generality” and “predictivity” of rules in a single measure, the
following ¢(z, %), called the J-measure [15], can be used:

P(x|z2) 1— P(x|z)

P()[P(xle)logs—p 05 + (1= Plele)loge—5 0 57

Here, P(z) weighs the generality of the rule and the term in the square bracket
weighs the “discrimination power” of z on x. This example shows how easy it is
to adopt a different definition of association in the UDA framework. (The End)

In the above specification, the most basic constructs are the supports P(7),
P(X), P(ZX), P(—X), P(Z—X). Since Support_Filter(Z — X) implies that
each of 7, X, Z X is a large event, these supports are readily available from mining
large events (note that P(-X) =1 — P(X) and P(Z-X) = P(7Z) — P(ZX)).

Ezample 2 (Multiway correlation). The notion of correlation is a special case of
UDAs without context event. In particular, events X1,..., Xy are correlated «f
they occur together more often than expected when they are independent. This
notion can be specified by the x? statistic test, x*(x1,...,xx) > X% [4]. Let
R=Awy,~x1} x ... x{wp,~xp} and r =ry...r; € R. Let E(r) = N * P(r1) *
.. % P(ry), where N is the total number of transactions. x*(x1, ..., zy) is defined
by:

(N * P(r) — E(r))?

E(r)

ZTER

The threshold value X2 for a user-specified significance level o, usually 5%, can
be obtained from statistic tables for the x? distribution. If X1,..., Xy passes
the test, Xy,..., X, are correlated with probability 1 — «. The uncorrelation of
X1,..., Xy can be specified by Strength_Filter of the form 1/x*(x1,...,) >
1/x%, where o is usually 95%. If X1,..., Xy passes the filter, X1,..., X} are
uncorrelated with probability o. (The Fnd)

The problem of mining correlation among single-item events was studied in
[3,4]. One difference of correlation specified as UDAs is that each event X;
can involve multiple items, rather than a single item. One such example is

the correlation of X1 = INTERNET and Xs = YOUNG AN MALFE, where
YOUNG A MALE is a 2-item event. This generalization is highly desirable
because single-item events like Xy = INTERNET and X9 = YOUNG or
X1 = INTERNET and Xo = M ALFE may not be strongly corrected. It is not
clear how the mining algorithms in [3,4] can be extended to multi-item events.
A more profound difference, however, is that, as UDAs, we can model “ad-hoc”
extension of correlation. The subsequent examples shows this point.

Ezample 3 (Conditional association). In conditional association 7 — X1, ..., Xk,
subject events X1,..., Xy are assoctated when conditioned on Z. For example,

INT'LABUSINESS.TRIP —- CEO,FIRST_ CLASS

says that X1 = CEO and X2 = FIRST_CLASS (flights) are associated for
Z =INT'L NBUSINESS_TRIP (international business trips). For example,
of the association of X1, ..., Xi ts taken as the correlation, we have conditional
correlation defined by Strength_Filter(z — x1,...,25):

Py ...x5]2)
P(x1]z) *...% P(ag|z)

> mini_str (1)

or alternatively, by the x? statistic test after replacing P(r) and P(r;) in x*(Xq,. ..
X2 with P(r|z) and P(r;|z). (The End)

Ezxample | (Comparison association). In comparison association 7y, 7, — X,
subject event X 1s associated differently with context events 7y and Z-. For
example,

INT'LABUSINESS_.TRIP,PRIVATE TRIP - CEO A FIRST_CLASS

says that X = CEO A FIRST _CLASS is more associated with 7y = INT'L A
BUSINESS_TRIP than with 7o = PRIVATE_TRIP. To compare two as-
sociations for difference, we can compare their corresponding strength 1; n
Strength_Filter. In particular, suppose that UDA(— z;, x) specifies the associa-

an)

>

tion of Z; and X, i = 1,2. For each ¢;(zi, ¢) in UDA(— 2, z), Strength_Filter(z1, 2o —

z) for the comparison association contains the formula:
Dist(1p; (21, 2),;(22, 2)) > mini_str;. (2)

Here, Dist(s1, s2) measures the distance between two strengths s and so. Typical
distance measures are Dist(s1,s2) = s1/s2 or Dist(s1,s2) = 81 — s2. (The End)

Ezxample 5 (Emerging association). In emerging association 71, 7o — X1, ..., Xk,
the association of X1, ..., Xy has changed sufficiently when the condition changes
from 7y to Zy. Suppose that UDA(z; — 1, ..., 2) specifies the conditional as-
sociation Z; — X1,...,Xg, t = 1,2, as wn Exvample 3. Then, for each strength
function ¢¥; in UDA(z; — x4, ..., xx), Strength_Filter(z1, 20 — 21, ..., 2x) for
emerqging association contains the formula:

