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Abstract

We study the problem of mining changes of classification
characteristics as the data changes. Available are an old
classifier, representing previous knowledge about classifica-
tion characteristics, and a new data. We want to find the
changes of classification characteristics in the new data. An
example of such changes is “members with a large family no
longer shop frequently, but they used to”. Finding this kind
of changes holds the key for the organization to adopt to the
changed environment and stay ahead of competitors. The
challenge is that it is difficult to see what has really changed
from comparing the old and new classifiers that could be very
large and different. In this paper, we propose a technique to
identify such changes. The idea is tracing the characteris-
tics, in the old and new classifiers, that correspond to each
other by classifying the same examples. We describe sev-
eral ways to present changes so that the user can focus on a
small number of important ones. We evaluate the proposed
method on real life data sets.

1 Introduction

Changes can be opportunities to some people (organi-
zations) and curses to others. A key to staying ahead in
the changing world is knowing important changes and
devising strategies for adopting to them. There are
three steps in this process: detecting changes, identi-
fying the causes of changes, and acting upon the causes
to respond to the changes. Detecting changes in a form
understandable to the user is the most important step
because it alerts opportunities and challenges ahead and
trigger the other steps. For example, by mining changes
the user may find that many members with a large fam-
ily no longer shop frequently. This information could
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alert the organization about a potential lose of cus-
tomers and trigger actions to retain such customers.

In this paper, we study the change mining problem
in the context of classification [15]. The classification
refers to extracting characteristics called a classifier
from a sample of pre-classified examples, and the goal
is to assign classes, as accurately as possible, for other
examples that follow the same class distribution as
the sample examples. In the change mining problem,
we have an old classifier, representing some previous
knowledge about classification, and a new data set that
has a changed class distribution. We want to find the
changes of classification characteristics in the new data
set.

For changes to be understandable to the user, two
requirements are essential. First, changes must be
described ezplicitly. Simply returning the pair of old
and new classifiers does not work because it is not
reasonable to expect the user to extract the changes
from comparing two classifiers that are potentially large
and dissimilar. For example, a decision tree classifier
can easily have several dozens (if not hundreds) of rules,
and a change at the top levels will make the classifier
look very different. Second, the user should be told what
changes are important because often more changes are
found than what a human user can possibly handle.

Change mining is a difficult problem. First of
all, it is not clear how the change of classification
should be measured. Simply measuring the number
of rules added and deleted does not work because
a similar classification can be produced by dissimilar
rules. Moreover, a small change in rules could account
for most changes in classification accuracy. There are
a few studies on this issue in the literature (see Section
2 for related work). In [11], to extract and understand
changes, a new classifier is required to resemble the old
classifier to some extent, i.e., follow a similar splitting
in the decision tree construction. This restriction makes
it less likely to find important changes. For example,
important attributes often occur at top levels of the
decision tree, and if such attributes change, the method
in [11] cannot be used. In [9], the change between two
classifiers is measured by the amount of work required
to transform them into some common specialization. In
the real life, the human user hardly thinks of changes in



terms of such a common specialization.

We believe that a new classifier should best capture
the characteristics in the new data set, even at the ex-
pense of losing similarity to the old classifier. It is the
task of change mining to find what characteristics have
changed with respect to the old classifier. To perform
this task, we propose a new change mining technique,
called correspondence tracing, to trace the correspond-
ing rules in the old and new classifiers through the ex-
amples that they both classify. This idea is analogous
to identifying the difference between two catalogs I and
IT in the real life: for each section o (i.e., each rule in
change mining) of I, we find how the products (i.e., ex-
amples in change mining) listed under o are listed in
11 by tracing the corresponding sections of I that list
these products. In change mining, each rule is a char-
acteristics of the examples classified, and we use the
difference of corresponding rules to obtain a description
of changes. The following example illustrates this tech-
nique.

EXAMPLE 1.1. Consider training a classifier for admis-
sion decisions using a graduate applicant database. In
the past, the TOEFL score was an important factor of
admission. Recently, there is a policy change: refer-
ence letters and the standing of undergraduate schools
are more important. Therefore, on the new data set
processed under the new policy, the following old rule o
based on the TOEFL score performs poorly: out of 50
examples classified, 20 are misclassified:

o: TOEFL = High — Yes (50, 20).

Below, let X, denote the 50 examples classified by o.
Suppose that we construct a new classifier from the new
data set and that the examples in X, are classified by
the following new rules:

ny: Letter = Not_Strong — No (22/30, 3/5)
na: School = Good — Yes (28/40, 1/3).

The notation (22/30,3/5) for ny is read as follows:
ny classifies 22 examples from X,, of which 3 are
misclassified, and classifies 30 examples not from X,, of
which 5 are misclassified. There is a similar reading for
na. These information convey two aspects of changes.
Characteristics change. The new rules ny and
ng “correspond” to the old rule o classifying the sub-
population classified by o (in addition to other exam-
ples). We can use pairs < o,n1 > and < o,ng > to de-
scribe the changes for this sub-population, read as: for
the sub-population classified by o, the admission crite-
rion has shifted from TOEFL score (i.e., 0) to reference
letters (i.e., n1) and the standing of schools (i.e., nga).
Notice that understanding these changes does not re-
quire that the involved old rule and new rules be similar

in syntax. This is an important difference between our
approach and [11].

