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ABSTRACT

This paper presents DeCon, a declarative programming language

for implementing smart contracts and specifying contract-level

properties. Driven by the observation that smart contract opera-

tions and contract-level properties can be naturally expressed as

relational constraints, DeCon models each smart contract as a set

of relational tables that store transaction records. This relational

representation of smart contracts enables convenient specification

of contract properties, facilitates run-time monitoring of potential

property violations, and brings clarity to contract debugging via

data provenance. Specifically, a DeCon program consists of a set

of declarative rules and violation query rules over the relational

representation, describing the smart contract implementation and

contract-level properties, respectively. We have developed a tool

that can compile DeCon programs into executable Solidity pro-

grams, with instrumentation for run-time property monitoring.

Our case studies demonstrate that DeCon can implement realistic

smart contracts such as ERC20 and ERC721 digital tokens. Our eval-

uation results reveal the marginal overhead of DeCon compared to

the open-source reference implementation, incurring 14% median

gas overhead for execution, and another 16% median gas overhead

for run-time verification.
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1 INTRODUCTION

Smart contracts are programs stored and executed on blockchains.

They have been used in a wide range of blockchain-enabled dis-

tributed applications to manage digital assets, including auctions

[35], financial contracts [23], elections [47], trading platforms [50],

and permission management [19]. Unfortunately, today’s smart

contracts are error-prone, and this has led to significant financial

losses resulting from attacks such as Dice2win [51], King of Ether

[2], Parity Multisig Bug [61], Accidental [24] and DAO [1, 58].

Over the past few years, different analysis and verification tech-

niques have been proposed for known vulnerabilities of smart

contracts, such as re-entrancy attacks and transaction-order de-

pendency [17, 32, 52, 56, 63]. However, when it comes to high-level

properties specific to individual smart contracts, programmers typ-

ically have to rely on hand-written assertions [10], which is hard

to maintain and error-prone. For example, given a smart contract

that manages digital tokens, one may want to ensure that all ac-

count balances add up to the total supply of tokens. To monitor

this property during run-time, one has to instrument the code to

maintain a state that keeps track of the sum of all account balances,

and add assertions about their equivalence wherever either account

balances or token supplies are updated. There are third-party tools

that support high-level property specification and verification for

Solidity, e.g., temporal logic [52] and formula with extended opera-

tors [44]. However, counter-examples are returned in the form of

Ethereum bytecode traces or transaction sequences, which may not

be easy for programmers to understand and localize bugs in the

original implementation.

To make smart contracts easier to analyze and verify, this paper

presents DeCon, a declarative programming language for smart con-

tract implementation and property specification. DeCon is based

on Datalog [15], a declarative logic programming language that

syntactically is a subset of Prolog. Datalog frees programmers from

low-level implementation details, e.g., data structures, algorithms,

etc., and allows them to reason about the contract on the speci-

fication level via inference rules [22]. In addition, such relational

representation serves as a high-level abstraction of the contract,

which enables efficient formal analysis and verification [59, 64].

A typical smart contract provides two kinds of interfaces: trans-

actions and views. Transactions are function calls that alter the

contract states, e.g., a token transfer that updates both sender and

recipient balances. Views are read-only functions that return par-

ticular states of the contract, e.g., the balance of an account.
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Smart contract properties and operations can be naturallymapped

to relational logic. For example, transactions, the main element in

smart contracts, can be modeled as relational tables, where the table

schema contains transaction parameters, e.g., sender, recipient, and

amount. Similarly, the balance of each account can be expressed as

sum aggregation on transaction records and looking up an account

balance can be expressed as a constraint on the address column of

the balance table.

Given this relational view of transactions, committing a transac-

tion can be interpreted as appending a new row to the correspond-

ing table. The commit and abortion logic of a pending transaction

is specified by Datalog-based declarative rules. Views can then be

specified as declarative queries on these tables. For example, an

account balance is the total income of the account subtracted by

its total expense, each of which is a query on relevant transaction

records.

Contract properties are also specified as inference rules. They are

interpreted as property violation queries, a special kind of views,

and are expected to be always empty during correct executions.

For example, if a smart contract forbids overspending, then a query

on accounts with negative balances should always be empty. Such

unification of implementation and property specification language

saves programmers’ effort to learn another language to formally

specify properties.

DeCon complies declarative specifications into executable So-

lidity [11] programs that run on blockchains, e.g., Ethereum, and

monitor the specified properties at run-time. When a property

(violation) view is derived non-empty after executing a pending

transaction, the transaction is aborted. Such automatic code gen-

eration not only saves implementation effort, but also eliminates

the gap between the program specification and implementation,

providing a stronger guarantee of the verification result.

The key insight to generate efficient executable code from declar-

ative specifications is that smart contract transactions are executed

in sequence. In other words, new rows are appended to the trans-

action tables one at a time. Therefore, DeCon borrows the idea of

incremental view maintenance in databases [34] to generate effi-

cient update procedures. On committing a new transaction, instead

of evaluating the queries on the whole tables, only the differences

in query results are computed and applied to existing views.

In addition, DeCon is easy to debug with data provenance [25].

Provenance is a mechanism for explaining how certain tuples or

facts are derived, right down to the input values. In an imperative

language like Solidity [11], dependency information is difficult to

be captured automatically (through data-flow analysis). In contrast,

inference rules in DeCon give explicit dependency information,

where each tuple can be directly attributed to one rule, thus pro-

viding more clarity to the execution process.

The key contributions of the paper are as follows:

• We design DeCon, a declarative language that unifies smart

contract implementation and specification. We demonstrate

its expressiveness via case studies on representative smart

contracts and their high-level correctness properties.

• We design an algorithm to compile these high-level specifi-

cations into executable Solidity programs, with instrumen-

tation for run-time verification.

• We implement and experimentally evaluate DeCon. Our

evaluation shows that the generated executable code has

comparable efficiency with the equivalent open-source im-

plementation of the same contract (14% median gas over-

head), and the overhead of run-time verification is moderate

(16% median gas overhead). The prototype implementation

and evaluation benchmarks are open-sourced [5] for future

studies and comparisons.

The rest of this paper is organized as follows. Section 2 motivates

DeCon using a Wallet example. The declarative smart contract

language is presented in Section 3. Section 4 demonstrates the

translation of declarative rules into an executable Solidity program.

The expressiveness of DeCon is presented in Section 5 using two

case studies. Section 6 experimentally evaluates DeCon. Section 7

discusses related work, and Section 8 concludes the paper.

2 ILLUSTRATIVE EXAMPLE

In this section, we show how to use DeCon to implement a smart

contract, specify its properties, and debug via provenance using a

Wallet smart contract that manages digital tokens.

2.1 Contract Implementation

A smart contract offers two kinds of interfaces: transactions and

views. Transactions are the function calls that update the contract

states. On the other hand, views are read-only functions that return

one or more contract states.

In declarative smart contracts, transaction records are the only

states. Transactions are modeled as relational tables. A new row is

appended to the table when a new transaction is committed, with

column entries storing the transaction parameters. Transaction

rules, i.e., the condition on which a new transaction can be commit-

ted, are specified as declarative rules. Finally, views are specified as

declarative queries over the transaction tables.