Dist(h; (21,21, ..., 25),¥5(22, 21, ..., 2x)) > mini_str;. (3)

The notion of emerging association is useful for identifying trends and changes.
For example, the notion of emerging patterns [6] is a special case of emerging
associations of the form 71, Zo — X, where Z1 and Zy are identifiers for the two
originating databases of the transactions. An emerging pattern 7y, 7s — X says
that the ratio of the support of X in the two databases identified by 7, and 75
1s above some specified threshold. To specify emerging patterns, we first merge
the two databases into a single database by adding item Z; to every transaction
coming from database i, i = 1,2, and specify 1;(z;, 2) = P(z;x)/P(z), where z
are variables for Z;, and Dist(s1,s2) = s1/s2 in Equation 3. With the general
notion of emerging association, however, we can capture a context Z; as an
arbitrary event (not just a database identifier) and the participation of more
than one subject event. (The End)

In Examples 3, 4 and 5, the “output” UDAs (i.e., conditional association,
comparison association, emerging association) are defined in terms of “input”
UDAs. These input UDAs are of the form — Xi,..., Xi in Example 3, — 7;, X
in Example 4, and 7; — X3i,..., Xx in Example 5, which themselves can be
defined in terms of their own input UDAs. The output UDAs can be the input
UDAs for defining other UDAs. In general, new UDAs are defined by “com-
posing” existing UDAs. It 1s such a composition that provides the extendibility
for defining ad-hoc mining tasks. We further demonstrate this extendibility by
specifying causal relationships.

Ezample 6 (Causal association). Information about statistical correlation and
uncorrelation can be used to constrain possible causal relationships. For example,
if events A and B are uncorrelated, it is clear that there is no causal relationship
between them. Following this line, [14] identified several rules for inferring causal
relationships, one of which is the so-called CCC rule: if events 7, Xy, Xo are
pairwise correlated, and if X1 and Xy are uncorrelated when conditioned on 7,
one of the following causal relationships exists:

X172 =X, Xi=> 7= X, X1 <7<« Xy,

where <= means “is caused by” and = means “causes”. For a detailed account
of this rule, please refer to [14]. We can specify the condition of the CCC rule
by Strength_Filter(z — x1,22):

U1 (0, 1, x2) > mini_stry A P1(0, 1, z) > mini_striA
U1 (0, 2, 2) > mini_stry A a(z, x1, 22) > mini_strs.

Here, 11 (w, u,v) > mini_stry tests the correlation of u and v conditioned on w,
and Ya(w, u,v) > mini_stry tests the uncorrelation of v and v conditioned on
w. These tests were discussed in Evamples 2 and 3. (The Fnd)

In all the above examples, the basic constructs used by the specification are the
support of the form P(v), where v is a conjunction of terms 7;, ~7;, X;, = X.
This syntax of v completely defines the language for Strength_Filter because
we make no restriction on how P(v) should be used in the specification. In the
next section, we define the exact syntax for v.

3 The specification language

The term “language” 1s more concerned with what it can do than how it is pre-
sented. There are two considerations in choosing the language for strength func-
tions ;. First, the language should specify a wide class of association. Second,
the associations specified should have an efficient mining algorithm. We start
with the efficiency consideration. To specify UDAs 7,...,7, = Xq,..., X,
we require each strength ; to be above some minimum threshold, where ;
is a function of P(v) and v is a conjunction of X; and Z;. The support filter
P(X1...XxZ;) > mini_sup is used to constrain the number of candidate Z; and
X;. The support filter implies that a conjunction v consisting of any number of
subject events X; and zero or one context event 7; is large. Therefore, supports
P(v) for such v are available from mining large events if we keep the support for
each large events.

The question is whether it is too restrictive to allow at most one Z; in each
v. It turns out that this is a desirability not a restriction. In fact, each 7; serves
as an individual context for the association of Xy, ..., X; and there 1s no need
to consider more than one 7; at a time. Another question is that, if absences
of events, i.e., =X; and =7, are desirable in v, as in the examples in Section
2.2, can P(v) be computed efficiently? The next theorem, which is essentially a
variation of the well known “inclusion-exclusion” theorem, shows that such P(v)
can be computed by the supports involving no absence of events.

Theorem 1. Let V = {V4,...,V,} be ¢ events of the form X; or Z;. Let U be
a conjunction of events that do not occur in V. Then

P(U—|V1 . —|Vq) = Ewgv(—l)lwlp(UW),
where |W| denotes the number of V;’s in W. (The End)

For example, assume that V = {X2, 71} and U = {X;}, we have P(X1-X2—7;) =
P(X1)—P(X1X2)—P(X171)+ P(X1X271). This rewriting conveys two impor-
tant points: (1) the right-hand side contains no absence, (2) if X, X537, is large
(as required by the support filter), the right-hand side contains only supports of
large events, thus, is computable by mining large events. containing no absence.
Based on these observations, we are now ready to define the syntax of v for
supports P(v) that appear in a strength function.

