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Abstract—Document databases are increasingly popular in
various applications, but their queries are challenging to write
due to the flexible and complex data model underlying document
databases. This paper presents a synthesis technique that aims to
generate document database queries from input-output examples
automatically. A new domain-specific language is designed to
express a representative set of document database queries in an
algebraic style. Furthermore, the synthesis technique leverages
a novel abstraction of collections for deduction to efficiently
prune the search space and quickly generate the target query.
An evaluation of 110 benchmarks from various sources shows
that the proposed technique can synthesize 108 benchmarks
successfully. On average, the synthesizer can generate document
database queries from a small number of input-output examples
within tens of seconds.

I. INTRODUCTION

Document databases like MongoDB [30] and CouchDB [10]
have become increasingly popular in various real-world sce-
narios, such as online commercial platforms;financial services,
gaming, and social media applications [3T]. Different from
traditional relational databases that primarily use structured
data like tables, document databases persist data in a semi-
structured format such as JSON and BSON. While the semi-
structured data format provides developers with great flexibil-
ity in storing and querying complex data structures directly, it
also raises significant challenges for users to write queries for
document databases.

To help users write document database queries in an easy
and convenient fashion, we develop a synthesis technique to
generate queries automatically. Inspired by prior work on-au-
tomated-synthesis of SQL queries for relational databases [14],
[47], [54], our technique aims to generate document database
queries from input-output examples. Specifically, the user only
needs to provide a small number of examples to demonstrate
the query, where the input example is a small document
database consisting of a few documents, and the output ex-
ample is the desired query result over the input. The goal of
our synthesis technique is to generate a document database
query such that executing the query over the input example
produces the output example.

However, unlike synthesizing SQL queries, there are several
key challenges to synthesizing queries for document databases.

e Hierarchical and nested data structures. Document data-
bases support hierarchical and nested data structures, such as
arrays, documents, and their combinations. Since queries for
document databases constantly operate over these complex
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data structures, it is crucial for synthesizers to reason about

complex data structures efficiently for better performance.
o Specialized query language. Query languages for document

databases may use specialized operators over complex data
structures that relational databases cannot handle. For in-
stance, MongoDB uses a lookup operator in aggregation
pipelines to query data over multiple collections. Synthe-
sizers need to support an expressive query language for
document databases while maintaining the efficiency of
exploring a large search space of the target query.

To address these challenges, we have designed a new
domain-specific language based on the aggregation pipeline
in MongoDB that can express a representative set of queries
with core operators of document databases. The queries of this
language are in an algebraic style similar to relational algebra
but tailored towards document databases.

Furthermore, prior work on program synthesis proposed-an
approach to speed up the synthesis process by deduction [13],
[14]. For fast synthesis of document database queries, we have
adapted this approach to our setting and developed a novel
abstraction for collections containing hierarchical and nested
data structures to prune the search space efficiently. The key
insight is that the “shape” and size of collections can help
the synthesizer quickly prune incorrect queries, even if the
query is partial. Thus, our abstraction consists of two pieces of
information about the collection: First, it includes the fype of
documents inside the collection. Second, it includes a logical
formula describing constraints over the size of the collection.

More specifically, ourrsynthesis technique is presented
schematically in Figure T. At a high level, the synthesis
technique takes an iterative approach and has two phases in
each iteration. In the first phase, the synthesizer aims to find
a query sketch, which is a partial query with some unknown
constructs. In the second phase, it tries to complete the sketch
into a full query that can satisfy all provided input-output
examples. In general, it is not efficient to check if a sketch is
feasible to be completed into a correct full query by checking
all possible completions against the examples, because a
sketch may have a large number of completions. To avoid
such inefficiency, the key part of our synthesis technique is a
deduction engine, which can check if a sketch is feasible to get
a correct query without checking its completions. In particular,
the deduction engine can directly evaluate the sketch over
abstractions of collections and obtain abstract collections. If
the expected output example is a valid concretization of one of
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Fig. 1: Schematic workflow.
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the resulting abstract collections, the synthesizer concludes the
sketch is feasible to complete and proceeds to find a correct
completion. Otherwise, the synthesizer can safely conclude
the sketch is infeasible to complete, prune the search space
accordingly, and propose a different sketch to the next iteration
by refining the infeasible sketch.

Based on this technique, we have developed a tool called
NOSDAQ that can synthesize document database queries from
input-output examples. To evaluate the synthesis technique,
we have collected 110 benchmarks from various application
scenarios, including StackOverflow, Kaggle, MongoDB offi-
cial documents, and Twitter API documents. The evaluation
result shows that NOSDAQ can successfully synthesize 108
document database queries within the 5-minute time limit.
Furthermore, NOSDAQ only uses 1 — 3 input-output examples
and finishes query synthesis in an average of 14.2 seconds,
which demonstrates the effectiveness and efficiency of our
synthesis technique.

Contributions. To summarize, the main contributions of this
paper are as follows.

1) We develop a technique for synthesizing document
database queries from input-output examples.

2) We design a new domain-specific language to express
document database queries in algebraic style.

3) We design a novel abstraction for collections containing
hierarchical and nested data structures and use this abstrac-
tion to speedup the synthesis of document database queries
based on deduction.

4) We define the abstract semantics of document database
queries based on our abstraction of collections.

5) We develop a tool called NOSDAQ and evaluate it over
110 benchmarks from various sources. The evaluation
result shows that NOSDAQ is effective and efficient in
synthesizing document database queries.

Organization. The remainder of this paper is structured as
follows. Section [lI] provides a motivating example to illustrate
our technique. Section formalizes the synthesis problem,

{posts: [{

_id: "1", title: "Title-1",

replies: [{depth: 0}, {depth: 0}, {depth: 1}
I

_id: "2", title: "Title-2",

replies: [{depth: 0}, {depth: 1}, {depth: 2}]
I

_id: "3", title: "Title-3",

replies: [{depth: 0}, {depth: 1}, {depth: 2},

{depth: 3}]

}1}

Fig. 2: Input example.

and Section [[V] introduces collection abstractions. Sections [V]
and [VI] present the synthesis algorithm and its implementation
details, respectively. Section [VII] presents the experimental
setup and evaluation results. Section [VIII| discusses the related
work, followed by a conclusion in Section m

II. MOTIVATING EXAMPLE

To explain our synthesis technique, let us consider a con-
crete motivating example. Given a document database col-
lected from the Kaggle website that stores a list of Reddit
posts. The database only has one collection called post s with
the following schemalﬂ

An({_id: String, title : String, replies :An({depth: th}>}>

where Arr(r) denotes the array type of 7. Specifically, the
posts collection contains an array of documents, where each
document has three attributes: _id, title, and replies.
The replies attribute is also an array of documents and the
document has one attribute depth denoting the nesting level
of the reply from the root post.

