A Review/Tour of Formalism

CMPT 886
Automated Software Analysis & Security
Nick Sumner
Formalism is just a tool

- Formal systems are common
Formalism is just a tool

- Formal systems are common
 - High school algebra
 - Classic formal logic
 - Euclidean geometry
Formalism is just a tool

- Formal systems are common
 - High school algebra
 - Classic formal logic
 - Euclidean geometry

- They serve multiple useful purposes
Formalism is just a tool

- Formal systems are common
 - High school algebra
 - Classic formal logic
 - Euclidean geometry

- They serve multiple useful purposes
 - Limit the possibilities that you may consider
 - Check whether reasoning is correct
 - Enable automated techniques for finding solutions
Formalism is just a tool

- Formal systems are common
 - High school algebra
 - Classic formal logic
 - Euclidean geometry

- They serve multiple useful purposes
 - Limit the possibilities that you may consider
 - Check whether reasoning is correct
 - Enable automated techniques for finding solutions

- Choosing the *right* tool for the job can be hard
Formalism is just a tool

- Several specific systems are common (in CS and program analysis)
Formalism is just a tool

- Several specific systems are common (in CS and program analysis)
 - Order Theory

 How to compare elements of a set
Formalism is just a tool

- Several specific systems are common
 (in CS and program analysis)
 - Order Theory
 - Formal Grammars & Automata

Use structure to constrain the elements of a set
Formalism is just a tool

• Several specific systems are common
 (in CS and program analysis)
 – Order Theory
 – Formal Grammars & Automata
 – Formal Logic (Classical & otherwise)

How and when to infer facts
Formalism is just a tool

- Several specific systems are common (in CS and program analysis)
 - Order Theory
 - Formal Grammars & Automata
 - Formal Logic (Classical & otherwise)

- We are going to revisit these (quickly) with some insights on how they can useful in practice.
Formalism is just a tool

- Several specific systems are common (in CS and program analysis)
 - Order Theory
 - Formal Grammars & Automata
 - Formal Logic (Classical & otherwise)

- We are going to revisit these (quickly) with some insights on how they can be useful in practice.
 - Most students don’t seem to remember them
Formalism is just a tool

- Several specific systems are common (in CS and program analysis)
 - Order Theory
 - Formal Grammars & Automata
 - Formal Logic (Classical & otherwise)

- We are going to revisit these (quickly) with some insights on how they can be useful in practice.
 - Most students don’t seem to remember them
 - Even fewer learn that formalism can be useful!
Formalism is just a tool

• Several specific systems are common (in CS and program analysis)
 – Order Theory
 – Formal Grammars & Automata
 – Formal Logic (Classical & otherwise)

• We are going to revisit these (quickly) with some insights on how they can useful in practice.
 – Most students don’t seem to remember them
 – Even fewer learn that formalism can be useful!
 – These techniques are critical for static program analysis
Order Theory

- *Order theory* is a field examining how we compare elements of a set.
Order Theory

- *Order theory* is a field examining how we compare elements of a set.
- Simplest example is numbers on a number line:

\[
\begin{array}{c}
\text{Set: } \mathbb{Z} \\
\text{Relation: } \leq
\end{array}
\]
Order Theory

- **Order theory** is a field examining how we compare elements of a set.
- Simplest example is numbers on a number line:

 - Set: \(\mathbb{Z}\)
 - Relation: \(\leq\)
Order Theory

- **Order theory** is a field examining how we compare elements of a set.

- Simplest example is numbers on a number line:

 \[\leq \text{ is a total order on } \mathbb{Z} \]

 - Intuitively, \(\forall a, b \in \mathbb{Z} \), either \(a \leq b \) or \(b \leq a \)
Order Theory

- We often want to compare complex data
Order Theory

- We often want to compare complex data
 - Ordinal, multidimensional, ...
Order Theory

- We often want to compare complex data
 - Ordinal, multidimensional, ...
Order Theory

- We often want to compare complex data
 - Ordinal, multidimensional, ...