We use the Wallet example, shown in Listing 1, to explain how

relational tables and declarative rules can be specified. The Wallet

contract manages token transactions between Ethereum addresses,

where the contract owner can mint or burn tokens to addresses,

and different addresses can transfer tokens to each other.

Relations and interfaces. Lines 1 to 14 declare the relations, with

schema in the parenthesis, and, optionally, primary key indices in

the bracket (e.g., balanceOf on line 8). Primary keys uniquely identify

a row in the table. For instance, balanceOf records the balance of each

account, and thus has a unique account column. Without explicit

specification, all columns are treated as primary keys. Relation

totalSupply (line 7) is a singleton relation, a kind of relation that

contains only one row and is annotated by a star symbol.

Given these relation declarations, transaction and view inter-

faces are generated. First, transaction interfaces are generated from

relations with recv_ prefix, where the input parameters define the

schema and a Boolean return value indicates the success of the

transaction. For example, relation recv_mint is translated into the

following interface in Solidity, the target executable language.

function mint(address p, int amount) returns (bool);

Second, view functions are generated from the relations that appear

in the public interface annotations (line 9). The input parameters
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1 // Transaction event triggers

2 .decl recv_mint(p:address , amount:int)

3 .decl recv_burn(p:address , amount:int)

4 .decl recv_transfer(from:address ,to:address ,n:int)

5
6 // Views

7 .decl *totalSupply(n:int)

8 .decl balanceOf(p:address , n:int)[0]

9 .public totalSupply ,balanceOf

10
11 // Transaction rules

12 .decl mint(p: address , amount: int)

13 .decl burn(p: address , amount: int)

14 .decl transfer(from: address , to: address , n: int)

15 r1: mint(p,n):-recv_mint(p,n),msgSender(s),owner(s),

16 n>0.

17 r2: burn(p,n):-recv_burn(p,n),msgSender(s),owner(s),

18 balanceOf(p,m), n<=m.

19 r3: transfer(s,r,n) :- recv_transfer(s,r,n),

20 balanceOf(s,m),m>=n, n>0.

21
22 // View rules

23 r4: totalSupply(n):-allMint(m),allBurn(b),n:=m-b.

24 r5: balanceOf(p,s):-totalOut(p,o),totalIn(p,i),s:=i-o.

25
26 // Auxiliary relations and rules ...

27 .decl totalMint(p: address , n: int)[0]

28 .decl totalBurn(p: address , n: int)[0]

29 r6: transfer(0,p,n) :- mint(p,n).

30 r7: transfer(p,0,n) :- burn(p,n).

31 r8: totalOut(p,s):-transfer(p,_,_),

32 s=sum n:transfer(p,_,n).

33 r9: totalIn(p,s):-transfer(_,p,_),

34 s=sum n:transfer(_,p,n).

35 .decl *allMint(n: int)

36 .decl *allBurn(n: int)

37 r10: allMint(s) :- s = sum n: mint(_,n).

38 r11: allBurn(s) :- s = sum n: burn(_,n).

Listing 1: Wallet smart contract

are the primary keys, and the output is the remaining values. Note

that since a singleton relation, e.g., totalSupply, has no primary

keys, it becomes a function without parameters. If all columns are

primary keys, then the function returns a Boolean value indicating

the existence of the row. For example, balanceOf(p:address, n:int)[0]

is translated into the following function interface.

function balanceOf(address p) returns (int);

Rules and functions. The rest of the program shows the rules

that process transactions and define the views. Each rule is of the

form <head> :- <body>, interpreted as follows. For all valuation of

the variables that satisfy all constraints in the body, generate a

row as specified in the head. For example, r1 on line 15 says that

a mint transaction can only be sent by the contract owner, and the

amount should always greater than 0. This rule is compiled into

the following Solidity code (with simplification).

function mint(address p, int n) (returns bool) {

bool ret = false;

if (msg.sender == owner && n>0) {

// call functions to update dependent views ...

ret = true;

}

return ret;

}

When a mint transaction is committed, r5will be triggered through

a chain of rules (r1->r6->r9->r5). It specifies the balance of an account

p, as the total income totalIn(p,i) subtracted by the total expense

totalOut(p,o), with totalIn and totalOut further defined by r8 and r9,

respectively. This rule is compiled into two Solidity functions, each

updates balanceOf[p] when either totalIn or totalOut is updated.

function updateBalanceOfOnTotalIn(address p, int i) {

int o = totalOut[p];

balanceOf[p] = i-o;

}

function updateBalanceOfOnTotalOut(address p, int o) {

int i = totalIn[p];

balanceOf[p] = i-o;

}

To get the balance of a given account, one could call balanceOf, a

view function that takes the account address as a parameter, and

returns an integer value as the account balance. In DeCon, relational

tables are stored in maps, mapping primary keys to values in the

remaining columns. This view function is generated as follows.

function balanceOf(address p) public view returns (int)

{

// Read the row by primary key p

BalanceOfTuple memory balanceOfTuple = balanceOf[p];

// Return the value

return balanceOfTuple.n;

}

2.2 Specification and Run-Time Verification

In DeCon, properties are specified the same way as views, but

with additional annotation. For example, in the Wallet contract,

one may want to make sure that all account balances are always

non-negative, which can be specified as follows.

.decl negativeBalance(p:address ,n:int)[0]

.violation negativeBalance

r14: negativeBalance(p,n) :- balanceOf(p,n), n < 0.

Rule r14 specifies the violation instance of the property: for each

row in balanceOf table with n<0, insert a row (p,n) in negativeBalance

table. During the execution of the transaction, the negativeBalance

table is incrementally updated when its dependent relations are

updated, the same as other views.

The keyword .violation annotates that every row in the table is

a property violation instance. A property is satisfied if and only

if its corresponding violation table is empty. Given such annota-

tions, DeCon instruments the program to check the emptiness of

all violation tables before each transaction is committed.

Note that properties are monitored on the granularity of trans-

actions. As we show in Section 4, due to the underlying update

procedure, transient violations could occur during the execution

of a transaction, but disappear at the end. Therefore, instead of

aborting right after a violation tuple is derived, a transaction is only

aborted if, at the end of its execution, any violation table remains

non-empty. Such interpretation allows programmers to reason at

the transaction level, without worrying about the underlying up-

date procedure.

The violation checking procedure is generated and performed

at the end of each transaction. In this example, the negativeBalance

violation is checked as follows.

function checkViolations () {

if negativeBalance is not empty:

revert("Negative␣balance.")

// check other violations ...

}
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balanceOf(0x01,-20)

totalIn(0x01,100) totalOut(0x01,120)

r5

r8

burn(0x01,50)totalOut(0x01,70)

r2'

recv_burn(0x01,50)

Figure 1: Provenance of a violation of negative balance

2.3 Debugging via Provenance

Data provenance is a feature of declarative programs that records

the data flow from input to output and enables rule-wise debugging.

It allows counter-example traces to be presented in the context of

the original specification, instead of the low-level EVM instructions,

thus making the debugging process more intuitive.