Now suppose the user wants to query the title of posts which
have more than one non-zero-depth replies and the count of
these replies. NOSDAQ can help the user synthesize this query
automatically. The user needs to provide small input-output
examples to demonstrate their intention. For instance, Figure 2]
is an input example, and the corresponding output example is

title:
title:

"Title-— g"}
"Title-2"}]

[{reply_count: 3,
{reply_count: 2,
The goal of NOSDAQ is to synthesize a query such that
executing the query on the input example produces the output
example. NOSDAQ takes an iterative approach to solve the
synthesis problem. In each iteration, it first proposes a query
sketch that may contain unknowns and then checks if the
sketch is feasible to complete. If feasible, NOSDAQ completes
the sketch into a full query by enumerative search and checks
if any query satisfies the input-output example. If the sketch
is infeasible to complete, then NOSDAQ refines the sketch and
starts the next iteration.

First iteration. NOSDAQ starts with the simplest sketch in its
domain-specific language — the posts collection and checks
its feasibility. To do so, the deduction engine of NOSDAQ uses
the collection abstractions and evaluates the sketch based on its

The database schema is simplified in this section for illustration.
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abstract semantics. Specifically, the abstraction for the posts
collection is C = (T, ¢) where

T: {_id . String, title : String, replies : Arr<{depth : Num})}

is the type of inside documents and ¢ : ly = 3 is the
formula describing the size of the collection is 3. NOSDAQ
takes the abstract collection as input and evaluates the sketch
posts based on the abstract semantics. The evaluation result
is {C;} where C; = (T, ), which is exactly the same as
C. An important observation here is that the output example
is not a concretization of C; because its document has type
{title : String, reply_count : Num} and its size is 2.
Thus, NOSDAQ concludes the sketch posts is not feasible to
complete to a correct query and starts to refine the sketch for
the next iteration. In particular, NOSDAQ generates candidate
sketches based on the grammar of its query language, such as
Project(posts, h) and Match(posts, ¢).

Deduction with collection abstractions. Several iterations
later, NOSDAQ encounters the following sketch 2

Project(Match(Unwind(posts, hy), ¢), ha)

This time, the evaluation result is {Co} where Cy = (73, ¢2)
where Tz is {title : String} and ¢ is Iy = 3Nl > oAy <
11 Alg = I3, where [3 corresponds to the size of Cs. The sketch
Qs is still infeasible to complete, because the output document
has an additional attribute reply_count that does not match
the type 72. NOSDAQ prunes this sketch 25 and continues to
search for a feasible sketch.

Feasible sketch. After a few more iterations, NOSDAQ finds
another sketch €3

Project(Match( AddFields(Group(Match(
Unwind(posts, hi), ), ha, @, A), hs, E),¢'), ha)

The evaluation result of this sketch over the abstract semantics
is a set of abstract collections A, meaning the result can
be some one inside A. Among this set, there is an abstract
collection C5 = (T3, ¢3) € A where

T3: {93 : Any, ?g : Num}

d3:lo=3ANUL 2Nl <UL ANl3<lANla=I13Nl5<l4Nlg=15
Here, 2§ and ?; denote placeholders that can match one or
more attributes. Any denotes any value type. lg is the variable
that corresponds to the size of Cs. Observe that the output
example is a concretization of abstract collection Cs, because
the title matches ? and reply_count matches 23 . In
addition, the size of the output collection is consistent with
the size of C~3, because lg = 2 A ¢3 is satisfiable. Therefore,
NOSDAQ finds a feasible sketch (3.

Sketch completion. Given a feasible sketch 23, NOSDAQ
aims to complete {23 by finding instantiations of all unknown
operators in the sketch, such as hq, h_;,d', etc. Towards this
goal, NOSDAQ performs enumerative search and finds the
following query finally
Project(Match(AddFields( Group(Match(
Unwind(posts, replies), replies.depth > 0),

[Lid,title],[reply_count], [Count()]), [title],
[Lid.title]),reply_count > 1),[reply_count,title])

Schema § == {N1—T¢,,...,Nm—Tc,,}
Collection Type Tc == Ar(Ip)
Document Type Tp == {a1:Tv,...an:Tv,}

Value Type Tv Tp | Arr(Tv) | Tp
Primitive Type Tp ::= Num | String | Bool
|  Datetime | Objectld

N € Collection Names a € Attributes

Fig. 3: Schema of document databases.

Database D == {N;+—Ci,...,Np—Cn}
Collection C == [D]
Document D ::= {a1:v1,...,an :Un}
Valuev == D | [vi,...,un] ¢

N € Collection Names a € Attributes ¢ € Constants

Fig. 4: Definition of document databases.

Executing this query on the input example produces exactly
the output example, so the synthesis process is finished. The
query corresponds to the following MongoDB query

db.posts.aggregate ([

{$unwind: "Sreplies"},
{$match: {"replies.depth": {Sgt: 0}}},
{$group:

{_id: { _id: "$_id", title: "Stitle" },

reply_count: { Scount: {}}}},
{saddFields: {title: "$_id.title"}},
{smatch: {reply_count: {sgt: 1}}},
{$project: {_id: 0, reply_count: 1, title: 1}}])

III. PROBLEM FORMULATION

In this section, we present formulations that are necessary
for the rest of the paper and formally define our problem.

A. Document Schema and Database

We first precisely define the document schema and docu-
ment database considered in this paper.

Document schema. As shown in Figure 3] a document schema
S is a map from collection names to collection types, where
a collection type is an array of document types. A document
type is a map from attributes to different value types, including
document types, arrays, and primitive types such as Num,
String, and Bool.

Document database. As shown in Figure ] a document
database is a map from collection names to their corresponding
collections. A collection is an array of documents. A document
is a map from attributes to values, where the value is a
document, an array of values, or a constant of primitive types.

Typing and conformance. Figure [3 presents a set of typing
rules for conformance checking between document databases
and schemas, where judgments of the form - D : S mean the
database D conforms to schema S.|7| Specifically, according to
the T-Primitive rule, the type of a constant v is simply Type(v).