![Diagram showing coordinates and points](image-url)
Order Theory

- We often want to compare complex data
 - Ordinal, multidimensional, ...

What is the result of
\((1,1) \leq (2,2)\)?
Order Theory

- We often want to compare complex data
 - Ordinal, multidimensional, ...

What is the result of $(1,1) \leq (2,2)$?

We can take \leq to be pairwise comparison.
We often want to compare complex data
- Ordinal, multidimensional, ...

What is the result of \((1,2) \leq (2,1)\)?
Order Theory

- We often want to compare complex data
 - Ordinal, multidimensional, ...

Pairwise comparison with tuples yields a *partial order*
Order Theory

- We often want to compare complex data
 - Ordinal, multidimensional, ...

- Pairwise comparison with tuples yields a partial order
 - Intuitively, not all elements are comparable
Order Theory

- We often want to compare complex data
 - Ordinal, multidimensional, ...

- Pairwise comparison with tuples yields a partial order
 - Intuitively, *not all elements are comparable*

Which of these 4 elements are comparable?
Partial Orders

- A relation \leq is a *partial order* on a set S if $\forall \ a, b, c \in S$
 - Reflexive: $a \leq a$
 - Antisymmetric: $a \leq b \& b \leq a \Rightarrow a = b$
 - Transitive: $a \leq b \& b \leq c \Rightarrow a \leq c$
Partial Orders

- A relation \leq is a **partial order** on a set S if $\forall a,b,c \in S$
 - Reflexive: $a \leq a$
 - Antisymmetric: $a \leq b \& b \leq a \Rightarrow a = b$
 - Transitive: $a \leq b \& b \leq c \Rightarrow a \leq c$

How does a total order compare?
Partial Orders

- A relation \leq is a *partial order* on a set S if $\forall a, b, c \in S$
 - Reflexive: $a \leq a$
 - Antisymmetric: $a \leq b \& b \leq a \Rightarrow a = b$
 - Transitive: $a \leq b \& b \leq c \Rightarrow a \leq c$

- When reasoning about partial orders, we prefer \sqsubseteq
Partial Orders

- A relation \leq is a *partial order* on a set S if $\forall a, b, c \in S$
 - Reflexive: $a \leq a$
 - Antisymmetric: $a \leq b \land b \leq a \Rightarrow a = b$
 - Transitive: $a \leq b \land b \leq c \Rightarrow a \leq c$

- When reasoning about partial orders, we prefer \sqsubseteq

- Common partial orders include
 - substring, subsequence, subset relationships
 - componentwise orderings
 - functions (considering all input/output mappings)
Partial Orders

- We can express the structure of partial orders using (semi-)lattices.
We can express the structure of partial orders using \((semi-)lattices\).
Partial Orders

- We can express the structure of partial orders using *(semi-)*lattices.
Partial Orders

- We can express the structure of partial orders using \((semi-)lattices \).
Partial Orders

- We can express the structure of partial orders using *(semi-)*lattices.
Partial Orders

• We can express the structure of partial orders using *(semi-)*lattices.*

• If unique least/greatest elements exist, we call them ⊥ (bottom)/⊤ (top)
Partial Orders

- We are often interested in upper and lower bounds.
We are often interested in upper and lower bounds.

- A join $a \sqcup b$ is the least upper bound of a and b.