Quantitative change. The statistics given the
bracket () can be used to quantify the significance of
changes. Intuitively, new rules ni1 and ng are doing
much better than the old rule o because they make
only 3+1=4 misclassifications instead of originally 20.
We can rank all characteristics changes by such an
improvement to classification accuracy, the primary goal
of classification. The user can then select important
changes for action based on this informed ranking. Of
course, to avoid overfitting, quantitative change should
be estimated on the whole population, not on the given
sample. (End of Example)

The above approach can be summarized as follows.
To find important changes, we abandon the restriction
that the new classifier be similar to the old one, and we
deal with extracting changes from potentially dissimilar
classifiers (indeed, the old rule o and new rules n; in
the above example do not share syntax similarity). Our
approach is to trace the corresponding new rules for
each old rule through the examples classified and use
them to describe the changes of the old rule. To present
changes in an understandable manner, we rank all
changes according to the improvement to classification
accuracy. This ranking criterion makes sense because
it addresses the primary goal of classification. With
this ranking, the user typically only needs to examine
the top few changes that account for most of the
accuracy improvement. We will describe the details for
finding characteristics changes, estimating quantitative
changes, and presenting changes to the user.

In the rest of the paper, we review related works
in Section 2, present our approach in Section 3, and
report an experiment in Section 4. Finally, we conclude
the paper.

2 Related Work

In the context of association rule mining [3], incremen-
tal mining [6] maintains the completeness of association
rules in the presence of insertion/deletion of data, active
mining [2] tracks the change of support and confidence
over time, emerging pattern mining [8] and contrast-
set mining [4] identify conditions whose support has
changed substantially across two or more groups. In
all these works, each rule or pattern is considered in
isolation, consequently, changes are variations or con-
sequences of one another. In [13], fundamental rule
changes are considered in the context of pruning “redun-
dant rules”. A fundamental change of a rule (in support
or confidence) is not a direct consequence of changes of
some conditions in the rule. Such changes are restricted



to rules of the generalization/specialization relationship.
None of these works deals with the classification prob-
lem where changes should be extracted on the basis of
improving the goal of classification, the classification ac-
curacy.

The drifting environment [18, 10] concerns with pro-
ducing a classifier by assigning more weight to recently
arrived data. [5] exploits the user knowledge to con-
struct an understandable classifier. None of these works
addresses the change mining problem studied here. [9]
presents a framework for measuring changes in two mod-
els such as two classifiers. A model is represented by a
partition of the data space that summarizes the data.
The change between two models is measured by the
amount of work required to transform the two models
into the common specialization obtained by overlaying
the two models’ partitionings. In practice, the human
user hardly measures changes this way. Also, such an
“editing distance” does not address the primary goal of
classification, the classification accuracy. [11] extracts
changes by requiring the new classifier to be similar
to the old one, i.e., using either the same splitting at-
tributes or the same splittings in the decision tree con-
struction. This is a severe restriction because important
changes may vanish from classifiers even though they ex-
ist in the data. The work on finding tree differences [16]
is not applicable here because dissimilar decision trees
could produce similar classification. Also, changes of
classification depend not only on the structure of rules,
but also on the statistical property of rules.

3 The Proposed Approach

We consider classifiers given by a set of rules. A rule
has the form, A101a1 A ... N AgOrar — ¢, where A;
is a predictor attribute, a; is a value for A;, 6; is one
of =, >, <. ¢ is a class of the class attribute C.
The only assumption we made about a classifier is that
ezactly one rule is used to classify a given example.
This assumption is satisfied in most cases because
each example is typically assigned to exactly one class,
such as the decision tree classifier or the decision rule
classifier [15], and association based classifiers [12, 17].
This includes the default rule that is used only if there
is no matching rule for the given example.

In the change mining problem, we have an old
classifier O and a new data set D. Alternatively, the
old classifier can be replaced with an old data set
from which the old classifier can be constructed. The
task is to find how the classification characteristics has
changed in the new data set relative to the old classifier.
Notice that the terms “old” and “new” do not have to
correspond to the time dimension. For example, we can
apply the change mining to find the changes between a

male population and an female population.

Before change mining, some methods can be applied
to detect the existence of changes in the new data
set. For example, we can construct a new classifier
from the new data set and apply both the old classifier
and the new classifier to the new data set. If the
new classifier is significantly more accurate than the
old classifier, the classification characteristics must have
changed (assuming that both classifiers are constructed
by the same algorithm). Even if the new classifier
is not more accurate than the old classifier, it could
still capture alternative characteristics as changes, and
such changes may trigger alternative actions. Therefore,
more precisely, the notion of changes here refers to the
changes captured by the old and new classifiers, which
do not necessarily imply a data distribution change.
With this said, however, our primary interest in this
paper is in those “real” changes that play an essential
role in improving the classification accuracy.

3.1 The algorithm. We find changes in the new
data set D in four steps. First, we construct a new
classifier for D, by applying an existing algorithm. Sec-
ond, for each example in D, we determine the classifying
rules in both old and new classifiers. Third, for each old
rule o, we identify the corresponding new rules, denoted
New(o), that classify the examples classified by o, and
estimate the quantitative change (relative to o) for each
new rule n; in New(o). Finally, we present characteris-
tics changes of the form < o,n; > or < o, New(o) > in
a list ranked by quantitative change. This algorithm is
described below.

e Step 1: Construct a new classifier from D, by
adopting an existing algorithm. We use C4.5 for
classifier construction in this paper.

e Step 2: For each example in D, identify the old
and new classifying rules. This can be done by
modifying a classifier to output the classifying rule
for each example classified.

e Step 3: For each old rule o,

— Step 3.1: identify the corresponding new rules,
New(o) = {ni,...,n}, where each n; classi-
fies at least one example in D classified by o.
This can be done in the same scan of exam-
ples as in Step 2: for each example in D, we
draw an edge from the old classifying rule to
the new classifying rule. New(o) is the set of
new rules to which o has an edge.