2We view Null as a special value of any primitive type. If an attribute has
both null values and non-null values in some collection, then its type will be
the same as that of the non-null value.
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v € Constants Type(v) =T

(T-Primitive)

Fo:rT
Foi:m i=1,...,n (T-Array)
Arra;
F o1, 0n] : Arr(r) Y
D={a1:v1,...,an : vn}
'*”UiZTi 7::1,..‘,7'7,
(T-Doc)
ED:{a1:71,...,an : Tn}
DZ{N1 i—)C1,...,Nm0—>Cm}
'*C,L':Ti i:l,...,m
(T-DB)
FD:{Ni+—71,...,Nmm — ™m}

Fig. 5: Rules for conformance between databases and schemas.

Query @ = N | Project(Q, k) | Match(Q, ¢)
| AddFields(Q,l_i E) | Unwind(Q, h)
| Group(Q,h,d,A) | Lookup(Q, h, h, N, a)
Pred ¢ == T | L|hO®c]| SizeEq(h,c) | Exzsts(h)
A KA
Expr E == h|h®h]| f(h)
Agg A == Sum(h) | Avg(h) | Min(h) | Max(h) | Count()
LogicOp® = < | < | =|#|>]| 2
ArithOp @& == +| — | x | /| %

N € Collection Names [ € Math Functions
c € Constants a € Attributes h € Access Paths

Fig. 6: Syntax of MongoDB Query. The two array parameters
of AddFields must have the same length. The last two param-
eters of Group also must have the same length.

The T-Array rule describes that all elements v; in an array must
have the same type. If the element type is 7, then the array is of
type Arr(r). The T-Doc rule states that the type of a document
D={ay:v1,...,an: vy} is {a1 : 71,...,ay : T, } Where 7;
is the type of v;. Finally, based on the T-DB rule, the schema
(or the type) of a database is basically a map from collection
names to types of their corresponding collections.

B. Query Language

Next, we describe the syntax and semantics E] of our query
language for document databases. The query language has a
straightforward correspondence to a core query language of
the MongoDB aggregation pipelines.

The syntax of the query language is shown in Figure [6] At
a high level, a query is a sequence of operations including
Project, Match, AddFields, Unwind, Group, and Lookup,
where different operators take different arguments such as a
predicate ¢ or an expression F. Each operator corresponds
to a stage of the MongoDB aggregation pipeline. More
specifically, the name N simply retrieves collection N from
the database. Project(Q, ﬁ) projects fields with access paths
R from each document in the collection of Q. Match(Q, ¢)
filters the documents in Q’s collection, retaining only those
satisfy the predicate ¢. AddFie]dng,]_l', E) introduces new
fields 7 with associated values of E to each document in Q.
Unwind(Q, h) deconstructs an array field h in the documents
of Q, mapping each document to a series of documents

3The formal semantics is described in the technical report [25.

where the value of h is replaced by individual elements of
the original array. Group(Q, h, @, A) groups documents of Q
based on grouping keys h, transforming each group into a
single document with new attributes @ and aggregated values
A. Finally, Lookup(Q, h1, ha, N,a) adds a new attribute a to
each document of O, where the attribute’s value is a list of
documents from a foreign collection N. This list only includes
documents whose specified field ho in the foreign collection
is the same as field h; in the original collection.

The predicate ¢ can be true T, false L, logical comparison
h ©® ¢, size equality SizeEq(h, c¢), existence of an access path
Exists(h), and boolean connectives. The expression E can be
an access path h, arithmetics h@h, and mathematical functions
f(h). The access path is a sequence of attributes separated by
dots such as aj.as.as, denoting the path to access the data
from the root document.

Example 1. Let us consider a document {_id: 1,
name: "John", class: "SE", info: {score:
90}}. The access path for the score attribute in info is
info.score.

Example 2. Consider a MongoDB query

db.coll.aggregate ([{Sgroup:
{_id: {name: "S$name", class: "Sclass"}},
total: {S$sum: "Sinfo.score"}}}])

It can be represented by the following query in our language

Group(coll,[name, class], [totall,[Sum(info.score)])
Example 3. Consider a collection
—[a:1,b: 23] {a: 4,6+ [5,6]}]
The evaluation result of Unwind(N, b) is
Ha:1,b:2},{a:1,b:3},{a:4,b:5},{a:4,b:6}]

C. Problem Statement

Before we state the problem to solve in this paper, let us
first define input-output examples.

Definition 1 (Input-output example). An example £ over
schema S is a pair (I,0) where I is the document database
over schema S (i.e., =1 :S) and O is the output collection.

Synthesis problem. Given a database schema S, a collection
name N € dom(S), and input-output examples £ over S,
the goal of our synthesis problem is to find a query Q over
collection N in the language shown in Figure [6] such that for
each example (I, 0) € £, it holds that [Q]; = O. Here, [Q];
represents the evaluation result of Q given input database I.

IV. ABSTRACTION FOR COLLECTIONS

In this section, we will introduce the abstraction for collec-
tions in document databases and how to compute abstractions
for queries and sketches.

Intuitively, since collections in document databases contain
an array of documents, the abstraction for collections should
contain two pieces of information: (1) the fype of documents
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inside the collection and (2) the size of the collection. Based
on this idea, we can define abstract collections and databases.

Definition 2 (Abstract collection). An abstract collection C =
(1, @) is a pair that consists of the type T of inside documents
and the formula ¢ about the collection size.

Definition 3 (Abstract database). An abstract database D=
{N1 — Cy,..., Ny — Cp} is a map from collection names
to abstract collections.

Since the synthesis process also involves partial programs
that may yield unknown attributes, values, or types in the
documents, we now augment documents with a notion of
placeholders.

Definition 4 (Placeholder). A placeholder ?™ denotes a top-
level attribute that can match any concrete attribute and m €
{1,+} denotes how many attributes it can match. ?' means
the placeholder matches exactly one attribute and ?* means
it can match one or more attributes.

Accordingly, we update the type of documents with place-
holders and augment attributes with a special type called Any
that represents any possible value type.

Definition 5 (Augmented type). An augmented type T is an
extension of the document type Tp in Figure 3| where the
attribute can be a named attribute or a placeholder and its
type can be a value type Ty, or Any denoting any value type.