Suppose the original program has an incorrect r2, which misses

a predicate to check that the account has enough balance to be

burnt. The incorrect version of r2 is shown as r2' in the following.

r2 ': burn(p,n):-recv_burn(p,n),msgSender(s),owner(s).

An account with a balance of 𝑛 would have a negative balance

if more than 𝑛 tokens are burnt. Suppose during execution, the

account 0x01 is detected to have a negative balance of −20. To un-

derstand why this violation happens, one could query the violation

tuple’s provenance tree, as shown in Figure 1. The provenance tree

is read from top to bottom. On the top is a tuple balanceOf(0x01,-20)

that triggers the violation in negativeBalance. Below shows that it

is derived by r5, based on totalIn(0x01,100) and totalOut(0x01,120),

which are the total tokens received and sent by address 0x01. The

tuple totalOut(0x01,120) is further derived by r8. This back-tracing

continues for another step until one finds the derivation of r2'

is incorrect, which suggests that the condition balanceOf(p,m),m>=n

should be added. With this provenance, programmers can debug

contracts in a visual and interactive manner.

3 LANGUAGE

A DeCon contract consists of three elements: relations, rules, and

relation annotations. A relation declaration specifies the name of

a relational table and its schema. Each relational table can store

either transaction records, with the transaction parameters being

the column values, or views, the summary information of these

transaction records. A rule specifies either the conditions on which

a new transaction gets approved or the derivation of a view from the

transaction records. Finally, relation annotations specify whether

a relational table is a public view or a violation. Public views are

compiled into public interfaces that take the relation’s primary keys

as parameters and return the remaining values in the matching row.

Violations will be monitored during run-time, and a transaction is

reverted if the violation relation is non-empty after the transaction

execution.

(𝑇𝑦𝑝𝑒) 𝑇 := 𝑖𝑛𝑡 | 𝑢𝑖𝑛𝑡 | 𝑏𝑜𝑜𝑙 | 𝑎𝑑𝑑𝑟𝑒𝑠𝑠

(𝑆𝑐ℎ𝑒𝑚𝑎) 𝑆 := 𝑐1 : 𝑇 1, 𝑐2 : 𝑇 2, ...

(𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑘𝑒𝑦𝑠) 𝐾 := 𝑘1, 𝑘2, ...

(𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 𝑅𝑆

(𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 𝑆𝐺 := .𝑑𝑒𝑐𝑙 ∗ 𝑟 (𝑆𝑐ℎ𝑒𝑚𝑎)

(𝑆𝑖𝑚𝑝𝑙𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 𝑆𝑃 := .𝑑𝑒𝑐𝑙 𝑟 (𝑆𝑐ℎ𝑒𝑚𝑎) [𝐾]

(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 𝑇𝑅 := .𝑑𝑒𝑐𝑙 𝑟𝑒𝑐𝑣_[𝑟 ] (𝑆𝑐ℎ𝑒𝑚𝑎)

(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 𝑅 := 𝑅𝑆 | 𝑆𝐺 | 𝑆𝑃

(𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛) 𝐴 := .𝑝𝑢𝑏𝑙𝑖𝑐 𝑅 | .𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑅

Figure 2: Syntax of relation declarations and annotations

3.1 Relation Declarations and Annotations

The formal syntax of relation declarations and annotations is de-

fined in Figure 2.

Schema. Schema of a relation is specified as a list of 𝑐𝑖 : 𝑇𝑖 , where

𝑐𝑖 is the column name for the 𝑖-th column, and 𝑇𝑖 is the data type.

Primary keys. Primary keys 𝐾 are a list of indices in the relation

schema. Specifying Primary keys is optional. If a simple relation

is specified without primary keys, then all columns are treated as

primary keys. Primary keys uniquely identify a row in each table.

On inserting a new row, if an existing row has the same primary

key, the existing row is replaced by the new row.

Singleton relations are relations with only one row, which are

annotated with ∗ in the specification. When a new row is inserted

into a singleton relation, it replaces the existing row.

Transaction relations are relations with prefix recv_. As explained

in the next section, these relations are treated as event triggers when

used in a rule, and are compiled into smart contract interfaces that

handle incoming transaction requests.

Reserved relations. The following relations are reserved to handle

smart contract-specific constructs:

• msgSender(a:address) stores the address of message sender.

• msgValue(v:uint) stores the values of Ethers sent along a message.

• send(to:address, n:uint32) triggers a transaction that sends𝑛 Ethers

to another account.

• constructor(*) is translated into the constructor function, with

schema being function parameters.

3.2 Rules

As shown in Figure 3, we distinguish two kinds of rules: transac-

tion rules and view rules. A transaction rule contains a transaction

relation in its body. Transaction relations are relations with a prefix

𝑟𝑒𝑐𝑣_ in names. These rules are only fired on receiving the corre-

sponding transaction request, and the transaction is approved if the

rest of the constraints in the rule body are satisfied. On the other

hand, a view rule does not contain any transaction relations. It is

evaluated whenever one of the relations in the body is updated.

Syntax restrictions. DeCon does not support recursions. That is,

no dependency loop exists between any two relations. The depen-

dency relationship in DeCon is defined as follows.

Definition 3.1 (Relation dependency). Relation 𝑅𝑎 is dependent

on relation 𝑅𝑏 , if there exists a view rule where 𝑅𝑎 is in the head
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(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 𝑥

(𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛) 𝐴𝑔𝑔 := 𝑠𝑢𝑚 | 𝑚𝑎𝑥 | 𝑚𝑖𝑛 | 𝑐𝑜𝑢𝑛𝑡

(𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 𝐹 := +| − | × |÷

(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 𝐶 := > | < | >= | <= | == |! =

(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 𝑇𝑅 := 𝑟𝑒𝑐𝑣_[𝑟 ]

(𝑂𝑡ℎ𝑒𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 𝑅

(𝐻𝑒𝑎𝑑 𝑙𝑖𝑡𝑒𝑟𝑎𝑙) ℎ := 𝑅(𝑋 )

(𝐵𝑜𝑑𝑦 𝑙𝑖𝑡𝑒𝑟𝑎𝑙) 𝑏 := 𝑅(𝑋 ) | 𝐶 (𝑋 ) | 𝑦 = 𝐹 (𝑋 )

| 𝑦 = 𝐴𝑔𝑔 𝑥 : 𝑅(𝑋 )

(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒) 𝑇𝑥 := ℎ : − 𝑇𝑅(𝑋 ), 𝑏1, ..., 𝑏𝑛

(𝑉𝑖𝑒𝑤 𝑅𝑢𝑙𝑒) 𝑉 := ℎ : − 𝑏1, ..., 𝑏𝑛

Figure 3: Syntax of rules

and 𝑅𝑏 is in the body, or a transaction rule where 𝑅𝑎 is in the head,

and 𝑅𝑏 is a transaction relation (with a prefix recv_) in the body.

Rule semantics. A rule is evaluated as follows. For each variables

valuation 𝜋 that satisfies the rule constraint, generate the head

tuple with all variables assigned to its corresponding values in 𝜋 .