Definition 3 (Individual-context assumption). Let Z; be a context event
and X; be a subject event. v satisfies the ICA (Individual-Context Assumption)
if v 1s a conjunction of zero or more terms of the form X; and —X;, and zero
or one term of the form Z; and —Z;. A support P(v) satisfies the ICA if v
satisfies the ICA. A strength function 1 satisfies the ICA if it is defined using
only supports satisfying the ICA. A strength filter satisfies the IC'A if it uses only
strength functions satisfying the /CA. The ICA-language consists of all UDAs
defined by the support filter in Section 2.1 and the strength filter satisfying the
ICA. (The End)

For example, X1 X5, - X1 Xy, X1 X571, and X1 X5—7; all satisfy the ICA
because each contains at most one term for context events, but X; X277, and
X1 X971—75 do not. We like to point out that the ICA is a language on support
P(v), not a language on how to use P(v) in defining a strength function .
This total freedom on using such P(v) allows the user to define new UDAs by
composing existing UDAs in any way he/she wants, a very powerful concept
illustrated by the examples in Section 2.2. In fact, one can verify that all the
strength functions v in Section 2.2 are specified in the ICA-language.

We close this section by making an observation on the “computability” of
the ICA-language. The support filter implies that any absence-free v satisfying
the ICA is a large event. The rewriting by Theorem 1 preserves the ICA because
it only eliminates absences. Consequently, the ICA-language ensures that all
allowable supports can be computed from mining large events. This addresses
the computational aspect of the language.

4 Implementation

We are interested in a unified implementation for mining UDAs. Given that any
combination of items can be an event and any combination of events can be
a UDA, it is only feasible to rely on effective pruning strategies to reduce the
search space of UDAs. Due to the space limitation, we sketch only the main ideas.
Assume that the items in an event are represented in the lexicographical order
and that the subject events in a UDA are represented in the lexicographical order
(we consider only symmetric UDA specifications). We consider p > 0 context
events; the case of p = 0 is more straightforward. Our strategy is to exploit
the constraints specified by Support_Filter and Strength_Filter as earlier as
possible in the search of UDAs. The first observation is that Support_Filter
implies that all subject events X; and context events Z; are large. Thus, as the
first step we find all large events, say by applying Apriori [1] or its variants. We
assume that the mined large events are stored in a hash-tree [1] or a hash table
so that the membership and support of large events can be checked efficiently.
The second step is to construct UDAs using large events. For each UDA
iy Zp = Xi,..., Xg, Support_Filter requires that X, ... X;Z; be large
for 1 < ¢ < p. Therefore, it suffices to consider only the k-tuples of the form
(X1,..., Xk, Zi), where X;’s are in the lexicographical order and X;...X,7;
makes a large event for all 1 < ¢ < p. We can generate such k-tuples and UDAs
of size k in a level-wise manner like Apriori by treating events as items: In the
kth iteration, a k-tuple (X1,..., X, 7Z;) is generated only if (X1,... Xp—1, Xk)
and (X1,..., Xk_1, Z;) were generated in the (k—1)th iteration and X5 ... X3 7;
is large. The largeness of X ... Xy Z; can be checked by looking up the hash-
tree or hash table for storing large events. Also, the disjointness of Xy and 7,
required by Strength_Filter, and the lexicographical ordering of X, ..., X, can
be checked before generating tuple (X1, ..., Xg, Z;). After generating all k-tuples
in the current iteration, we construct a candidate UDA 71,..., 7, — X1,..., X}
using p distinct tuples of the form (X1,..., Xi, Z;), i = 1,...,p, that share the

same prefix Xi,..., X;. Any further syntax constraints on Z;, as discussed in
Section 2.1, can be checked here. A candidate 7;,...,7, = X;,..., X is a
UDAfUDA(Z, ..., Z, — X1, ..., Xk) holds. The above is repeated until some
iteration k for which no k-tuple is generated.

For mining minimal UDAs, a straightforward algorithm is to first generate
all UDAs and then remove non-minimal UDAs. A more efficient algorithm is
finding all minimal UDAs without generating non-minimal UDAs. The strategy
is to consider subsets of {X1,..., X} for subject events X;’s before considering
{Xy,..., Xg} itself, and prune all supersets from consideration if any subset is
found to be a UDA. Since this is essentially a modification of the above algorithm,
we omit the detail in the interest of space.