Example 4. Let us consider an augmented type
{a: String, 2 : Any, 23 : Num, 23 : Are({c : Num, d : String})}

Here, ?f is a placeholder that matches one or more attributes
of any type. 23 is a placeholder that matches one or more
attributes of Num type. 2% is a placeholder that matches
exactly one attribute corresponding to a collection where the

document is of type {c : Num,d : String}.

Next, we can lift the notion of abstract collections to cases
where placeholders are involved in the documents.

Definition 6 (Abstract collection with placeholders). An ab-
stract collection C = (T,¢) is a pair consisting of (1)
the augmented type T of inside documents with potential

placeholders and (2) the formula ¢ about the collection size.

In the rest of the paper, we simply refer to abstract collec-
tions with placeholders as abstract collections, if the meaning
is clear in the context.

Definition 7 (Match). Let 7 be a document type and T be
an augmented type. We say T matches T, denoted T AT, if
(1) replacing ?* and 2+ with exactly one and at least one
attributes respectively and (2) replacing each occurrence of
Any with a value type in T yield a type equal to T.

Having defined the match relation between document types
and augmented types, we can define the relation between
concrete collections and abstract collections.

Algorithm 1 Synthesis Algorithm

1: procedure SYNTHESIZE(S, N, 5)

Input: Database schema S, collection name N, input-
output examples £

Output: A query Q or L indicating failure

2 W« {N}

3 while —~IsEmpty(W) do

4 Q + W.Dequeue()

5: if DEDUCE(S, 2, £) then

6 Q + COMPLETESKETCH(S, Q, )

7 if Q@ # | then return Q

8 W.EnqueueAll(REFINE())

9

return |

Definition 8 (Collection concretization). A collection C con-
cretizes an abstract collection C = (T, $), denoted C C C if
(1) 74T where - C : Arr(T) and (2) SAT(¢ Al,, = |C|) where
n = MaxLabel(¢).

Intuitively, if collection C concretizes abstract collection
C = (T,), then (1) the type of documents in C matches
the augmented type 7 of documents in C; and (2) the size of
C is consistent with the size of C described by formula ¢.

Example 5. Consider the output collection C in Section [[]]

[{reply_count: 3, title: "Title-3"},
{reply count: 2, title: "Title-2"}]

Suppose C = (T, @) is an abstract collection where

T : {23 : Any, 23 : Num}

G:lo=3Nl1 2l ANL<UANB<IaNlL=I3Nls<IlyNIleg=1I5
Here, lg is the variable for the size of C. First, the type
{reply_count : Num,title : String} matches the aug-
mented type T. Second, the size predicate lg = 2 is consistent
with formula ¢. Therefore, C concretizes C.

We can also lift the concretization relation to databases and
abstract databases.

Definition 9 (DB concretization). A database D over
schema S concretizes an abstract database D = {N; —

Ci,..., Ny = Cpn}, denoted DT D, if for all 1 < i <m
S[N;] = Arr{r;) < C; = (73,10 = |DIN;]|)
V. SYNTHESIS USING COLLECTION ABSTRACTIONS
In this section, we present our synthesis technique based on
the abstraction of collections.
A. High-Level Algorithm

As shown in Algorithm [T] our synthesis algorithm adapts
the standard iterative approach based on worklists and
sketches [[13]], [14] to the setting of document database queries.
Given a database schema S, a collection name N, and input-
output examples &, the SYNTHESIZE procedure aims to find
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a query Q over schema S such that it satisfies the examples
£ Specifically, the worklist WV is initialized to be a singleton
queue with the simplest sketch NV (Line 2). While the worklist
is not empty, the synthesis procedure enters a loop (Lines 3 —
8) that dequeues the current sketch €2 (Line 4) and checks if it
is feasible to complete (Line 5). If yes, the procedure invokes
the COMPLETESKETCH procedure and tries to obtain a correct
query (Lines 6-7). If the sketch is infeasible to complete or
all of its completions are incorrect, the procedure also invokes
the REFINE procedure to transform the current sketch ) to a
set of sketches based on the grammar in Figure [f] (Line 8).
This synthesis procedure is repeated until a correct query Q
is found (Line 7) or returns L if the worklist is empty.

B. Sketch Enumeration and Refinement

Definition 10 (Sketch). A sketch 2 is a query Q where only the
collection name is known and other arguments are unknown.

Example 6. Let us consider again the following sketch from
the motivating example.

Project(Match(Unwind(post s, hy), ¢), ha)

Here, the collection name posts is known, but access path
h1, predicate ¢, and access paths ho are unknown.

Given a sketch ) over collection N, the REFINE
procedure substitutes the collection N with all possible
query operators shown in Figure E] and obtalns a set
Sq = {Project(N, h), Match(N, ¢), AddFields(N, hE),
Unwind(N, h), Group(N, h, @, A), Lookup(N, h, h, N, a)}
and produces six new sketches. The refined sketches are

{QQ:/N] | Qi € Sa}

C. Abstract Semantics

Since the key novelty of our synthesis technique is perform-
ing deduction on collection abstractions to prune infeasible
sketches, we first introduce the abstract semantics of executing
sketches over abstract collections.

At a high level, the abstract semantics is consistent with
the concrete semantics in describing how an operator mod-
ifies the collection size and the type of its documents, but
it applies to the abstract database. Formally, the abstract
semantics is defined in Figure where judgments of the
form D,70 + Q | A mean that a sketch ) evaluates to a
set of abstract collections A given an abstract database D
and the output document type 7o. Specifically, by the A-
Collection rule, the only abstract collection for query N can be
obtained by looking up the abstract database D. By A-Match,
Match reduces the collection size without changing the type
of its inside documents. By A-Project, Project preserves the
collection size but modifies the document type. In particular,
the output document only retains a subset of the original
attributes, and the remaining attributes can be inferred from
the output. According to A-AddFields, AddFields adds one or
more attributes of Any type without changing the size of the
collection. By the A-Unwind rule, Unwind(2, h) potentially
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¢ = D[N]

——————— (A-Collection)
D,mo = N | {C}

D,roFQUA (T,¢) €A
(T, oAl <1;) e N
1d(Q) =i Id(Match(Q, P)) = j

D, 1o b Match(Q, P) |} A

(A-Match)

D,roFQUA (T,¢) €A
T = ToDocType(T)
(T —m)U(eN10), ¢ ANlj =1;) € N
1d(Q) =i Id(Project(2, b)) = j

D, 7o F Project(2, 1) | A/

(A-Project)