What is $(0,0) \sqcup (1,0)$?
Partial Orders

- We are often interested in upper and lower bounds.
 - A *join* $a \sqcup b$ is the least upper bound of a and b

What is $(0,0) \sqcup (1,0)$?
Partial Orders

- We are often interested in upper and lower bounds.
 - A join $a \sqcup b$ is the least upper bound of a and b
 - A meet $a \sqcap b$ is the greatest lower bound of a and b

What is $(0,0) \sqcap (1,0)$?
Partial Orders

- We are often interested in upper and lower bounds.
 - A **join** $a \sqcup b$ is the least upper bound of a and b
 - A **meet** $a \sqcap b$ is the greatest lower bound of a and b

What is $(0,0) \sqcap (1,0)$?
Partial Orders

- We are often interested in upper and lower bounds.
 - A join $a \sqcup b$ is the least upper bound of a and b
 - A meet $a \sqcap b$ is the greatest lower bound of a and b
 - Bounds must be unique and may not exist.
Partial Orders

- We are often interested in upper and lower bounds.
 - A *join* \(a \sqcup b \) is the least upper bound of \(a \) and \(b \)
 - A *meet* \(a \sqcap b \) is the greatest lower bound of \(a \) and \(b \)
 - Bounds must be unique and may not exist.
 - \(\forall S' \subseteq S, \exists \sqcup S' \& \sqcap S' \Rightarrow \text{lattice} \), \(\exists \sqcup S' \) or \(\exists \sqcap S' \Rightarrow \text{semilattice} \)

```
(0,0)  (1,0)  (2,0)
  /       /       /
(0,0)  (1,1)  (2,1)
  /       /       /
(0,0)  (1,2)  (2,2)
```

What is the structure shown?
Partial Orders

- A product of lattices yields a lattice
 - We already saw componentwise orderings for tuples. This is the same.
Partial Orders

• A product of lattices yields a lattice
 – We already saw componentwise orderings for tuples. This is the same.

• Partial orders & lattices can be very useful
 – A formal structure for reasoning about relative value
Partial Orders

- A product of lattices yields a lattice
 - We already saw componentwise orderings for tuples. This is the same.

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value
 - modern cryptography
Partial Orders

- A product of lattices yields a lattice
 - We already saw componentwise orderings for tuples. This is the same.

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value
 - modern cryptography
 - concurrency & distributed systems
Partial Orders

- A product of lattices yields a lattice
 - We already saw componentwise orderings for tuples. This is the same.

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value
 - modern cryptography
 - concurrency & distributed systems
 - dataflow analysis & proving program properties
Formal Grammars & Automata

• Grammars define the structure of elements in a set
 – Alternatively, they generate the set via structure
Formal Grammars & Automata

- Grammars define the structure of elements in a set
 - Alternatively, they generate the set via structure
- They commonly define *formal languages*
 - Sets of strings over a defined alphabet
Formal Grammars & Automata

- Grammars define the structure of elements in a set
 - Alternatively, they generate the set via structure
- They commonly define *formal languages*
 - Sets of strings over a defined alphabet
- They are effective at constraining a search space
A regular language can be expressed via a regular expression.
A regular language can be expressed via a regular expression

$\text{regex} \rightarrow \text{symbol} | \left(\`\text{regex}\`\right) | \text{regex}'* | \text{regex}'|\`\text{regex}$
A **regular language** can be expressed via a **regular expression**

\[
\text{regex } \rightarrow \text{ symbol } \\
| \text{ `(` regex `)`} \\
| \text{ regex `*`} \\
| \text{ regex `|` regex}
\]

e.g. \text{a(bc | cd)*e} defines L containing \text{abccdbce}
Regular Languages & Finite Automata

• A regular language can be expressed via a regular expression

• Finite automata can be used to recognize or generate elements of a regular language
Regular Languages & Finite Automata

- A regular language can be expressed via a regular expression
- Finite automata can be used to **recognize** or **generate** elements of a regular language
A regular language can be expressed via a regular expression.

Finite automata can be used to recognize or generate elements of a regular language.

For example, \(a(bc \mid cd)^*e\) recognizes \(L\) containing \(abccdbce\).
Regular Languages & Finite Automata

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language
- Recall, regular languages cannot express matched parentheses (Dyck languages)
 \[a^n b^n \]
Context Free Grammars & Pushdown Automata

- *Context free grammars* add recursion and enable Dyck language recognition
Context Free Grammars & Pushdown Automata

- *Context free grammars* add recursion and enable Dyck language recognition

\[
\text{Start} = A \\
A \rightarrow cBd \\
B \rightarrow eBf \\
| g
\]
Context Free Grammars & Pushdown Automata

- **Context free grammars** add recursion and enable Dyck language recognition

```
Start = A
A → cBd
B → eBf
| g
```

\[ce^n gf^n d\]
Context Free Grammars & Pushdown Automata

- **Context free grammars** add recursion and enable Dyck language recognition.