We have conducted several experiments to mine the classes of UDAs consid-
ered in Section 2.2 from the census data set used in [14], which contains 63 items
and 126,229 transactions. The result is highly encouraging: it discovers several
very interesting associations that cannot be found by existing approaches. For ex-
ample, some strong causal associations were found among general k-item events,
as discussed in Example I, but were not found in [14] because only 1-item events
are considered there. This fact re-enforces our claim that the uniform mining
approach does not simply unify several existing approaches; it also extends be-
yond them by allowing the user to define new notions of association. We omit
the detail of the experiments due to the space limit.

5 Related Work

In [8], a language for specifying several pre-determined rules is considered, but
no mechanism 1s provided for the user to specify new notions of association. In
[10], it is suggested to query mined rules through an application programming
interface. In [12,17], some SQL-like languages are adopted for mining association
rules. The expressiveness of these approaches is limited by the extended SQL.
For example, they cannot specify most of the UDAs in Section 1 and 2. In [11,9],
a generic data mining task is defined as finding all patterns from a given pattern
class that satisfy some interestingness filters, but no concrete language is pro-
posed for pattern classes and interestingness filters. Finding causal relationships
is studied in [5,14]. None of these works considers the extendibility where the
user can define a new mining task.

6 Conclusion

This paper introduces the notion of user-defined association mining, i.e., the
UDA mining, and proposes a specification framework and implementation. The
purpose is to move towards a unified data mining where the user can mine a
database with the same ease as querying a database. For the proposed approach
to work in practice, however, further studies are needed in several areas. Our
current work has considered only limited syntax constraints on events, and it is
important to exploit broader classes of syntax constraints to reduce the search

space. Also, a unified mining algorithm may be inferior to specialized algorithms
targeted at specific classes of UDAs. It is important to study various optimization
strategies for typical and expensive building blocks of UDAs. In this paper, we
have mainly focused on the semantics and “computability” (in no theoretic sense)
of the specification language. A user specification interface, especially merged
with SQL, is an interesting topic.

References

1. R. Agrawal, T. Imielinski, and A. Swami: Mining Association Rules between Sets
of Items in Large Datasets. SIGMOD 1993, 207-216

2. R. Agrawal and R. Srikant: Fast Algorithm for Mining Association Rules. VLDB
1994, 487-499

3. C.C. Aggarwal and P.S. Yu: A New Framework for [temset Generation. PODS 1998,
18-24

4. S. Brin, R. Motwani, and C. Silverstein: Beyond Market Baskets: Generalizing As-
sociation Rules to Correlations. SIGMOD 1997, 265-276

5. G.F. Cooper: A Simple Constraint-based Algorithm for Efficiently Mining Observa-
tional Databases for Causal Relationships. Data Mining and Knowledge Discovery,
No. 1, 203-224, 1997, Kluwer Academic Publishers

6. G. Dong, J. Li: Efficient Mining of Emerging Patterns: Discovering Trends and
Differences. SIGKDD 1999, 43-52

7. D. Heckerman: Bayesian Networks for Data Mining. Data Mining and Knowledge
Discovery, Vol. 1, 1997, 79-119

8. J. Han, Y. Fu, W. Wang, K. Koperski, O. Zaiane: DMQL: A Data Mining Query
Language for Relational Databases. SIGMOD Workshop on Research Issues on Data
Mining and Knowledge Discovery, 1996, 27-34

9. T. Imielinski and H. Mannila: A Database Perspective on Knowledge Discovery.
Communications of ACM, 39(11), 58-64, 1996

10. T. Imielinski, A. Virmani, and A. Abdulghani: DataMine: Application Program-
ming Interface and Query Language for Database Mining. KDD 1996, 256-261

11. H. Mannila: Methods and Problems in Data Mining. International Conference on
Database Theory, 1997, 41-55, Springer-Verlag

12. R. Meo, G. Psaila, S. Ceri: A New SQL-like Operator for Mining Association Rules.
VLDB 1996, 122-133

13. R.T. Ng, L. V.S. Lakshmanan, J. Han, A Pang: Exploratory Mining and Pruning
Optimizations of Constrained Associations Rules. SIGMOD 1998, 13-24

14. C. Silverstein, S. Brin, R. Motwani, J. Ullman: Scalable Techniques for Mining
Causal Structures. VLDB 1998, 594-605

15. P. Smyth, R.M. Goodman: An Information Theoretic Approach to Rule Induction
from Databases. IEEE Transactions on Knowledge and Data Engineering, Vol. 4,
No. 4, 301-316, August 1992.

16. R. Srikant, Q. Vu, and R. Agrawal: Mining Association Rules with Item Con-
straints. KDD 1997, 67-73

17. D. Tsur, J. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, A. Rosen-
thal: Query Flocks: a Generalization of Association-Rule Mining. SIGMOD 1998,
1-12

18. T.D. Wickens: Multiway Contingency Tables Analysis for the Social Sciences.
Lawrence Brlbaum Associates, 1989.