A variable valuation is a mapping from the set of variable names

𝑉 to the variable domain 𝐷 (𝜋 : 𝑉 → 𝐷). Rule constraint is a

conjunction of all body literal constraints. As described in Figure 3,

there are four kinds of body literals. For literals in the form of

relational tuples 𝑅(𝑋 ), the constraint is satisfied if row 𝑋 exists

in the relational table 𝑅. Other kinds of literals (i.e., conditions,

functions, and aggregations) are directly interpreted as constraints

on the variables.

Consider r5 in the Wallet example (listing 1).

r5: balanceOf(p,s):-totalOut(p,o),totalIn(p,i),s:=i-o.

This rule is interpreted as follows: "for all values of variable p,o,i

such that there exists a tuple totalOut(p,o) and totalIn(p,i), derive

the head tuple balanceOf(p,s), where s = i-o".

Aggregation literal 𝐴𝑔𝑔 𝑥 : 𝑅(𝑋 ) computes the aggregate for all

rows in relation 𝑅 that satisfy the rule constraint. For example, in

theWallet example (listing 1), line 31 shows a rule with aggregation.

r8:totalOut(p,s) :- transfer(p,_,_),

s=sum n:transfer(p,_,n).

For each unique value of p in the first column of transfer table, this

rule computes the sum of the third column for rows in transfer table

that has the value p in the first column. In other words, this rule

groups the table by the first column, and then computes the sum of

the third column within each group.

Limitations in expressiveness.DeCon forbids recursions in order

to keep the gas consumption predictable and affordable. In fact,

recursion is not recommended by the Solidity documentation for

stack space issues [7].

In addition, there are functions that lie outside of relational logic,

e.g. cryptographic operations, randomized functions, etc. Such func-

tions can be implemented in DeCon by linking the contract with

external libraries. However, analyzing such functions is challenging

and would need substantial future research. DeCon also does not

support contract inheritance, dynamic dispatching, and checking

interfaces of another contract. These features can be incorporated

into DeCon in future compiler designs.

4 COMPILATION TO SOLIDITY

DeCon translates a set of declarative rules into an executable Solid-

ity program that (1) processes transactions following the conditions

in transaction rules, (2) updates views incrementally as new trans-

actions are committed, and (3) monitors property violations.

The compilation process involves three major steps.

(1) Abstract update functions. First, each rule is translated into a

set of abstract update functions, each of which performs incremen-

tal updates to the head relation when one of the body relations is

updated. These functions are abstract in that they do not implement

concrete data structures. For example, in the Wallet contract, the

following rule processes mint transactions.

r1: mint(p,n):-recv_mint(p,n),msgSender(s),owner(s),n>0.

This rule is translated into the following abstract update function.

1 on insert recv_mint(p,n) {

2 search owner where {

3 address s = owner;

4 search msgSender where s==msg.sender {

5 if(n>0) {

6 insert mint(p,n)

7 }}}}

This update function is triggered when a mint transaction is received,

as indicated by the event trigger tuple recv_mint(p,n). The remaining

two relational literals, owner(s) and msgSender(s), are translated into

nested search statements (line 2 and line 4). A search statement has

the form (search R where C do S), where R is the relational table, C is

the set of constraints on rows, and S is the statement to execute for

each row that satisfies the constraints in C. The condition literal

(n>0) is translated into an if statement (line 5). If all prior conditions

are satisfied, we arrive at line 6, where the rule head is inserted.

(2) Data structures. These abstract functions are then translated

into concrete Solidity statements, where the search statements be-

come efficient join algorithms on concrete data structures, and

update functions for dependent views are called after an insert

statement.

(3) Instrumentation. In the last step, the Solidity program is instru-

mented to monitor property violations, and abort the transaction if

any violation has been detected by the end of transaction execution.

4.1 Abstract Update Function Generation

There are two kinds of updates that could trigger a rule: tuple

insertion and tuple deletion. We use Insert(e) and Delete(e) to denote

the update trigger on inserting and deleting a tuple 𝑒 , respectively.

Note that both a tuple and a literal have the form 𝑅(𝑋 ). It is called

a tuple when 𝑋 has concrete values, and is called literal in a rule,

where 𝑋 is symbolic. We use literal and tuple interchangeably in

the following discussion of update triggers.

Given a rule 𝑟 , let 𝐵(𝑟 ) be the set of all relational literals in 𝑟 ’s

body, and 𝑒 be the transaction relation in 𝑟 if 𝑟 is a transaction rule,
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the set of update triggers 𝑇 (𝑟 ) are defined as:

𝑇 (𝑟 ) ≔




⋃

𝑙 ∈𝐵 (𝑟 )
{𝐼𝑛𝑠𝑒𝑟𝑡 (𝑙), 𝐷𝑒𝑙𝑒𝑡𝑒 (𝑙)} 𝑟 is View

{𝐼𝑛𝑠𝑒𝑟𝑡 (𝑒)} 𝑟 is Tx rule
(1)

If 𝑟 is a view rule, then it can be triggered by updates of any relation

in its body. Otherwise, 𝑟 is a transaction rule triggered only when

receiving a transaction request.

Algorithm 1 UpdateFunction(𝑟, 𝑡). Given a rule 𝑟 , and a trigger 𝑡 ,

returns an update object.

(1) Initialize the set of grounded variables 𝐺 ≔ 𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 .

(2) Literals other than the trigger 𝐿 ≔ {𝑟 .𝑏𝑜𝑑𝑦 \ 𝑡}.

(3) Update procedure 𝑆 ≔ Update(𝑟 .ℎ𝑒𝑎𝑑, 𝐿, 𝑡,𝐺).

(4) Return (on t do S)

For each rule 𝑟 , and for each update triggers in 𝑇 (𝑟 ), an abstract

update function is generated by UpdateFunction(r, t), presented

in algorithm 1. It first initializes the set of grounded variables by

variables in the trigger literal. Grounded variables are variables that

are constrained to a constant value. Variables in a trigger literal

are considered grounded because the update function is always

triggered by the insertion or deletion of a concrete tuple. In step(3),

update procedure 𝑆 is generated by a sub-routine Update, which

is presented in algorithm 2. Finally, it returns the abstract update

function in the form of (on t do S), where 𝑡 is the update trigger and

𝑆 is the update procedure.

Algorithm 2 Update(ℎ, 𝐿, 𝑡,𝐺). Given a rule head ℎ, a list of body

literals 𝐿, an update trigger 𝑡 , and the set of grounded variables 𝐺 ,

return statements that perform the incremental update.

match 𝐿:

case 𝑁𝑖𝑙 => match t

case Insert => return Insert(h)

case Delete => return Delete(h)

case ℎ𝑒𝑎𝑑 :: 𝑡𝑎𝑖𝑙 =>

Add grounded variables 𝐺 ′
≔ 𝐺 ∪ {𝑥 |𝑥 ∈ ℎ𝑒𝑎𝑑}

Inner statements 𝑆 ≔ Update(h, tail, t,G’)

match head:

case 𝑅(𝑋 ) =>

Derive constraints 𝐶 ≔ Constraint(𝑅(𝑋 ),𝐺)

return (Search R where C do S)

case 𝐶 (𝑋 ) => return (If C Then S)

case 𝑦 = 𝐹 (𝑋 ) => return (𝑦 = 𝐹 (𝑋 ) :: 𝑆)

case 𝑦 = 𝐴𝑔𝑔 𝑥 : 𝑅(𝑋 ) =>

return (𝑦 = 𝐴𝑔𝑔 𝑥 : 𝑅(𝑋 ) :: 𝑆)

As shown in Algorithm 2, Update(h, L, t,G) performs recursion

on 𝐿, the list of literals in the rule body, with every recursion

translating one literal to a layer of code block, nested within the

code block generated by the previous literals.