Start = A
- A → cBd
- B → eBf
- B → g

A
- c
- B
- d

$ce^n gf^n d$
Context Free Grammars & Pushdown Automata

- *Context free grammars* add recursion and enable Dyck language recognition.

\[
\begin{align*}
\text{Start} &= A \\
A &\rightarrow cBd \\
B &\rightarrow eBf | g \\
\end{align*}
\]

- A sample parse tree for a sentence in this grammar:

```
earrow
/ \ / \ / \\
c B d e B f
| | | | |
A c B g
```

- A valid string according to the grammar:

```
ce^nfgf^nd
```
Context Free Grammars & Pushdown Automata

- **Context free grammars** add recursion and enable Dyck language recognition

\[
\begin{aligned}
\text{Start} &= A \\
A &\rightarrow cBd \\
B &\rightarrow eBf \\
 &\mid g \\
\end{aligned}
\]

\[c e^n g f^n d\]
Context Free Grammars & Pushdown Automata

- **Context free grammars** add recursion and enable Dyck language recognition
 - The grammar for regular expressions was a CFG!

```
regex  →  symbol
  |  (`regex `)`
  |  regex `*`
  |  regex `|` regex
```
Context Free Grammars & Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
 - The grammar for regular expressions was a CFG!

```latex
regex \rightarrow \text{symbol}
  | (regex)
  | regex
  | regex\star
  | regex | regex
```
Context Free Grammars & Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
Context Free Grammars & Pushdown Automata

- **Context free grammars** add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via *pushdown automata*)
- **Context free grammars** play a key role in
 - Precise static program analysis
 - Program synthesis
 - Prediction and machine learning on programs
Formal Logic

- Formal logic is a systematic approach to reasoning
 - Separate the messy content of an argument from its structure
Formal Logic

• Formal logic is a systematic approach to reasoning
 – Separate the messy content of an argument from its structure

• Sometimes the process can be automated
 – e.g. satisfiability problems, type inference, ...
Formal Logic

- Formal logic is a systematic approach to reasoning
 - Separate the messy content of an argument from its structure

- Sometimes the process can be automated
 - e.g. satisfiability problems, type inference, ...

- Program analysis has actually been one of the driving forces behind satisfiability in recent years.
Classical Logic

- You likely already know either *propositional* or *first order logic*
 - Systems for reasoning about the truth of sentences
Classical Logic

- You likely already know either propositional or first order logic
 - Systems for reasoning about the truth of sentences

- Atoms abstract away the actors of the sentences
 - Constants: #t, #f
 - Variables: x, y, z, ...
Classical Logic

- You likely already know either *propositional* or *first order logic*
 - Systems for reasoning about the truth of sentences

- Atoms abstract away the actors of the sentences
 - Constants: #t, #f
 - Variables: x, y, z, ...

- Connectives relate the atoms & other propositions to each other
 - ¬ (Not), ∧ (And), ∨ (or)
 - → (Implies), ↔ (Iff)
Classical Logic

• First order logic augments with
Classical Logic

- First order logic augments with
 - Quantifiers - \(\exists \) (there exists), \(\forall \) (for all)
 - Functions & Relations - e.g. father(x), Elephant(y)
Classical Logic

- First order logic augments with
 - Quantifiers- \(\exists \) (there exists), \(\forall \) (for all)
 - Functions & Relations- e.g. father\((x) \), Elephant\((y) \)
- Sentences can be true or false
Classical Logic