— Step 3.2: estimate the quantitative change of
< o,n; > for each rule n; in New(o). The
detail is given in Section 3.2.



e Step 4: Present changes. This step presents the
characteristics changes of the form < o,n; > or
< o,New(o) >, ranked by quantitative change,
so that the user can focus on a small number of
important changes. There are several ways to do
this, depending on the level at which the user likes
to know changes. The detail will be given in Section
3.3.

If a new rule classifies k examples in D, it corre-
sponds to at most £ old rules because no example is
classified by more than one old rule. Therefore, we have
the following observation.

OBSERVATION 3.1. There are at most |D| changes of
the form < o,n; >, where |D| denotes the number of
examples in D. (End of Observation)

The complexity of the above algorithm is as follows.
Step 1 is the standard C4.5 classifier construction, for
which efficient algorithms exist. Step 2 takes two scans
of the given data set because finding the classifying
rule for a given example takes a constant time (for
descending the decision tree). Step 3.1 can be done
in the same data scan as in Step 2 and each example
only adds one edge. Step 3.2 scans all changes < o,n; >
once. From Observation 3.1, this work is bounded by
the number of examples in the given data set D. Step
4 involves sorting all changes < o,n; >. This work is
bounded by |D|log|D].

The above is forward change mining in that it starts
with an old rule and identify the corresponding new
rules. A forward change tells how each old characteris-
tics evolves to new ones. In contrast, backward change
mining starts with a new rule and identify the corre-
sponding old rules that classify the examples classified
by the new rule. A backward change tells how each new
characteristic “originates” from old ones. Our discus-
sion focuses on forward change mining, but it is equally
applicable to backward change mining with the roles of
old and new rules exchanged.

EXAMPLE 3.1. We use the “Lenses” data set from the
UCI repository [14] to illustrate our approach. There
are four attributes, three classes, and 18 examples:

Attributes:
Aq: Age: 1, 2, 3
Ao Spectacle Prescription: 1, 2
As: Astigmatic: 1, 2
Ay: Tear Production Rate: 1, 2
Classes:
C1: Hard Contact Lenses, 4 examples
C5: Soft Contact Lenses, 5 examples
Cs3: No Contact Lenses, 9 examples.

TID A1,A2,A3,A4 Class | Changed Class
0 1, 1, 1, 1 3 |

1 1, 1, 1, 2 2 |

2 1, 1, 2, 1 3 | 2
3 1, 1, 2, 2 1 |

4 1, 2, 1, 2 2 |

5 1, 2, 2, 2 1 |

6 2,1, 1, 2 2 |

7 2,1, 2, 1 3 | 2
8 2, 1, 2, 2 1 |

9 2, 2,1, 1 3 |

10 2, 2,1, 2 2 |

11 2, 2, 2, 2 3 |

12 3,1, 1, 2 3 |

13 3,1, 2,1 3 | 2
14 3,1, 2, 2 1 |

15 3, 2, 1, 1 3 |

16 3, 2, 1, 2 2 |

17 3, 2, 2,1 3 | 2

On this data set, the C4.5 program [15] produces the
3 rules below (with the default class being Cs):

01: Ay=1—C5 [0, 2, 7,9, 13, 15, 17 (N=7,E=0)]

03: As=1ANAy=2—Cy [1, 4, 6, 10, 12, 16 (N=6, E=1)]

03 : Ag :2/\A4 :2—>Cl [3, 5, 8, 11, 14 (N:5, EZI)]

For each rule, the bracket [ and | contains the ids of the
examples classified, with N giving the number of such
examples and E giving the number of misclassified.

Suppose now that examples 2, 7, 18 and 17 change
their class from Cs to Ca, as in the “Changed Class”
column. These are the examples that are classified by
01 and satisfy As = 2. On the new data set, 01 becomes
less accurate with 4 misclassifications:

01: Ay =1—C5 [0, 2, 7,9, 13, 15, 17 (N=7,E=4)]

We apply change mining to find the changes in the new
data set. First, we construct the new C4.5 classifier
from the new data set, obtaining 4 new rules (with the
default class being Cs), where N and E refer to the new
data set:

ZA3:1/\A4:1—>03 [0, 9,
n22A3:1/\A4:2—>CQ [1,4,
nyg: A3 =2NA1=1— Cy /2, 7,
ng: A3 =2NA1 =2 — C} /3, J,

ny 15 (N=8,E=0)]
18, 17 (N=4, E=0)]
8, 11, 14 (N=5, E=1)].

Comparing the classification of the two classifiers
on the new data set, it is apparent that ni and ng
classify the examples that were classified by o01. Thus,
{n1,ns} are the corresponding new rules of o;. We use
< o1,n1 > and < o1,ng > to describe the changes

6, 10, 12, 16 (N=6, E=1)]



for the sub-population classified by o1. These changes
are read as: the examples classified by o1 that have
As = 2 have changed the class from Cs to Ca, and
that have A3 = 1 remain unchanged. This is exactly
the change that we made earlier. Changes < o0g,ng >
and < 03,n4 > are trivial because old and new rules are
identical. (End of Example)

Often, there are more changes than what the human
user can handle. It is very important that the user be
informed of the importance of changes and that changes
be presented so that it is easy to spot a small number
of important changes. The rest of this section addresses
these issues.

3.2 Estimating quantitative change. The impor-
tance of a change is measured by its relevance to the goal
of classification. In particular, a change is important to
the extent that recognizing it can improve the classifi-
cation accuracy. This accuracy improvement is called
quantitative change. The quantitative change should be
measured (more precisely, estimated) on the whole pop-
ulation, not just on the given training sample D. Below,
we present a method for estimating quantitative change.