In particular, it performs pattern matching on input 𝐿, a list of

literals to be translated. If 𝐿 is empty, which means all body literals

have been translated, an update statement that is consistent with the

update trigger is returned. Otherwise, 𝐿 has the form ℎ𝑒𝑎𝑑 :: 𝑡𝑎𝑖𝑙 . It

first adds all variables inℎ𝑒𝑎𝑑 into the set of grounded variables, and

then generates the inner code blocks 𝑆 by recursively calling itself

on 𝑡𝑎𝑖𝑙 and the updated set of grounded variables 𝐺 ′. Depending

on the form of ℎ𝑒𝑎𝑑 , the current layer of code block is generated

in different ways. By the syntax of the language in Section 3, ℎ𝑒𝑎𝑑

could take one of the following forms:

• A relational literal 𝑅(𝑋 ). Given the set of grounded variables 𝐺 ,

the search constraints for rows in 𝑅 is generated as follows.

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (𝑅(𝑋 ),𝐺) ≔
∧

{(𝑅 [𝑖] == 𝑣) |𝑣 ∈ 𝐺, 𝑣 ∈ 𝑋,

𝑖 = 𝑋 . indexOf (𝑣)}

where 𝑅 [𝑖] == 𝑣 means filtering rows in table 𝑅 whose 𝑖-th

column equals to 𝑣 .

• A condition literal 𝐶 (𝑋 ), in which case, the condition is directly

used in the same way as an If condition, with the inner code

block 𝑆 placed within the If statement.

• A function or aggregation. In either case, the literal is directly

translated into an assignment statement, followed by the inner

code block 𝑆 .

Aggregations. The evaluation results of aggregation functions are

maintained incrementally. Sums are incremented by 𝑛 when a row

with aggregate value 𝑛 is inserted, and decremented by 𝑛 when

a row is deleted. Similarly, counts are incremented by 1 on row

insertion and decremented by 1 on row deletion. Maximums and

minimums are slightly different. When a new row is inserted with

value 𝑛, if 𝑛 is greater than the current maximum, the maximum is

updated to 𝑛. When the current maximum row is deleted, the maxi-

mum is updated as the second maximum value. Thus, it requires

maintaining a sorted list of values. Minimum is maintained in a

similar fashion.

4.2 Concrete Data Structures and Instructions

Given the abstract functions generated from each rule, the next

step is to generate concrete and efficient data structures and search

algorithms in the Solidity language.

Data structures. Each relational table R, except singleton relations,

is translated into a mapping from its primary keys to a structure

that stores the rest of the column values:

struct RTuple {

bool valid;

T1 field1;

T2 field2;

...

};

mapping(k1 => k2 => ... => kn => RTuple) R;

By default, hash-maps in Solidity map all keys to zero. Therefore,

a valid bit (valid) is introduced to indicate the existence of a tuple.

Columns other than primary keys are the structure members. If all

columns are primary keys, its structure only contains a valid bit.

Singleton relations are directly stored in a structurewith columns

being the structure members.

Join index. Join index is built for each search statement in the

abstract update program. Given a search statement Search R where

C do S in the abstract update program, if all primary keys of R are

constrained to constant values, no join index is generated. The

matching entry can be directly looked up by primary keys.
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On the other hand, if, in some rules, not all primary keys of R

are constrained to constant values, a join index is built as a map

from the constrained keys to a list of unconstrained keys.

Suppose relation R1(k1,k2,v1) has primary keys k1 and k2. As de-

scribed above, table R1 is stored as a map from primary keys to

remaining values (mapping(k1=>k2=>R1Tuple)). Given a search state-

ment Search R1 where R1[0]==k1 do S, where only one primary key k1

is constrained, the join index for R1 is built as the following.

struct R1KeyTuple {

bool valid;

T2 k2;

}

mapping(k1 => R1KeyTuple []) R1Index;

where R1Index maps k1 to a list of R1KeyTuple, which stores the

value of the other primary key k2. During the join execution, to

iterate all rows in R1 that satisfy R1[0] == k1, it first looks up all k2

in R1KeyTuple[k1], and then for each k2, get the value in R1[k1][k2].

Update dependent views. An insert or delete statement in the

abstract update function is translated into two sets of Solidity in-

structions. The first set updates the corresponding data structure,

and the second set calls the update functions for the dependent

relations (Definition 3.1).

Inserting a relational tuple 𝑡1 directly updates the map, as well

as the join index if one exists. If a tuple 𝑡0 with the same primary

keys exists, all dependent views are updated by first calling deletion

updates on 𝑡0, and then the insertion updates on 𝑡1. Insertion update

refers to functions triggered by tuple insertion, and deletion update

refers to functions triggered by tuple deletion. Otherwise, insertion

updates are directly called. Since a Solidity mapping maps all keys

to value zero by default, a tuple exists if its valid bit is set to true.

Deleting a relational tuple resets its valid bit to false. Then dele-

tion updates are called for all dependent relations.

In this way, when a new transaction is committed, all depen-

dent views are updated through this chain of update propagation.

Since there is no recursion, i.e., dependency loop between relations,

allowed in DeCon, update propagation is guaranteed to terminate.

Logging.Committed transactions are logged as Solidity Events [12],

a more gas efficient storage than global memory, but can only be

read offline. These events constitute all states of a DeCon contract,

which enable offline analysis for further insights and potential bugs.

4.3 Run-Time Verification

Properties are specified as declarative rules that derive violation

instances. Such relations are annotated with the keyword violation.

As introduced in Section 2.2, transient violations that occur dur-

ing the transaction execution are not counted. To see why transient

violations can occur, consider again theWallet contract in Section 2,

and a property that requires all account balances to add up to the

total supply. The property can be specified as shown in Listing 2.

.violation unequalTotalSupply

r12: totalBalance(s) :- sum n: balanceOf(_,n).

r13: unequalTotalSupply(n,m):-totalSupply(n),

totalBalance(m),n!=m.

Listing 2: All account balances add up to total supply.

During the execution of a mint transaction, the totalSupply and

the totalBalance are updated in sequence, which leads to a violation

when one is updated before another, but the violation disappears

when both are updated.

Given this notion of transient violations, instead of aborting the

transaction right after a violation tuple is derived, the checking

procedure is deferred to the end of transaction. If any violation

view is non-empty, the transaction is aborted. Note that a Solidity

mapping does not record its domain. Hence, a separate array of

mapping keys are maintained and iterated for valid violation tuples.