- First order logic augments with
 - Quantifiers- \(\exists \) (there exists), \(\forall \) (for all)
 - Functions & Relations- e.g. father\((x) \), Elephant\((y) \)
- Sentences can be true or false
 \(\forall x (\text{Elephant}(x) \rightarrow \text{Grey}(x)) \)
Classical Logic

- First order logic augments with
 - Quantifiers- \exists (there exists), \forall (for all)
 - Functions & Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false
 \[
 \forall x (\text{Elephant}(x) \rightarrow \text{Grey}(x))
 \]
 \[
 \forall x (\text{Elephant}(x) \rightarrow \text{Elephant}(\text{father}(x)))
 \]
Classical Logic

- First order logic augments with
 - Quantifiers- \exists (there exists), \forall (for all)
 - Functions & Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false
- An interpretation I of the world along with the rules of logic determine truth via judgement (\vdash)
Classical Logic

- First order logic augments with
 - Quantifiers- ∃ (there exists), ∀ (for all)
 - Functions & Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false
- An interpretation I of the world along with the rules of logic determine truth via judgement (\vdash)

$I \vdash x$ and $I \vdash y$ iff $I \vdash x \land y$
Classical Logic

• *Satisfiability*
 - A sentence s is satisfiable $\leftrightarrow \exists I \ (I \vdash s)$
Classical Logic

- **Satisfiability**
 - A sentence s is satisfiable $\iff \exists I (I \vdash s)$

- **Validity**
 - A sentence s is valid $\iff \forall I (I \vdash s)$
Classical Logic

- **Satisfiability**
 - A sentence s is satisfiable $\iff \exists I (I \vdash s)$

- **Validity**
 - A sentence s is valid $\iff \forall I (I \vdash s)$

- We will see later how these can be used for a wide variety of tasks
Classical Logic

• *Satisfiability*
 – A sentence s is satisfiable $\leftrightarrow \exists I \ (I \vdash s)$

• *Validity*
 – A sentence s is valid $\leftrightarrow \forall I \ (I \vdash s)$

• We will see later how these can be used for a wide variety of tasks
 – Bug finding
 – Model checking (proving correctness)
 – Explaining defects
 – ...
Inference using classical logic

- Rules express how some judgements enable others

\[
\Gamma \vdash x \quad \Delta \vdash y \\
\hline
\Gamma, \Delta \vdash x \land y
\]
Inference using classical logic

- Rules express how some judgements enable others

\[\Gamma \vdash x \quad \Delta \vdash y \]

\[\Gamma, \Delta \vdash x \land y \]
Inference using classical logic

- Rules express how some judgements enable others

\[
\Gamma \vdash x \quad \Delta \vdash y
\]

\[
\Gamma, \Delta \vdash x \land y
\]
Inference using classical logic

- Rules express how some judgements enable others
 \[\Gamma \vdash x \quad \Delta \vdash y \]
 \[
 \Gamma, \Delta \vdash x \land y
 \]
- Proofs can be written by stacking rules
Inference using classical logic

- Rules express how some judgements enable others
 \[\Gamma \vdash x \quad \Delta \vdash y \]
 \[\Gamma, \Delta \vdash x \land y \]

- Proofs can be written by stacking rules

Hoare Logic

- *Hoare logic* reasons about the behavior of programs and program fragments
Hoare Logic

- **Hoare logic** reasons about the behavior of programs and program fragments

\[\{ \phi \} C \{ \psi \} \]

Precondition
Hoare Logic

- *Hoare logic* reasons about the behavior of programs and program fragments

\[\{ \varphi \} C \{ \psi \} \]

- Precondition
- Command
Hoare Logic

- *Hoare logic* reasons about the behavior of programs and program fragments

\[\{ \varphi \} C \{ \psi \} \]

- Precondition
- Command
- Postcondition
Hoare Logic

- *Hoare logic* reasons about the behavior of programs and program fragments

\[\{ \varphi \} \text{C} \{ \psi \} \]