Consider a characteristics change < o,n; >, where
n; is a corresponding new rule of an old rule o. In the
population of which D is a sample,

e let Cover(o) denote the sub-population classified
by o,

e let Cover(n; /o) denote the subset of Cover(o) that
is classified by n;.

Notice that Cover(o) and Cover(n;/o) refer to the un-
derlying population, not the sample D. The quantita-
tive change of < o,n; > is the change of the errors of the
two rules on Cover(n;/o). We borrow the pessimistic
estimation from [7, 15] to estimate these errors.

To explain the pessimistic estimation, we use the
analogy of estimating the rate of left-handed people
in a population of 1,000,000 people. Suppose that in
a sample S of N people randomly selected from the
population, we observed that E are left-handed. E/N
is the left-handed rate for the sample S. The larger
the sample size N is, the closer E/N is to the real left-
handed rate in the population. For a given confidence
level C'F, we can determine an upper bound, denoted
Ucr(N, E), such that the chance that the left-handed
rate in the population is more than Ucp(NV, E) is less
than CF', or equivalently, the chance that the left-
handed rate is no more than Ucp(N, E) is at least
1—CF. (The default value of CF used by C4.5 is 25%.)
Ucr(N, E) is a pessimistic estimation because it is an
upper bound. The smaller the sample size N is, the

less reliable the number E' is, due to more randomness
in a small sample, and a larger pessimistic estimation
is necessary to satisfy a given confidence level. This
property is used by C4.5 to prune overly specific rules
that tend to have a large pessimistic estimation. We
omit the exact computation of Uop(N, E), which can
be found in the C4.5 code.

To estimate the error rate of an old rule o, we can
map Cover(o) to the population of people, map the
examples in D classified by o to people in the sample
S, and map the examples in D misclassified by o to
left-handed people in the sample S.

e Let N be the number of examples in D classified by
o, E of which are misclassified. In a C4.5 classifier,
N and E are available for every rule.

The (upper bound of) error rate of o in Cover(o) is
estimated by Ucp(N, E). If we select N examples ran-
domly from Cover(o), we have 1 — C'F' confidence that
the number of errors is no more than N x Ucp(N, E).

The same estimation applies to the corresponding
new rules New(o) = {ny,...,ng} of o.

e Let N; be the number of examples in D classified
by n;, F; of which are misclassified. N; and E; are
available from a C4.5 classifier.

e Let d; be the number of the above N; examples that
are also classified by o (in the old classifier). Notice
that 1 <d; < N;and N =d; +...+ dg. d; can be
computed in the scan of examples in Step 3.1.

Ucr(N;, E;) is the pessimistic estimation of the er-
ror rate of new rule n; for the sub-population
Cover(n; /o). For any d; examples randomly selected
from Cover(n;/o), the number of misclassifications by
n; is estimated by d; x Ucp(NV;, F;), and the number of
misclassifications by o is estimated by d; x Ucr(N, E).
Therefore, the change in the number of correct classifi-
cations, due to the change from o to n;, is estimated by
di X UCF(N, E) — di X UCF(Ni,Ei)-

DEFINITION 3.1. (QUANTITATIVE CHANGE) The
quantitative change of < o,n; > is

A(o,ni) = (di/|D]) x (Uor(N, E) = Ucr(Ni, Ei)),

where |D| is the number of examples in the new data
set D. (End of Definition)

Intuitively, A(o,n;) measures the estimated accu-
racy increase (either positive or negative) due to the
change from o to n;. A(o,n;) is large if n; classifies
many examples, in which case d; is large, and is accu-
rate, in which case Ucp(N, E) — Ucr(N;, E;) is large.



We can generalize this notion to more than one change
in a natural way: the quantitative change of k£ changes
< o01,n1 >, ..., < O, N > 18 ZleA(oj,nj). That is,
the accuracy improvement by several changes is the sum
of the accuracy improvement by each change. The addi-
tivity follows from the disjointness of examples classified
by different rules.

In the rest of the paper, A(o, New(o)) denotes
the quantitative change of all changes related to the
old rule o, i.e., ¥, e New(0)A(0, 1), and A denotes the
quantitative change of all changes of classifier O, i.e.,
YocoA(0, New(0)).

DEFINITION 3.2. (CUTOFF COVERAGE) Consider
a list < o1,n1 >,...,< og,nE > and a prefix
<o1,n1 >,...,<o05,n; >, 1< k.

e The cutoff coverage of the prefix with respect to the
list is

Si_1Aoj,n5)/EE_ 1 A(oj,m;).
e The cutoff coverage of the prefix with respect to the
classifier is

¥%_1A(0j,m;)/A. (End of Definition)

A similar notion of cutoff coverage can be defined
for a list < o1, New(o1) >,...,< og, New(og) >. The
cutoff coverage measures the relative contribution of a
prefix with respect to a longer list of changes or with
respect to all the changes. Thus, the cutoff coverage
of a prefix of changes tells how much change has been
captured (in percentage) if the rest of the list is cut off.
If we rank all changes by quantitative change, typically
it suffices to examine a short prefix to have a large cutoff
coverage because large quantitative changes concentrate
near the top of the list.

EXAMPLE 3.2. Continue with Fzample 3.1. Let wus
compute the quantitative change of < o1,{ni,ns} >.
Notice that n1 and ng classify only the evamples clas-
sified by o1. Hence, di = N1 = 3 and d3 = N3 = 4.
|D| = 18.