Dok QUA (T,¢) €A
(TU{2g: Any Y6 Al =1;) € N
1d(Q) =i Id(AddFields(2, h, E)) = j
D, 70 - AddFields(Q, h, E) | A’

(A-AddFields)

D,roFQUA (T,9) €A
Type(as) = Arr(t) A NotInArr(a 4)
{(Tlr/aa), ¢ Alj > 1)|laa € T AVDPNVgaa # 23} TN
Id(Q) =14 Id(Unwind(2, h)) = j

D, 70 F Unwind(Q2, h) | A/

(A-Unwind)

D,robQUA (T, ¢)eA
F = {ToDocType(D[N]7)|N € dom(D)}
{(TU{2}:Am(rp)}, d N1 = li)|Tp € F} C N
I1d(Q2) =4 Id(Lookup(Q,h,h,N,a)) =j
D,7o b Lookup($2, h, h, N,a) | A’

(A-Lookup)

Do FQUA (T,9) €A
G ={{z}: Num }, {}}
{({_id:mx}UTg, 0 ALy < 1y)
|t C ToDocType(T) A1qg € G} C A’
1d(Q) =i _1d(Group(, 1, @, A) = j
'15, TO = GI’OHP(Q, E» 67 g) U’ A

(A-Group)

Fig. 7: Abstract Semantics. The ToDocType function trans-
forms an augmented type to a document type by deleting all
placeholder attributes and the attributes with Any type. The
NotInArr checks whether an attribute is not nested in an array
type otherwise it is unable to be unwinded.

increases the collection size, deconstructs the array h of sketch
), and updates the type accordingly. By the A-Lookup rule,
Lookup preserves the collection size but introduces a new
attribute to the 7, where the type of the new attribute is
the same as that of the foreign collection. Finally, as shown
in the A-Group rule, Group reduces the collection size and
constructs a new type. In particular, it introduces a new
attribute _id as the key and uses a new 7, to represent a
series of numeric attributes for aggregation results. 7, can also
be empty, indicating the absence of aggregation attributes.

Example 7. Consider again the following sketch in Section [[]
Project(Match(Unwind(post s, hy), ¢), hy)

Based on the rules in Figure [8| we recursively evaluate the
sketch. The evaluation result of posts is

{({_id: String, title: String, replies:
Arr{{depth : Num})},lp = 3)}



The result of Unwind(posts, hy) is

{({_id: String, title: String, replies:
{depth: Num}},lo =3 Al >1p)}

The result of Match(Unwind(posts, hy), ¢) is

{({_id: String, title: String, replies:
{depth : Num}},lo =3ANlL1 > g ANl < ll)}

The result of Project(Match(Unwind(posts, hi), $), ha) is
{({title : String},lo =3A ll 2 l() AN lz S ll A l3 = lg)}

Next, we establish the relationship among queries, sketches,
concrete semantics, and abstract semantics with a theorem.

Theorem 1. {!| Let D be an abstract database over schema
S, Q be a sketch, Q be a query that is a completion of €},
and (I,0) be an input-output example, where - I : S and
O : Am(ro). If [Q]; = O, I E D, and D,70 + Q || A,
then there exists an abstract collection C € A such that O C C.

Intuitively, the theorem states that the abstract semantics is
correct with respect to the concrete semantics. In particular, if
the input is a concretization of the abstract database and the
query is a completion of the sketch, then the evaluation result
of the sketch on the abstract database is an over-approximation
of the output produced by executing the query on the input.

D. Deduction by Collection Abstractions

Next, let us present how to perform deduction based on the
collection abstractions.

Deduction algorithm. Our deduction algorithm is shown in
Algorithm 2| For each example &; = (I;,0;), we compute
the document type in O;. The COMPUTETYPE computes the
type of O; by the typing rules in Figure E] (Line 4). Then the
In function extracts the document type from the type of O;,
namely In(Arr(r)) = 7. We also compute the abstract input
database f)j by computing all the abstractions of collections in
the database (Line 5). Each collection name N; is mapped to
an abstract collection whose augmented type is the document’s
type inside the collection and the predicate is [y equals the
collection size. For all pairs of abstract input database @j and
output document type 7o;, we evaluate the sketch (2 based on
the abstract semantics in Figure [/| and get a set of abstract
collections for each example (Line 6). If for each example
(I;,0;), there is an abstract collection C € A; such that O is
a concretization of é, then the sketch is feasible to complete
(Line 7). Otherwise, the sketch is infeasible.

Concretization check. Recall from Definition [g] that to check
a collection C is a concretization of abstract collection C =
(T, @), we need to check (1) the type 7 of documents inside
C matches 7T, i.e. 7< 7T, and (2) the size of C is consistent
with the formula ¢. We use an off-the-shelf SMT solver to
check condition (2) by checking the satisfiability of formula
¢ Al = |C| where n = MaxLabel(¢). We also develop a

4Proofs of all the theorems are available in the technical report [25].

Algorithm 2 Deduction by Abstract Collections

1: procedure DEDUCE(S, €2, é_")
Input: The database schema S, a sketch () and input-
output examples £
Output: T if  is feasible otherwise L
2 for j « 1 to || do
3 (I, 05) < &
4: 70; + In(COMPUTETYPE(O;))
5: Dj — {Nz — (IH(S[Ni]),ZO = |Ij [NZ])|Nl S dOITI(S))}
6 Aj < EVAL(Dj, 105,Q)
7. if ¥5.3C.C € A; A O; C C then return T
8 else return |

procedure for type match based on Definition [/, which can be
best explained with the following example.

Example 8. Suppose we have an augmented type

T = {name: String, id: String, info: {tel : String},
77 : Num, 2§ : Any,
71 Arr{{profId: String, profName : String})}

and document type T

{ id: String, name : String, info : {tel : String},
newField: Bool, sum: Num,
profs: Arr{{profId: String, profName : String})}

Here, {name : String, id : String, info : {tel : String}}
in T is matched by {name : String, id : String, info :
{tel : String}} in 7, because the corresponding attributes
have the same names and types. {?} : Arr{{profId :
String, profName : String})} is matched by {profs
Arr({profId : String, profName : String})}, because
profs has the same type as placeholder 25 and 2} matches
exactly one attribute. Finally, {?} : Num} is matched by
{sum : Num} because they have the same type, and {?3 :
Any} is matched by {newField : Bool} because Any can
match any value type.