- If phi holds before C, psi will hold after

\[\{ x=3 \land y=2 \} x = 5 \{ x=5 \} \]
Hoare Logic

- *Hoare logic* reasons about the behavior of programs and program fragments

\[\{ \phi \} C \{ \psi \} \]

- If phi holds before C, psi will hold after

\[\{ x=3 \land y=2 \} x = 5 \{ x=5 \} \]

- A weakest precondition \(\wp(C, \psi) \) captures all states leading to \(\psi \) after C.
Hoare Logic

- *Hoare logic* reasons about the behavior of programs and program fragments
 \[
 \{\varphi\} C \{\psi\}
 \]

- If phi holds before C, psi will hold after
 \[
 \{x=3 \land y=2\} x = 5 \{x=5\}
 \]

- A weakest precondition \(wp(C, \psi) \) captures all states leading to \(\psi \) after C.
 \[
 \{\#t\} x \leftarrow 5 \{x=5\}
 \]
Hoare Logic

- *Hoare logic* reasons about the behavior of programs and program fragments

 \{ \varphi \} C \{ \psi \}

- If phi holds before C, psi will hold after

 \{ x=3 \land y=2 \} x = 5 \{ x=5 \}

- A weakest precondition \(wp(C, \psi) \) captures all states leading to \(\psi \) after C.

 \{ \#t \} x \leftarrow 5 \{ x=5 \}

 \{ \text{???} \} \text{if c then } x \leftarrow 5 \{ x=5 \}
Intuitionistic & Constructive Logic

- It can be useful to modify or limit rules of inference
Intuitionistic & Constructive Logic

- It can be useful to modify or limit rules of inference
 - Suppose a compiler cannot prove variable x is an int. Is it reasonable for the compiler to assume x is a string?
Intuitionistic & Constructive Logic

- It can be useful to modify or limit rules of inference
 - Suppose a compiler cannot prove variable x is an int. Is it reasonable for the compiler to assume x is a string?

- Constructivism argues that truth comes from direct evidence.
 - We cannot merely assume p or not p, we must have evidence
Intuitionistic & Constructive Logic

- It can be useful to modify or limit rules of inference
 - Suppose a compiler cannot prove variable x is an int. Is it reasonable for the compiler to assume x is a string?

- Constructivism argues that truth comes from direct evidence.
 - We cannot merely assume p or not p, we must have evidence

- **Intuitionistic logic** restricts the rules of inference to require direct evidence
Intuitionistic & Constructive Logic

- Classic logic includes several rules including

\[\vdash p \lor \neg p \]

Law of excluded middle
Intuitionistic & Constructive Logic

- Classic logic includes several rules including:
 - $\Gamma \vdash p \lor \neg p$
 - $\Gamma \vdash \neg \neg p$
 - $\Gamma \vdash p$

Double negation elimination
Intuitionistic & Constructive Logic

- Classic logic includes several rules including

\[
\begin{align*}
\Gamma \vdash p \lor \neg p \\
\Gamma \vdash \neg \neg p \\
\Gamma \vdash p
\end{align*}
\]

- Intuitionistic logic excludes these to require direct evidence
Intuitionistic & Constructive Logic

• Classic logic includes several rules including

\[\Gamma \vdash \neg \neg p \quad \Gamma \vdash p \]

\[\vdash p \lor \neg p \]

• Intuitionistic logic excludes these to require direct evidence

• Note, this is commonly used in type systems
Linear & Substructural Logic

\[
sells\text{Burritos}(\text{store}) \quad \text{has10Dollars}(\text{me}) \quad \vdash \quad buy\text{Burrito}(\text{me},\text{store})
\]
sellsBurritos(store) \implies buyBurrito(me, store)
\land \ buyBurrito(me, store)