A(ol,nl) = (3/18)(UCF(7, 4) — UCF(?), 0))

= (3/18)(0.755 — 0.37) = 1.155/18 = 6.4%,
A(o1,mn3) = (4/18)(Ucr(7,4) — Ucr(4,0))

= 4/18(0.755 — 0.293) = 1.848/18 = 10.3%,
A(Ol, {nl,ng}) = 167%

Thus, the change < o1,{n1,ns} > is important to the
extent of increasing the estimated accuracy increases by
16.7%. In the ranked list, < o1,n3 >,< 01,m1 >, the
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cutoff coverage at < o1,ng > with respect to the list is
10.3/16.7 = 61%. This is also the cutoff coverage with
respect to the classifier because the other old rules, o2
and o3, do not change. (End of Example)

3.3 Presenting changes. Usually, the user likes to
see changes at certain levels or of certain types.

3.3.1 Changes at different levels. Changes can
occur at different levels.

Example level changes. At the lowest level,
the user finds changes by posing “what if” queries
on selected examples. For example, an example level
change in Example 1.1 can tell how a given applicant
is admitted/rejected before and after the change. This
change can be described by the old rule and new rule
< o,n; > that classify the example, which contrasts
the characteristics used and classes assigned in the
old and new classifications. Moreover, Ucp(N, E)
and Ucp(N;, E;) can be used to describe the certainty
of classification, where N, E, N;, E; are as defined in
Section 3.2.

Rule level changes. At the rule level, the user
wants to know the changes for the sub-population
classified by a given old rule o, i.e., < o, New(o) >.
In Example 1.1, the rule level changes tell the policy
change to ny and ns for the sub-population who used
to be admitted based on a high TOEFL score. We can

present such changes by a list < o,n; >,...,< o,ng >
ranked by A(o,n;), where n; are in New(o). For each
prefix < o,m >,...,< o,n; >, the cutoff coverage

tells the percentage of quantitative change, with respect
to the list and with respect to the classifier, captured
by the prefix. The user can read changes from left to
right and cut off the list based on the cutoff coverage.
Similarly, for changes below we assume that the cutoff
coverage for every prefix is computed.

Class level changes. At the class level, the user
wants to know the changes for a given class C. For ex-
ample, the changes for class Yes in Example 1.1 tell how
the successful applicants under the old policy are pro-
cessed differently under the new policy. We can present
class level changes by the list < 01, New(o1) >,...,<
ok, New(or) >, ranked by A(o;, New(o;)), where o; is
an old rule for class C. Alternatively, we can present
the list < 01,n1 >,...,< og,ng >, ranked by A(o;,n;),
where o, is an old rule for class C' and n; € New(o;). In
the second presentation, the user does not have to see
all the changes for one old rule before seeing some more
important changes for another old rule

Classifier level changes. At this level, the user
wants to know all the changes for the whole classifier.
We can present such changes by a ranked list of <



o,n; > changes or a ranked list of < o, New(o) >
changes.

3.3.2 Types of changes. We can also categorize
changes into several types, not necessarily exclusive.

Global changes: A global change occurs if both
characteristics change and quantitative change are
large. Such changes are always interesting because new
characteristics are significantly different and more ac-
curate. For example, in the decision tree construc-
tion, if choosing a different splitting attribute at the top
level results in a significant increase in accuracy, this is
a global change because the most important attribute
is changed. Example 1.1 also shows a global change
where the new rules make use of different attributes
than the old rule and result in a significant higher ac-
curacy. Global changes cannot be found in [11] because
new rules are highly dissimilar to old ones.

Alternatives changes. If a characteristics change
is large, but its quantitative change is small, the new
rules essentially represent alternative characteristics to
the old rule, in that they are equally capable of the clas-
sification task. Alternatives changes occur for several
reasons: the new classifier is constructed by a different
algorithm that exploits a different search bias, or a small
change in the data takes the search to follow a differ-
ent path. Though alternatives changes do not improve
accuracy, they provide alternative characteristics of the
data, thus, new possibilities of actions. Finding alter-
natives changes for the purpose of such actions requires
a different ranking criterion and more input from the
user. In this paper, we are mainly interested in changes
in terms of the action of improving the classification
accuracy.

Target changes. In a target change, some sub-
population classified by an old rule switches to a dif-
ferent class. In this case, the old rule will consistently
misclassify the sub-population because it has not caught
up the class change. Example 1.1 shows a target change
where some applicants admitted previously are now re-
jected by the new admission criterion. The shopping
example in Introduction is another target change where
customers with a large family switch the status from fre-
quent shopping to infrequent shopping. Target changes
are always interesting because they alert changes of the
target variable.

Specialization changes. A specialization change
occurs when some sub-population classified by an old
rule has changed so much, judged by an accuracy
increase, that it is justified to have its own classification.
This sub-population is captured by having additional
conditions in a corresponding new rule. While a target
change describes a sub-population that switches to a

new class, a specialization change describes a sub-
population that preserves the old class, but at a higher
accuracy. Often, these two types of changes occur
together. For example, an old rule

Member = Yes — Frequent
may be involved in a specialization change:
Member = Yes A Size = Small — Frequent
and a target change:
Member = Yes A Size = Large — Infrequent.

Generalization changes. A generalization
change occurs when some old characteristics become
unimportant and several old rules containing them are
combined after removing such characteristics. This
change is useful to know because pruning unimportant
characteristics not only increases the accuracy, but also
focuses the user on real characteristics. In a generaliza-
tion change, a new rule generalizes several old rules, so
the backward change mining that starts with a new rule
and finds corresponding old rules is more suitable.

Interval changes. An interval change occurs if
there is a shift of boundary points, due to the emerging
of new cutting points. In addition, an interval can
be refined into several small intervals if it is justified
for each small interval to have a separate classification
characteristics, either having a different class or having
higher accuracy.