To understand why our deduction algorithm is correct, let
us consider the following theorem.

Theorem 2. Given a database schema S, a sketch ), and
input-output examples E, if DEDUCE(S, €2, 3 ) returns L, then
there is no completion Q of Q) such that for all (I,0) € &,
[Qlr = 0.

Intuitively, the theorem states that our deduction-based
pruning is sound. In other words, if the deduction algorithm
returns | for a sketch, then no completions of the sketch
satisfy all the input-output examples.

E. Sketch Completion

The COMPLETESKETCH takes as input a schema S, a
sketch €2, and input-output examples £ and returns a query
Q satisfying all examples or L if such a query does not exist.
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We use an enumerative search algorithm to fill unknowns in
the sketch according to the query operators.

1) Project. We compute the common attributes in the input
and output and use these common attributes as arguments.

2) Match. We enumerate all predicates obtained from a com-
bination of access paths, constants, comparisons, and logic
connectives. Also, the observational equivalent class is used
to avoid duplicate predicates.

3) AddFields. We enumerate all possible expressions for
newly generated attributes.

4) Unwind. We enumerate all array attributes in the top level
of the document and unwind them.

5) Group. We enumerate all group keys and accumulators and
use value-based analysis to prune impossible accumulators.

6) Lookup. We enumerate all foreign collections and their
attributes as arguments.

In addition, we also perform type checking to prune im-
possible arguments. For instance, if the value for a newly
generated attribute has a different type than it should be in
the output, we prune this completion from the search space.

We now conclude this section with two theorems about the
overall synthesis algorithm.

Theorem 3 (Soundness). Let S be a database schema, £

be input-output examples, and N be a collection name. Sup-
pose COMPLETESKETCH is sound, if SYNTHESIZE(S,E, N)
returns a query Q, then Q satisfies examples E.

Theorem 4 (Completeness). Let S be a database schema, g

be input-output examples, and N be a collection name. Sup-
pose COMPLETESKETCH is complete, if there exists a query
accepted by the grammar in Figure 6] that is over _collection
N and satisfies examples £, then SYNTHESIZE(S, €, N) does
not return L.

Intuitively, the soundness theorem states that if the synthesis
algorithm returns a query, then the query satisfies all input-
output examples. The completeness theorem ensures that if
there exists a query in our language satisfying all input-output
examples, then the synthesis algorithm can find a query.

VI. IMPLEMENTATION

We have implemented the proposed synthesis technique in
a tool called NOSDAQ and use Z3 [11] as the SMT solver.

Heuristics for sketch completion. Based on the observation
that most Group operators do not have more than two group
keys, we limit the number of group keys to two during sketch
completion. In addition, although NOSDAQ supports simple
constants (e.g., null) in sketch completion, it expects the user
to provide more complicated constants such as string literals.

Translation to MongoDB queries. NOSDAQ performs syntax-
directed translation to transform the document database query
in its domain-specific language to the MongoDB query lan-
guage. Furthermore, it also performs optimizations to improve
the conciseness and efficiency of translated queries, such as
merging continuous AddFields and Project operators.

TABLE I: Statistics of datasets. #n is the number of bench-
marks. #a, #d, #e, #i, #o, #c denote the average number of
document attributes, document depths, examples, collection
sizes in input and output examples, and constants, respectively.

dataset #n #a #d | #e # #o | #c
StackOverflow 33 49 152524147109
MongoDB Document | 26 54 14 | 1.1 | 47 | 26 | 0.6

Twitter API 5 184 | 26 | 1.0 | 2.0 | 2.6 | 0.0
Kaggle 46 198 | 41 | 1.0 | 1.8 | 3.6 | 0.5
Total 110 | 119 | 26 | 1.5 | 26 | 23 | 0.6

TABLE 1I: Statistics of ground truth queries. #s, #op, #P,
#M, #L, #U, #G, #A denote the number of AST nodes,
query operators, Project, Match, Lookup, Unwind, Group,
AddFields, respectively.

dataset #s #op | #P #M | #L #U | #G | #A
avg | 12 1.88 1 042 | 079 0.03| 027 036 | O
Stack- med | 10 1 0 1 0 0 0 0
Overflow min | 4 1 0 0 0 0 0 0
max | 33 5 1 2 1 2 2 0
avg | 8 1.I5] 031 | 042 0.04 | 0.08 | 0.27 | 0.04
Official med | 7 1 0 0 0 0 0 0
Document | min | 4 1 0 0 0 0 0 0
max | 17 3 1 1 1 2 1 1
avg | 16 2.6 0.8 0 0 1 0.6 0.2
Twitter med | 14 2 1 0 0 1 1 0
API min | 9 2 0 0 0 0 0 0
max | 26 4 1 0 0 2 1 1
avg | 13 3.2 0.7 05210 1541 0431 0
Kaggle m.ed 12 3 1 0 0 2 0 0
min | 8 2 0 0 0 0 0 0
max | 27 6 1 2 0 3 2 0
avg | 12 2291 053 055 0.02] 0.79 | 0.38 | 0.02
Total med | 11 2 1 1 0 1 0 0
min | 4 1 0 0 0 0 0 0
max | 33 6 1 2 1 3 2 1

VII. EVALUATION

In this section, we present several experiments that are
designed to answer the following research questions.
RQ1. Is NOSDAQ effective and efficient to synthesize docu-
ment database queries from input-output examples?
How does each component of the collection abstraction
affect synthesis time?
How does NOSDAQ compare against other baseline
synthesizers?
How does the collection size of input-output examples
impact the performance of NOSDAQ?

RQ2.
RQ3.

RQ4.

Experimental setup. All experiments are conducted on a
machine with an Intel i9-13905H CPU and 32 GB of physical
memory, running the Ubuntu 22.04 WSL2 operating system.

A. Benchmarks

We have collected 110 benchmarks from 4 representative
sources, i.e., StackOverflow, MongoDB official document,
Twitter API documents, and Kaggle competitions, which cover
a wide spectrum of realistic scenarios.

o StackOverflow. The StackOverflow dataset is adapted from

StackOverflow posts where developers ask about real-world

problems. Each post in our dataset has 453K visits, 4
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answers, and 127 votes on average, which demonstrates
these queries attract lots of attention from the community.
Most of the the examples and constants are extracted from
the post content. If some post does not provide enough
examples, we add the examples.

« MongoDB Document. The MongoDB official documents
cover a representative set of queries that the MongoDB
community believes are commonly used in practice. The
examples and constants are all collected from the example
section of official documents.