\implies buyBurrito(me, store)
\land \ buyBurrito(me, store)
sellsBurritos(store) ∧ has10Dollars(me) ⊢ buyBurrito(me, store) ∧ buyBurrito(me, store) ∧ buyBurrito(me, store)
sellsBurritos(store) \implies \begin{align*} &\text{has10Dollars(me)} \land \text{buyBurrito}(\text{me},\text{store}) \\ &\land \text{buyBurrito}(\text{me},\text{store}) \\ &\land \text{buyBurrito}(\text{me},\text{store}) \\ &\land \text{buyBurrito}(\text{me},\text{store}) \end{align*}
Linear & Substructural Logic

\[
\text{sellsBurritos}(\text{store}) \quad \text{has10Dollars}(\text{me}) \vdash \text{buyBurrito}(\text{me}, \text{store}) \land \text{buyBurrito}(\text{me}, \text{store}) \land \text{buyBurrito}(\text{me}, \text{store}) \land \text{buyBurrito}(\text{me}, \text{store})
\]

Classical & intuitionistic logic have trouble expressing consumable facts
Linear & Substructural Logic

sellsBurritos(store) \&\& has10Dollars(me) ⊢ buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear> cannot be used with contraction or weakening
Linear & Substructural Logic

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear> cannot be used with contraction or weakening

\[
\begin{align*}
\Gamma, A, A, \Delta & \vdash p \\
\Gamma, A, \Delta & \vdash p \\
\Gamma, \Delta & \vdash p \\
\Gamma, A, \Delta & \vdash p
\end{align*}
\]
Linear & Substructural Logic

\[
\text{sellsBurritos}(\text{store}) \quad \text{has10Dollars}(\text{me}) \quad \vdash \quad \text{buyBurrito}(\text{me}, \text{store})
\]

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - \(<\text{Linear}\>) cannot be used with contraction or weakening
 - In essence, linear facts must be consumed \textit{exactly once} in a proof.
Linear & Substructural Logic

\[
\text{sellsBurritos(store)} \quad \text{has10Dollars(me)} \quad \vdash \quad \text{buyBurrito(me, store)}
\]

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - \(<\text{Linear}>\) cannot be used with contraction or weakening
 - In essence, linear facts must be consumed exactly once in a proof.

Logics that remove additional rules from intuitionistic logic are \textit{substructural}
Linear & Substructural Logic

sellsBurritos(store) has10Dollars(me) ⊢ buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear> cannot be used with contraction or weakening
 - In essence, linear facts must be consumed exactly once in a proof.

- This forms the backbone of *ownership types* in languages like Rust!
Separation Logic

- Linear logic allows facts to be used exactly once $<>$ or arbitrarily many times $[]$.
Separation Logic

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- *Separation logic* (informally) distinguishes separate facts (counting), allowing them to be used separately
Separation Logic

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- *Separation logic* (informally) distinguishes separate facts (counting), allowing them to be used separately.
- This allows compositional reasoning about software.
 \[
 \{x \mapsto y \ast y \mapsto x\} x = z\{x \mapsto z \ast y \mapsto x\}
 \]
Separation Logic

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- *Separation logic* (informally) distinguishes separate facts (counting), allowing them to be used separately.
- This allows compositional reasoning about software.

\[
\{x \mapsto y \ast y \mapsto x\} x = z\{x \mapsto z \ast y \mapsto x\}
\]

Suppose we used \land instead, what problem exists?
Separation Logic

- Linear logic allows facts to be used exactly once $<>$ or arbitrarily many times $[]$.
- *Separation logic* (informally) distinguishes separate facts (counting), allowing them to be used separately.
- This allows compositional reasoning about software.

$$\{x \mapsto y \ast y \mapsto x\}x = z\{x \mapsto z \ast y \mapsto x\}$$

- Separation logic enables efficient compositional reasoning
 - It is the backbone of Facebook’s Infer engine!
Recap

- Formalism is a tool that can simplify reasoning about tasks
Recap

- Formalism is a tool that can simplify reasoning about tasks
- Many solutions involve a careful combination of
 - order theory (for comparison)
 - formal grammars (for structure)
 - formal logic (for inference)