4 Experiments

We evaluated the proposed method on two real-life data
sets, German Credit Data from the UCI Repository of
Machine Learning Databases [14], and IPUMS Census
Data from [1]. These data sets were chosen because
no special knowledge is required to understand the ad-
dressed applications. To verify if the proposed method
finds the changes that are supposed to be found, we
need to know such changes beforehand. For this reason,
we “planted” several changes into the German Credit
Data and verified if the proposed method finds them.
For the IPUMS Census Data, we applied the proposed
method to find the changes across different years or dif-
ferent sub-populations. For each change mining task,
we have an “old” data set and a “new” data set. For
concreteness, we consider tree classifiers built by the
C4.5 program.

4.1 Experiments on German Credit Data. This
data set has two classes, “good” and “bad” (credits), 7
numerical attributes and 13 categorical attributes. 700
examples belong to the “good” class and 300 examples



belong to the “bad” class. We first extracted the C4.5
classifier from the given data set, which serves as our
previous knowledge O. Each rule is named by an id
output by C4.5. We then planted several changes in
the data set, one at a time, and applied the proposed
method to find them. Here, we report only changes at
the rule level, which form the basis for mining changes
at class and classifier levels.

4.1.1 Change 1: Target change. The old rule o7
in O classifies 23 examples correctly in the original data
set:

o72:
Personal-status =
Foreign = no
-> good [N=23,E=0]

single-male

12 of these examples have Liable-people=1, and the
remaining 11 examples have Liable-people=2. We
then changed the “good” class of the 12 examples
with Liable-people=1 to the “bad” class, and keep the
“good” class for the 11 examples with Liable-people=2.
Let D denote the new data set. The new classifier
built using the new data set shows the accuracy increase
from 79.90% (of the old classifier on D) to 82.20%. We
applied the change mining algorithm to O and D.

The following changes for old rule o7y are found: <
072,M201 >, < 072,N199 >, < 072,Me6 >, < 072,M115 >,
ranked by quantitative change, where n,; are new rules
in the new classifier.

n201:
Liable-people > 1
Foreign = no
-> good [N=11,E=0]
n199:
Personal-status = single-male
Liable-people <= 1
Foreign = no
-> bad [N=10,E=0]
né6:
Savings-account = over1000DM
Debtors = none
Duration > 11
-> good [N=24,E=4]
nl115:

Savings-account = less500DM
Personal-status = single-male
Job = skilled

Credit <= 9857

-> good [N=18,E=4]

Here are detailed statistics of the changes:

Old(N, E) New(d;, N;, E;) | A cc; cc,

072(23,12) | mn201(11,11,0) 0.54% | 49.54% | 13.35%
n199(10, 10,0) 1.02% | 94.01% | 25.25%
nee (1,24, 4) 1.06% | 97.24% | 26.50%
n115(1,18,4) 1.09% | 100% 27.25%

N, FE.,d;, N;, E; are as defined in Section 3.2. For
each prefix ending at rule n;, the last three columns
A, ce;, e are quantitative change, cutoff coverage with
respect to the list and with respect to the classifier. d;
tells that the new rules from top to bottom classify
11, 10, 1 and 1 of the 23 examples classified by o72.
Consider the prefix < 072,n201 >, < 072,M199 > of the
list. The quantitative change of the prefix is 1.02%,
the cutoff coverage is 94.01% with respect to the list
and 25.25% with respect to the classifier. Here is the
detailed computation:

A(072,1201) = (11/1000)(Ucr(23,12) — Ucr(11,0))
= (11/1000)(0.615 — 0.119) = 0.54%.
A(072,TL199) = (10/1000)([]@}?(23, 12) - UCF(lo, O))
= (10/1000)(0.615 — 0.131) = 0.48%.
A(072,7’L66) = (1/1000)(UCF(23, 12) — UCF(2474))
= (1/1000)(0.615 — 0.250) = 0.036%.
A(072,TL115) = (1/1000)([]@5‘(23, 12) - UCF(18, 4))
= (1/1000)(0.615 — 0.328) = 0.029%.

The cutoff coverage up to nigg9 with respect to the list
is

(0.54 + 0.48)/(0.54 + 0.48 + 0.036 + 0.029) = 94.01%.

The cutoff coverage up to mig9 with respect to the
classifier is

(0.54% + 0.48%) /4.04% = 25.25%,

where 4.04% is the quantitative change of the classifier
(computation not shown here).

The changes < o072,m201 > and < 072,199 >
can be read as: previously (Personal-status=single-
male and Foreign=no) implies a “good” credit; now if
Liable-people < 1 also holds, the credit is “bad”. We
reproduced the classification by rule o752 on the new data
set:

o72:
Personal-status =
Foreign = no
-> good [N=23,E=12]

single-male

Comparing this with the earlier classification by new
rules ngg1 and njg99, the new rules are able to separate
the class of most (new) examples classified by o7s, i.e.,
11 with “good” class from 10 with “bad” class, by using
different ranges of Liable-people. This is exactly the
change we planted earlier in the data.



4.1.2 Change 2: Specialization change. We
planted a specialization change as follows. Consider the
old rule o017 below, which classifies the largest number of
examples in the original data, i.e., 164, with 47 misclas-
sified. Notice that the 47 misclassified examples have
“good” credit (because the class of the rule is “bad”)
and the remaining 117 correctly classified examples have
“bad” credit. We changed the “Residence-time” value
to 3 for the 47 misclassified examples and change the
“Residence-time” value to 1 for the remaining 117 cor-
rectly classified examples. The intuition for this change
is that a long “Residence-time” may be positively re-
lated to a “good” credit. This change is significant be-
cause building and not building a new classifier gives
the accuracy of 88.30% and 81.10%, respectively.