« Twitter APIL. The Twitter dataset consists of tweets and user
replies which mainly focus on calculating tweet statistics,
such as the count of replies. The benchmarks represent typ-
ical scenarios for data analysts to get information from social
networks and online forums. The examples are collected
from the response data of APIs.

o Kaggle. The Kaggle dataset contains information about
satellite images, where benchmarks reflect scenarios for
scientific research, such as extracting different labels for
training machine learning models and collecting statistics.
The examples are sampled from the provided JSON file.

Table [l summarizes the statistics of these datasets. Among
these datasets, Twitter API and Kaggle benchmarks are more
complex than StackOverflow and MongoDB Document in
terms of the number of attributes, depths, etc.

To further understand the complexity of benchmarks, we
have also collected the statistics on the ground truth queries
in Table [ The maximum AST size of ground truth queries
is 33 among all benchmarks, and the average is 12. Over half
of the ground truth queries have an AST size larger than 10.
This indicates a high level of complexity, as longer queries
typically require synthesizers to explore a larger search space.
Furthermore, the number of operators (or pipeline stages) in
a single query ranges from 1 to 6. Frequently occurring oper-
ators include Project, Match, Unwind, and Group. Notably,
Unwind and Group pose significant challenges for synthesis,
as they can substantially change the structure of collections
and documents. In contrast, the Lookup operator appears
infrequently in ground truth queries. This is consistent with the
typical usage of document databases where users try to avoid
“join” operations between multiple collections. Similarly, the
AddFields operator is also not used frequently in our datasets.

B. Effectiveness and Efficiency

The evaluation results and the statistics of synthesized
programs are presented in Table Given a time limit of 5
minutes, NOSDAQ can solve 108 out of 110 benchmarks and
only gets timeout on two challenging benchmarks (both in
Kaggle). Note that the ground-truths of these two benchmarks
are more complex than the others from our manual inspection.
This serves as evidence of the effectiveness of NOSDAQ
in synthesizing document database queries from examples.
Further, NOSDAQ can solve most benchmarks in an average of
14.2 seconds as shown in Table Furthermore, observing the
number of sketches #{2 and complete programs #9, NOSDAQ
iterates over 175 sketches but only completes 57 full programs

TABLE III: Evaluation results for NOSDAQ. #n and v/ denote
the number of benchmarks and solved benchmarks, and time
indicates the time (in seconds) to solve benchmarks. #Q), #Q,
#size refer to the number of sketches, complete programs, and
AST nodes of synthesized programs, respectively.

dataset # | v/ time (s) | #Q | #Q | #size
avg 9.2 86 31 12
Stack- med 2.6 15 6 11
Overflow 3 3 min 0.5 2 1 4
max 184.5 854 308 32
avg 5.7 11 53 9
MongoDB 2% 2 med 1.1 6 14 10
Document min 0.5 2 1 4
max 78.6 124 576 19
avg 10.5 81 61 15
Twitter 5 5 med 10.1 36 81 15
API min 1.8 15 1 9
max 19.9 165 131 22
avg 234 350 79 16
med 6.8 160 4 13
Kaggle 46 44 min 1.0 ] ) 3
max 201.6 3975 | 1235 38
avg 14.2 175 57 13
med 3.2 31 7 11
Total 110 | 108 min 05 5 | 4
max 201.6 3975 | 1235 38

on average. It demonstrates that our synthesis technique based
on collection abstractions is efficient in pruning infeasible
sketches and thus speeds up the synthesis process.

Qualitative analysis. We observe that the number of attributes
in the document, the depth of the document, the number of
constants, and the query complexity affect the synthesis time.
For instance, the Kaggle dataset needs longer synthesis time
than others because the benchmark has a large number of
attributes and the documents are deeply nested. In general,
more complex queries need the synthesizer to iterate more
sketches. More attributes, deeper nesting, and more constants
require enumerating more queries while completing the sketch.

Non-desired programs. To understand if NOSDAQ can syn-
thesize desired queries, we have manually inspected all 108
synthesized queries and found 107 of them are equivalent
to the desired ones. There is only one benchmark (from
StackOverflow) where NOSDAQ synthesized a plausible query
in terms of the example but the query is not desired. The
reason is that this benchmark involves a complex predicate that
requires numerous unseen examples to eliminate mismatch
cases. However, only a few examples are provided on the
StackOverflow post, so NOSDAQ cannot find the desired
predicate but synthesize an alternative satisfying the examples.

Answer to RQ1: NOSDAQ successfully synthesizes 108 out
of 110 benchmarks from examples and the average synthesis
time is 14.2 seconds.

C. Ablation Study

To understand how the type and size information in col-
lection abstractions may affect the efficiency, we perform an
ablation study. Specifically, we have created three variants of
NOSDAQ that disable (1) the size information, (2) the type
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Fig. 9: Comparison between NOSDAQ and EUSOLVER.

information, and (3) both size and type information in the
abstraction. We run all these variants on the 110 benchmarks
and obtain the result shown in Figure [8} where a point (z,y)
means a variant can synthesize x benchmarks and the time for
each benchmark is within y seconds. As shown in the figure,
without size in the abstraction, the variant times out on 4 more
benchmarks and requires approximately 10 seconds longer
on average. Without type, the variant triggers timeout on 19
more benchmarks and requires around 27 seconds longer on
average to complete the synthesis process. This indicates that
the document type in the collection abstraction significantly
improves the synthesis time.

Answer to RQ2: Both type and size information can make
NoOSDAQ more efficient but the former is more significant.

D. Comparison with Baselines

To compare NOSDAQ with a baseline, we have instanti-
ated the EUSOLVER framework [1]] to synthesize document
database queries from examples. As a generic solver, EU-
SOLVER can be easily extended to support documents and
collections in the specification, since it provides necessary
support for lists and maps. Secondly, EUSOLVER remains a
competitive baseline in program synthesis, as evidenced from
recent work [4], [22]], [32]]. As shown in Figure@ as opposed
to 108 benchmarks solved by NOSDAQ, EUSOLVER can only
solve 25 benchmarks within the 5-minute time limit due to the
large search space of document database queries in general.