4.4 Provenance Generation

To debug a violation, programmers can use data provenance to

visualize the derivation process of a violation tuple. As shown in

Figure 1, provenance is a directed graph with two kinds of vertices:

tuples and rules. Edges from a tuple vertex to a rule vertex denote

tuple reads, and edges from a rule vertex to a tuple vertex denote

tuple derivations.

To generate this provenance graph during the rule evaluation

procedure, two kinds of additional records are logged: tuple read

Read(tuple, rid) and tuple derivation Write(rid,tuple), where rid is

a unique identifier for each rule. The Read(tuple,rid) is interpreted

as an edge from tuple to the rule indexed by rid, and, conversely,

Write(rid,tuple) is an edge from rule rid to tuple.

Note that in Solidity, a failed transaction reverts all instructions,

including logging. When a transaction is reverted due to a property

violation, the provenance logs would also be reverted. Therefore,

to generate provenance for a violation tuple, the transaction needs

to be executed in a local debugging environment instead of the

deployment blockchain. This practice also saves storage space on

the public blockchain.

4.5 Optimizations

To improve gas and storage efficiency, two optimizations have been

applied to the generated codes.

Join order. Body literals in a rule are sorted by their iteration cost

in an increasing order. First are reserved relations and singleton

relations, since they need no iteration. Second are the relations

whose primary keys have all appeared in proceeding literals. These

literals can be searched via a direct mapping look-up, thus requiring

no iterations either. Next are the rest of the relations, which are

translated into loops. Finally come condition and function literals.

Storage space. Storage space on a blockchain is precious due to

the high synchronization cost. Deriving relations on-demand, that

is, delaying evaluating an inference rule until it is used, can save

storage space, but may incur performance overhead. To achieve a

balanced trade-off between time and space, DeCon only proactively

derives and stores relations annotated as public views or violations,

as well as relations that are read during their derivation. Other

relations are derived on-demand. For example, in the Wallet con-

tract in Section 2, relation mint only serves as an update trigger for

dependent rules, which is never queried during the update of public

views or violations. Therefore, when a mint tuple is generated by r1,

it only triggers the update for dependent rules, but it is not written

to the persistent storage.
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5 CASE STUDIES

This section demonstrates the expressiveness of DeCon and the

explainability of data provenance via case studies on two popular

smart contracts: ERC20 and ERC721. For the sake of brevity, only a

subset of rules is discussed. All contracts are available online [4].

5.1 ERC20

ERC20 [29] is a token standard for fungible tokens. Similar to the

Wallet contract in Section 2, it also supports token transfers be-

tween users. In addition, it has an allowance mechanism, where

users can allow other users to transfer their tokens, up to a certain

amount called allowance. The allowance mechanism can be specified

as follows.

r1: transferFrom(sender ,receiver ,spender ,n) :-

recv transferFrom(sender , receiver , n),

/* Sender has enough balance. */

balanceOf(sender ,m), m>=n,

/* Operator has enough allowance. */

msgSender(spender),

allowance(sender ,spender ,l),l>=n.

On receiving a transferFrom transaction, in addition to checking

that the sender has enough balance (m>=n), the rule also requires the

spender to have enough allowance to spend tokens on sender’s behalf

(l>=n). The relation transferFrom represents transactions where the

spender sends n tokens from the sender to the receiver.

The allowance of a spender on an account is specified as follows.

r2: spentTotal(o,s,m) :- transferFrom(o,_,s,_),

m = sum n: transferFrom(o,_,s,n).

r3: allowance(o,s,n) :- allowanceTotal(o,s,m),

spentTotal(o,s,l), n := m-l.

The relation spentTotal accounts the amount of tokens m that spender

s has spent on behalf of the sender o. And allowance is derived by

subtracting the total spending from the total allowance, an amount

approved by the sender (defined in another rule).

Given the definition of allowance and the spentTotal, we can spec-

ify a property that a spender never overspends as the following:

.violation overSpent

overSpent(o,s,n,m) :- allowanceTotal(o,s,n),

spentTotal(o,s,m), m>n.

DeCon then generates instrumentation to monitor this property at

run-time.

Explain allowance changes via data provenance. Suppose the

programmer made a mistake in specifying spentTotal:

r2 ': spentTotal(r,s,m):-transferFrom(_,r,s,_),

m = sum n: transferFrom(_,r,s,n).

The error in r2' is that the transferFrom table is grouped by the

receiver (r) and spender (s) column, instead of the sender (o) and

spender (s) column (as in r2).

When a spender account s wants to transfer 20 tokens from

account a to account b, by submitting a transaction transferFrom(a,b,

s,20), it is reverted. DeCon explains that it is because the condition

l >= n in r1 is false, which means the spender s does not have suffi-

cient allowance to transfer tokens on a’s behalf.

To understand why the spender only has 10 allowance to a’s ac-

count, one could get the provenance of the tuple allowance(a,s,10),

allowance(a,s,10)

r3

allowanceTotal(a,s,100)
spentTotal(a,s,90)

r2'

transferFrom(b,a,s,90)

(a) allowance(a,s,10)

transferFrom(a,s,r,tokenId)

r4

ownerOf(tokenId,a)
approved(tokenId,a)

r5'

approve(b,s,tokenId)

(b) transferFrom(a,s,r,tokenId)

Figure 4: Provenance tree for tuples.

as shown in Figure 4a. On top of the provenance tree, allowance(a,

s,10) is derived by r3, from the fact that the total allowance is 100

(allowanceTotal(a,s,100)), and that a has spent 90 already (spentTotal

(a,s,90)). To see why spentTotal(a,s,90) is derived, the programmer

continues expanding its provenance tree. A bug is revealed at this

step, where a transaction from address b to a is accounted for s’s

allowance on address a, which points to the bug in r2'.

5.2 ERC721

ERC721 [28] is a smart contract standard for non-fungible tokens

(NFTs). A main transaction for ERC721 tokens is transfer, which

records the transfer of a token from sender to recipient at a particular

time. The transaction time is included to specify the following views.

First is the view function ownerOf. Given the transfer relation, the

owner of a token is defined as follows.

latestTransfer(tokenId ,s,r,t):-transfer(tokenId ,s,r,t),

t = max i: transfer(tokenId ,_,_,i).

ownerOf(tokenId , p):-latestTransfer(tokenId ,_,p,_),p!=0.

The first rule selects the latest transfer record for tokenId, and the

next rule specifies that if the recipient of the latest transfer is non-

zero, it is the owner of the token.

Next is the exist relation. A token exists if it is minted and is not

burnt. In ERC721 contracts, burning a token emits a transfer record

from its owner to zero address. Hence, exist is defined as follows.

exists(tokenId , true) :-

latestTransfer(tokenId ,_,to,_), to!=0.

The rule checks that a token’s latest transfer recipient is a non-zero

address, which means it is not burnt.

To ensure every existing token has an owner, we could specify

the following property.

.violation tokenNoOwner

tokenNoOwner(tokenId) :-

ownerOf(tokenId ,0),exists(tokenId ,true).

This rule defines a property violation as an entry in the ownerOf

table, where owner address is 0 and tokenId exists.

Explain an unexpected token transfer via data provenance.