On the changed data, our change mining algo-
rithm finds the following characteristics changes <
017, {ns, nao} > at the top of the list:

4.1.3 Change 3: Interval change. Next, we
planted an interval change. Examining the major rule
017, we noticed that the boundary point Duration=11
plays an important role in deciding the credit of a cus-
tomer. So we bring in a change by increasing the “Du-
ration” value by 6 (months) for each example classified
by o017. Training a new classifier on the new data set
improves the accuracy from 81.10% to 83.80%. Our al-
gorithm finds < 017,{7117,7135, 7’L57,TL2} > as the top
changes.

Old(N, E) New(d;, Ni, E;) | A cc; cc

7
1.20% | 89.78% 35.69%
1.27% | 95.02% 37.77%
1.32% | 98.76% 39.26%

017(164,47) | n17(130,139,27)
n35(27, 59, 14)

ns7(6,25,4)

Old(N, E) New(d;, N;, E;) | A; cc; cc
017(164,47) | ng(119,138,12) | 2.48% | 64.42% | 32.38%
n40(45, 95, 0) 3.85% | 100.00% | 50.26%

ol7:
Status = ODM
Duration > 11
Foreign = yes
-> bad [N=164,E=47]
n8:
Status = ODM
Residence-time <= 1
-> bad [N=138,E=12]
n40:
Status = ODM

Foreign = yes
Duration > 11
Residence-time > 1
-> good [N=95,E=0]

The new rules ng and nyo classify 119 and 45
examples classified by 017 (ds = 119 and dyo = 45).
These 45 examples were misclassified by o017 into the
“bad” class, but now are correctly classified as the
“good” class. We can read this change as: previously
(Status=0DM and Duration > 11 and Foreign=yes)
implies a “bad” credit; now those customers satisfying
the extra condition Residence-time > 1 have the “good”
credit. Failing to identify this change means losing good
customers. The quantitative change of the classifier is
7.66%, so the cutoff coverage up to ngo with respect to
the classifier is 3.85%/7.66% = 50.26%.

na(1,26,2) 1.34% | 100.00% | 39.75%

0l7:
Status = ODM
Duration > 11
Foreign = yes
-> bad [N=164,E=47]

nl7:
Status = ODM
Duration > 16
Foreign = yes
-> bad [N=139,E=27]

n35:
Credit-history = duly-till-now
Credit > 1386
Existing-credits <=1
Telephone = yes
Debtors = none
Duration <= 30
Liable-people <= 1
-> good [N=59,E=14]

nb7:

Debtors =
Housing
-> good

guarantor
own
[N=25,E=4]

n2:
Status = ODM
Duration <= 16
Residence-time <= 3
-> good [N=26,E=2]

Comparing 017 and ni7, the planted interval change
was found for 130 (di7 = 130) out of the 164 examples
changed: previously (Status = 0DM and Duration >
11 and Foreign = yes) implies a “bad” credit, now the



“Duration” threshold is shifted to 16. The next new
rule ngs classifies 27 examples classified by o017, using
different attributes, which allows to correctly classify
the “good” examples that were previously misclassified
by 017. New rules nsy and ns classify only 6+1=7
examples classified by o017, thus, are relatively minor
in connection with o17.

4.1.4 Change 4: Global change. We created a
more drastic change that uses a different splitting
attribute at the top level of the decision tree. The
attribute “Status” is the first splitting attribute in the
original decision tree. Suppose that we want to make
“Debtor” the most important factor for a customer’s
credit. Below is the class distribution for the three
values of “Debtor” (i.e., none, co-applicant, guarantor)
before the change:

none co-applicant guarantor
"good" class 635 23 42
"bad" class 272 18 10

We increased the information gain ratio [15] of
“Debtor” (the attribute selection criterion used by
the decision tree) by changing 150 examples with
Debtor=none in the “bad” class to “good” class. Here
is the new class distribution:

none co-applicant guarantor
"good" class 785 23 42
"bad" class 122 18 10

After the change, “Debtor” has the highest informa-
tion gain ratio, therefore, is selected at the first level of
the decision tree. Building the new classifier on the new
data set increases the accuracy from 79.10% to 88.40%.
The following are a few most significant changes found
by our algorithm:

Foreign = yes

-> bad [N=164,E=104]
n80:

Debtors = none

Existing-credits > 1

-> good [N=106,E=15]
ni45:

Savings-account = unknown

-> good [N=71,E=T7]
n39:

Debtors = none

Property = real-estate

-> good [N=52,E=T7]
n73:

Duration > 21

Purpose = used-car

-> good [N=34,E=3]
n82:

Purpose = radio-tv

Debtors = none

-> good [N=29,E=3]

Comparing the above old rule and new rules, the main
change is that the old rule contains attribute “Status”,
whereas none of the new rules does. Instead, three new
rules, ngg, n3g and ngo, contain Debtor=none. This is
consistent with the change planted in the data.

4.2 Experiments on IPUMS Census Data. The
IPUMS database contains PUMS census data from
the Los Angeles and Long Beach areas for the years
1970, 1980, and 1990. We chose the “1-in-100” sample
in the source, and we chose “Vetstat” (the veteran
status) as the class attribute. “Vetstat” has four values:
“N/A”, “no service”, “yes” and “not ascertained”.
After removing all examples of the “N/A” or “not
ascertained” values for “Vetstat”, 24549, 56800 and
67236 examples remain for years 1970, 1980 and 1990,
respectively. Table 1 depicts the race distribution
of examples as given by the attribute “raceg” (race-
general). We considered two ways to make up the data
set for a change mining problem:

e compare the same race in two different years, and

/

e compare two different races in the same year.

Here we report the changes found for 1970 vs 1990 for
“black”, and the changes found for “black” vs “chinese”

in 1990.

Old(N,E) New(d;, N;, E;) | A; cc; cc
017(164,104) | nso(25,106,15) | 1.23% | 22.70% | 12.49%
n145(17,71,7) 2.13% | 39.30% | 21.63%
n39(15,52,7) 2.85% | 52.60% | 28.94%
n73(12, 34, 3) 3.47% | 64.04% | 35.24%
ng2(9,29,3) 3.92% | 72.34% | 39.81%
ol7:
Status = ODM

Duration > 11

4.2.1 1970-black vs 1990-black. The sub-
populations of “black” in 1970 and 1990 were used as
the old and new data sets, respectively, denoted by
1970-black and 1990-black. Old and new classifiers were
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Rule N E d; A, cc; cc}
0238 : 35 < age < 54 — yes 2049 | 1685 | N/A | 11.70% | 100.00% | 83.35%
n274 : 40 < age < 72, sex = male — yes 932 | 366 | 501 | 3.06% | 26.07% | 21.73%
n269 : age < 51, famunit =1 — no 187 | 14 153 | 4.69% | 40.09% | 33.41%
nl41: age < 40,nfams = 1, wkswork2 = [48,49] — no | 572 | 31 136 | 6.17% | 52.74% | 44.01%
Table 2: Top changes found from “1970-black” to “1990-black”

Rule N E d; A, cc; cc}

0274 : 40 < age < 72, sex = male — yes | 224 | 195 | N/A | 8.13% | 100% 86.59%

n26 : bplg = china,incss < 5748 — no 167 | 6 104 | 4.56% | 56.09% | 48.57%

nl6 : age < 46, movedin < 5 — no 637 | 9 59 7.24% | 89.05% | 76.69%

Table 3: Top changes found from 1990-black to 1990-chinese

1970 1980 1990
white 21,403 | 45,282 | 52,424
black 2,276 | 6,685 | 7,052
american indian 64 419 340
chinese 186 818 1,907
japanese 362 1,001 1,148
other asian 158 1,864 | 4,257
other race 100 731 108

Table 1: Race vs Year split

built from 1970-black and 1990-black. The accuracy
of the old classifier (built from the 1970-black) is
64.60%, compared to the accuracy of 89.70% of the
new classifier (built from 1990-black). Table 2 shows
several top changes. (The attribute famunit refers to
the family unit in the household the person belongs to,
the attribute nfams refers to the number of families
in a household, and the attribute wkswork2 refers to
the number of weeks worked last year.) In the first
row, A;, cc;, cc; refer to those for all changes of the old
rule. The quantitative change of the list is 6.17%. This
accounts for 52.74% of the quantitative change of 0233
and 44.01% of the quantitative change of the classifier.
Here is the detailed computation:

A(0238,n274)
= (d;/|D|)(Ucr (2049, 1685) — Ucr (932, 366))
= (501/7052)(0.83 — 0.40) = 3.05%
A(0238,71269)
= (di/|D])(Ucr(2049,1685) — Ucr (187, 14))
= (153/7052)(0.83 — 0.07) = 1.65%
A(0238,n141)
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= (di/|D])(Ucr(2049,1685) — Ucr(572,31))
— (136/7052)(0.83 — 0.06) = 1.48%

We can read the top change < 0238,n274 > as: in
1970, 35 < age <= 54 was a characteristic of veterans,
but in 1990, 40 < age < 72 A sex = male was a new
characteristic of veterans. The change of the upper limit
of the age interval is due to the fact that a veteran of
age 54 in 1970 will be captured as age 74 in 1990 if they
participated in the 1990 data collection. The emerging
of the new condition sex = male is likely due to the fact
that most new veterans in the 20 years between 1970
and 1990 were males. This experiment also showed that
a small number of changes at the top of the list captured
a significant portion, in this case 44.01%, of the overall
change.

4.2.2 1990-black vs 1990-chinese. In this experi-
ment, we fixed the year at 1990 and compared the black
sub-population (as the old data set) with the chinese
sub-population (as the new data set). The accuracy of
old and new classifiers (on the new data set) is 88.50%
and 97.90%. Table 3 shows some significant changes
found. (bplg refers to the birth place, incss refers to
social security income, and movedin refers to the num-
ber of years prior to the census year that the individual
moved into the present dwelling unit.) The cutoff cov-
erage of the list is 7.24%/9.44% = 76.69%, where 9.44%
is the accuracy change for the whole old classifier. We
omitted the detailed computation. In this experiment,
the top two changes captured 76.69% of overall change!

In summary, these experiments verified that the
proposed method found the changes of classification
characteristics as the data changes. Moreover, the ex-



periments also verified that a small number of important
changes are responsible for most of the accuracy change,
and the proposed method found such changes at the top
of the list.

5 Conclusion

In change mining, some previous knowledge about the
data is known and the data has changed since then. The
problem is to find what characteristics have changed
relative to the previous knowledge. A solution to this
problem holds the key for the organization to adopt
to the changed environment. Despite its importance,
there were very few studies on mining changes. In this
paper, we studied the change mining problem in the
context of classification. The study made two main
contributions. First, we dealt with extracting changes
from potentially very dissimilar old and new classifiers.
For this purpose, we proposed a novel change mining
technique called correspondence tracing. Second, we
ranked the importance of changes with respect to the
goal of classification and we proposed a method of
presenting changes so that the user only needs to know
a small number of changes. The experiments on real life
data sets showed that our method is effective in finding
important changes.
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