Suppose the owner wants to understand why one of her tokens has

been transferred away in a transaction transferFrom(a,s,r,tokenId),
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where a is the operator, s is the sender, and r is the receiver, she

expands the provenance tree for the transaction, which is shown in

Figure 4b. On top of the provenance tree is a transferFrom tranaction,

approved by the following rule:

r4: transferFrom(operator , sender , receiver , tokenId) :-

recv transferFrom(operator , sender , receiver ,

tokenId),

/* Sender owns the token. */

ownerOf(tokenId , sender),

/* Operator is approved to move the token. */

msgSender(operator), approved(tokenId ,operator).

where approved(tokenId,operator) means that the token tokenId has

been approved to use by operator. This approval is set by the token

owner. Suspicious about the approved(tokenId,a) tuple, the owner

continues to expand the provenance tree, and finds that it is derived

from the following rule.

r5 ': approved(tokenId ,operator) :-

approve(_,operator ,tokenId).

and the tuple approve(b,s,tokenId), which means account b, a previ-

ous owner, has approved this token to operator s before transferring

this token to a. Here, she finds the bug; r5 does not check that the

address that approves the token should be the token owner. The

rule should have been updated as follows instead.

r5: approved(tokenId ,operator):-ownerOf(tokenId ,owner),

approve(owner ,operator ,tokenId).

6 EVALUATION

We implement a prototype compiler [5] for DeCon in Scala that

generates Solidity programs with instrumentation for run-time

verification. We first evaluate the compiler by comparing its output,

without instrumentation, with reference contract written in Solidity.

Next, we evaluate the overhead of run-time verification on these

contracts and their properties.

6.1 Overhead to Reference Implementations

Reference smart contracts. We collect five reference smart con-

tract implementations from public repositories and prior research.

Wallet is the example shown in Section 2. CrowdSale is from prior

research paper [52]. SimpleAuction is from Solidity documenta-

tion [9]. ERC20 (fungible tokens) and ERC721 (non-fungible tokens)

are two of the most popular smart contracts deployed on Ethereum
1, and we use the implementation from the OpenZepplin library [6].

Declarative smart contract implementation. We implement

declarative counter-parts for all reference contracts with the same

interfaces and functionalities without instrumentation for run-time

verification or provenance. These contracts consist of 10 to 18 rules

(column #Rules in Table 1).

Although DeCon can specify all the high-level logic of the these

contracts, we note that the generated Solidity code has the following

difference from the reference implementations. First, the reference

CrowdSale contract is implemented as two separate contracts. As

DeCon does not yet support contract composition, the compiler

1According to https://etherscan.io, at the time of writing this paper, there are about
502,000 ERC20 tokens and 50,000 ERC721 tokens on Ethereum.

outputs a stand-alone smart contract with all the functionalities.

For the ERC721 contract, there is a safeTransferFrom interface, which

wraps the transferFrom function with a check: if the recipient is also

a smart contract, it should implement the onERC721Received interface.

The current implementation of DeCon does not yet support such

checking procedure, which relies on calling the built-in functions

of Solidity, so this interface is omitted.

Measurement metrics.We measure two metrics: (1) the size of

EVM byte-code deployed on the blockchain; and (2) the gas cost for

each transaction. EVM byte-code is generated by the Truffle [13]

compiler. To measure gas cost, we first deploy the smart contract

on Truffle’s local blockchain, and then populate the smart contract

states by sending transactions from 𝑁 test accounts, which results

in 𝑁 entries in the contract states. Then we call each transaction

interface again and record gas cost reported by Truffle. We find that

𝑁 (10 to 1000) does not impact gas cost. This is because all contracts

use hash-maps to store contract states. If the hash-collision rate

is low, the number of instructions is constant to the size of the

hash-map, and thus the gas cost remains constant. Therefore, we

report the gas cost measured with 𝑁 = 10.

Results.As shown in Table 1, the median gas overhead to reference

implementation is 14% across 16 transactions, with 3 of them have

even lower gas cost between −28% to −12%. In the extreme case, the

withdraw transaction from SimpleAuction shows 101% gas overhead.

We identify two sources of extra gas cost: (1) long function invo-

cation chain, and (2) inefficient use of data structures. For example,

in the Wallet example (Section 2), mint transaction updates the

variable totalMint, which further updates totalSupply, thus adding

extra cost than directly incrementing totalSupply as done by the

reference implementation. For data structures, relational tables are

directly maintained as arrays of tuples, with extra information like

valid bits and timestamps. Such extra information takes up addi-

tional space than their counterparts in Solidity implementations.

Mitigating such overhead borrowing ideas in SQL execution plan

optimization would be an interesting direction for future research.

DeCon consumes less gas in some transactions. In Wallet, the

DeCon contract has less read / write to the global memory. In Crow-

funding, the reference contract invokes an external call to another

contract, whereas DeCon implements everything in one monolithic

contract, thus eliminating the inter-contract transaction cost. In

ERC721, DeCon has fewer condition checks because some condi-

tions are specified as rules and therefore automatically maintained

by the contract.

In terms of byte-code size, DeCon’s compiler output is slightly

greater than the reference programs, with a 2 KB (SimpleAuction)

maximum increase. Note that on CrowSale, DeCon’s output is

smaller than the reference contract. This is because the reference

implements two separate contracts, while the program generated

by DeCon compiler has all functions implemented in one contract.

Contract features that are not yet supported.During the search

of benchmarks, we find some contracts use features that are not yet

supported by DeCon. For example, the voting contract from Solid-

ity documentation [14] checks voting loop in a recursive manner.

Although recursion can be naturally expressed in DeCon language,

the execution of recursion functions requires non-trivial reasoning
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Table 1: Overhead of Solidity programs generated by DeCon, compared to reference implementations. Column #𝑅𝑢𝑙𝑒𝑠 shows

the number of rules in the declarative smart contracts.

Contract LOC # Functions # Rules
Byte-code size (KB)

Transaction
Gas cost (K)

Reference DeCon Reference Compiled Diff

Wallet 57 6 12 3 3

mint 36 62 70%

burn 36 47 29%

transfer 52 38 -26%

Crowdsale 70 5 11 4 3

invest 38 33 -12%

close 38 47 25%

withdraw 26 29 14%

claimRefund 29 33 13%

SimpleAuction 139 3 13 2 4

bid 69 115 66%

withdraw 24 47 101%

auctionEnd 54 56 4%

ERC721 447 9 13 10 11

transferFrom 59 42 -28%

approve 49 75 53%

setApprovalForAll 27 27 2%

ERC20 383 6 18 5 6

transfer 52 55 6%

approve 47 50 7%

transferFrom 43 50 15%

median: 14%

Table 2: Run-time verification overhead. Column 𝑆𝑖𝑧𝑒 and

𝐺𝑎𝑠 show the overhead in byte-code size (KB) and gas cost

(K) respectively, compared to the DeCon contract without

instrumentation.

Contract Property Size Transaction Gas

Wallet
No negative

balance
2

mint 14%

burn 14%

transfer 17%

Crowdsale
No missing

funds
2

invest 50%

close 24%

withdraw 22%

claimRefund 33%

Simple

Auction
Refund once 2

bid 2%

withdraw 60%

auctionEnd 4%

ERC721
Every token

has owner
1

transferFrom 5%

approve 3%

setApprovalForAll 8%

ERC20

Account

balances add up

to total supply

1

transfer 96%

approve 13%

transferFrom 109%

median: 16%

to ensure termination and gas efficiency, and is therefore not yet

supported by DeCon. In addition, certain functions that lie outside

of relational logic, including checking interfaces of another contract

(e.g. safeTransferFrom in ERC721), and cryptographic functions[8],

are not yet supported, but they can be incorporated into DeCon via

user-defined functions in the future.

6.2 Run-Time Verification Overhead

Wemeasure run-time verification overhead by first specifying prop-

erties for each contract, which are generated as instrumentation

in the output Solidity program. These instrumented programs are

then compared to DeCon programs without instrumentation, on

byte-code size and gas usage.

Contract properties are specified as follows. First, as shown in the

example in Section 2, the Wallet contract is monitored for negative

account balances. The Crowdsale contract allows participants to

invest in a crowd funding project with a particular funding target.

The property specifies that the total amount of raised fund should

equal to all participants’ investments. In SimpleAuction, bidders

transfer their fund on every bid, and get refunds when the auction

is ended. A property specifies that every bidder can claim refund

at most once. In ERC721, the property specifies that all existing

tokens should have a valid owner (non-zero address). In ERC20, all

account balances should add up to the total supply of tokens.

Results. Table 2 shows the overhead of run-time verification. Byte-

code sizes are increased by no more than 2 KB. Gas usage overhead

varies across different transactions, with the median being 16%.

Wallet and ERC721 contracts show small overhead, where trans-

action gas consumption increases by no more than 17% and 8%,

respectively. Crowdsale and SimpleAuction contract come with

larger overhead. The highest increase in their transaction gas usage

are 50% and 60%. The ERC20 contract incurs the highest overhead,

where the transferFrom transaction shows 109% increase.

7 RELATED WORK

In this section, we survey several lines of research that are related

to our work.

Run-time verification. Similar to DeCon, Solythesis [44] also

specifies properties as invariants and generates instrumentation
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for run-time monitoring. It applies to general smart contracts im-

plemented in Solidity, whereas DeCon targets declarative contracts

only. By restricting the scope on declarative contracts, both spec-

ification and monitoring can be performed in a more straightfor-

ward manner. Invariants become violation queries, where joins are

analogous to existential quantifiers, and aggregations to universal

quantifiers. Detection becomes query evaluation, which reuses the

same procedure for contract execution.

SODA [27] is a framework for implementing generic attack de-

tection algorithms. Unlike DeCon where the monitoring procedure

is automatically generated from specification, the detection algo-

rithms in SODA are implemented manually.

Sereum [54]monitors reentrancy attacks online via taint analysis.

Azzopardi et al. [20] monitors contract execution against legal

contract logic. These two work targets specific vulnerabilities and

properties on Solidity smart contracts, whereas DeCon monitors

user-specified properties on declarative contracts.

Static analysis and verification. Static analysis has been applied

to detect generic vulnerabilities such as reentrancy attacks [33, 45],

integer bugs [60, 62], trace vulnerability [49], and event-ordering

bugs [42]. Securify [63] translates the EVM byte-code into strati-

fied Datalog, and checks vulnerability patterns using off-the-shelf

Datalog solvers.

Alt et al. [18] translate Solidity program into SMT formulas and

use off-the-shelf SMT solver to verify contract properties. Zeus [41]

leverages abstract interpretations and symbolic model checking to

verify correctness and fairness of smart contracts.

Symbolic execution [16, 17, 26, 43, 46, 48, 52, 63] is another pop-

ular technique for smart contract verification. Oyente [46] detects

generic predefined vulnerabilities including reentrancy, transac-

tion order dependency, mishandled exceptions, etc. Verx [52], on

the other hand, allows programmers to specify contract-specific

properties in temporal logic.

Fuzzing has also been applied to smart contracts. For example,

ContractFuzzer [38] tests smart contracts for security vulnerabili-

ties. Echidna [31] generates tests that triggers assertion violations.

ILF [36] and Harvey [65] focus on improving code coverage.

Unlike these work, DeCon monitors properties online, which

incurs run-time overhead, but does not suffer from false-positives

or false-negatives. In addition, DeCon targets declarative smart

contracts, while these tools analyze Solidity or EVM byte-code.

Although targeting different languages, the underlying verification

techniques can also be applied to DeCon and benefit from its higher-

level abstraction. We believe this is an exciting direction for future

research.

Domain-specific languages for financial contracts. Scilla [57]

is a intermediate-level language for smart contracts that offers

type safety and support for verification. KEVM [37] defines the

formal semantics of EVM, and has been used to verify contracts

against ERC20 standards. These languages provides precise formal

specification of smart contract down to the byte-code level, and are

good for verifying low-level properties. In contrast, DeCon focuses

on the high level abstraction of smart contracts and specification

of contract-specific properties. Jones et al. [39] uses functional

programming language to write financial contracts. BitML [21] is a

high-level language for Bitcoin smart contracts. Based on process

calculus, it translates contracts into Bitcoin transactions. DeCon,

on the other hand, is based on relational logic and targets Ethereum

smart contracts.

Datalog languages. DeCon shares similar syntax with general

Datalog languages like Souffle [40], and is inspired by incremental

evaluation techniques in systems like DDlog [55]. DeCon, however,

is specific to Ethereum smart contracts in the following aspects.

First, DeCon has a number of domain-specific language extensions

necessary for capturing execution semantics in Smart Contracts

(Section 3). Second, DeCon compiles Datalog to Solidity, with sev-

eral domain-specific optimizations (Section 4.5). Finally, DeCon

offers a property specification and run-time monitoring feature

(Section 4.3), which is essential since smart contracts are managing

a lot of digital assets.

Deontic logic for normative knowledge. Gabbay et al. [30]

present a historical overview of deontic logic for normative knowl-

edge. Based on similar principles, Prakken et al. [53] overview

logic-based approaches for legal applications. DeCon is a logical

system representing knowledge in the domain of smart contracts,

which enables efficient communication and automatic reasoning.

8 CONCLUSION AND FUTUREWORK

We present DeCon, a declarative programming language for smart

contract implementation and property specification. In DeCon,

smart contracts are specified in a high-level and executable manner,

thus providing opportunities for efficient analysis and verification,

bringing clarity to transaction execution via data provenance. Con-

tracts implemented in DeCon demonstrate comparable efficiency

to open-source reference implementation. Furthermore, run-time

verification adds moderate gas overhead.

Our initial experience with DeCon suggests a few exciting future

directions. First, we find interesting contracts that require addi-

tional language features, including contract composition, recursion,

user-defined functions, etc. Second, there are extreme cases where

DeCon compiler generates contracts with non-negligible overhead

to the reference hand-written code. DeCon compiler needs further

optimization to generate more efficient executable code. Third, to

save the overhead of run-time verification, we can leverage the

high-level abstraction of DeCon programs to perform static verifi-

cation.

9 DATA-AVAILABILITY STATEMENT

The software and scripts for reproducing the experiment results

are available online [3].
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