To compare NOSDAQ with the LLM-based approach, we
have used ChatGPT (version gpt-40-2024-08-06) to synthesize
all of our 110 benchmarks. Specifically, we have used the
same set of input-output examples and constants in each
benchmark and asked ChatGPT to generate MongoDB queries.
To make fair comparisons, we did not provide additional
natural language descriptions about what the query should do.
The evaluation shows that GPT can only generate the desired
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Fig. 10: Impact of collection size on synthesis time.
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Fig. 11: Impact of collection size on rates of plausible and
desired queries.

query for 53 out of 110 benchmarks. For 24 benchmarks, the
generated query is plausible but undesired, i.e., it is consistent
with the examples but not equivalent to the desired one. For the
remaining 33 benchmarks, the generated query is inconsistent
with the input-output examples. The errors made by GPT
include misunderstanding the semantics of operators, missing
predicates, etc. Recall that NOSDAQ can synthesize desired
queries for 107 benchmarks and plausible but undesired query
for 1 benchmark. We believe our synthesis technique is more
effective and generalizable than GPT to synthesize document
database queries from examples.

Answer to RQ3: NOSDAQ can solve 108 out of 110 bench-
marks, whereas EUSOLVER can only solve 25 benchmarks,
and ChatGPT-40 can solve 77 benchmarks.

E. Impact of Collection Size

To analyze the impact of collection size on the performance
of NOSDAQ, we have conducted experiments across all 110
benchmarks to evaluate how different collection sizes influence
NOSDAQ’s behavior. Specifically, we sampled 10 documents
for each collection and ran NOSDAQ on variants with collec-
tion sizes ranging from 1 to 10 documents. The impact on
synthesis time is presented in Figure [I0] while the impact on
rates of plausible and desired queries are shown in Figure

The plausible rate is defined as the ratio of benchmarks
synthesized within a 5-minute time limit to the total number
of benchmarks. The desired rate represents the ratio of bench-
marks for which the synthesized query is equivalent to the
desired one to the total number of synthesized benchmarks.

As shown in the figures, the synthesis time of NOSDAQ
remains relatively insensitive to changes in collection size
within the range of 1 to 10 documents in each collection.
Similarly, the plausible rate also remains stable. In contrast, the
desired rate shows a significant increase when the collection
size grows from 1 to 3, after which it stabilizes. This can
be attributed to the fact that smaller collection sizes provide
insufficient examples to synthesize the desired query, leading
to simpler queries that are plausible but not desired.
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Answer to RQ4: The synthesis time of NOSDAQ demon-
strates minimal sensitivity to changes in collection size. The
rate of synthesizing a desired query increases rapidly as the
collection size grows from 1 to 3 and stabilizes thereafter.

FE. Threats to Validity

First, although we believe our datasets are representative,
which are obtained from various real-world scenarios, our
evaluation results are limited to the collected datasets. The
NOSDAQ tool might perform differently on other datasets.
Second, our domain-specific language only corresponds to a
core subset of the MongoDB aggregation pipeline. While it
is convenient to extend the abstract semantics to other query
operators, the performance of the tool might be different due
to the change in SMT formulas for symbolic reasoning. Third,
all the experiments are conducted on a machine as specified in
Section Running the experiments on a different machine
may yield different results.

VIII. RELATED WORK

Program synthesis for software engineering. Program synthe-
sis techniques have been applied to address various software
engineering problems, such as program refactoring [9], [33]],
[37], [39]], program repair [26], [28], [34], [S0], code com-
pletion [16], [[40]], software testing [43]], [S5]], and so on. This
paper focuses on the topic of generating document database
queries from input-output examples.

Synthesizing database queries. Among related papers, the
most related is a body of work on synthesizing database
queries. SQLSYNTHESIZER [54], SCYTHE [47] and PAT-
SQL [44] synthesize SQL queries for relational databases
from examples, while SICKLE [56] synthesizes analytical SQL
queries given computation demonstrations. SQLIZER [53]]
considers nature language description as the specification for
SQL query synthesis. However, none of the prior work can
synthesize queries of document databases such as MongoDB.

Synthesis with deduction. A line of work performs deduc-
tion to prune infeasible programs in program synthesis [7],
(81, [L30-115], [210, [23[, [24], [36], [38]. For example,
MORPHEUS [14] and NEO [13]] utilize SMT-based deduc-
tion that generates formulas based on semantics and input-
output examples to prune infeasible programs. NGDS [23]]
and CONCORD [8] combine deduction and machine learning
techniques to prune the search space. NOSDAQ adapts the
high-level approach of MORPHEUS [14] and NEO [13] to the
setting of document database queries. However, MORPHEUS
mainly focuses on tabular data, whereas NOSDAQ focuses
on hierarchical data. The abstraction used by MORPHEUS is
related to the number of rows and columns of tables. This
abstraction cannot be directly used for deduction in a synthe-
sizer that aims to generate document database queries, because
these queries operate over more involved hierarchical data.
Therefore, NOSDAQ uses the novel abstraction consisting of
hierarchically nested types for its documents and the collection
size, which is one of the main contributions of this paper.

Synthesis with abstraction. Another line of related work is to
synthesize programs using abstractions [[19], [29], [42], [46]],
[48]]. For example, SIMPL [42] uses abstract interpretation to
guide the synthesis of imperative programs from examples.
Mell et al. [29]] also use abstract interpretation for optimal
program synthesis. BLAZE [48] constructs and iteratively
refines the abstract finite tree automata that represent a set
of programs. This approach iteratively prunes and refines
automata when the corresponding programs do not satisfy
examples, until a correct program is found. Unlike prior
techniques, NOSDAQ employs a novel collection abstraction
to represent complex hierarchical data (e.g., BSON) and uses
abstract semantics to rule out infeasible sketches representing
a large set of programs.

Wrangling semi-structured data. Various techniques have
been proposed to wrangle semi-structured data, such as
JSON, XML documents, spreadsheets, and log files. For
example, there is a line of work [2], [3], [41], [45] that
aims to map XML documents to relational data for query
processing. DATAMARAN [17] converts the semi-structured
log into a structured relational format. FLASHEXTRACT [24]]
extracts relevant data from text files, websites, and spread-
sheets. FLASHRELATE [5] extracts relational data from semi-
structured spreadsheets by examples. TREEX [35] synthesizes
extractors for real-world large-scale websites. Since document
databases store semi-structured data by nature, NOSDAQ can
also be viewed as a query synthesizer over semi-structured
data. However, different from prior work, NOSDAQ focuses
on core query language of document databases and aims to
address significant challenges raised by specialized operators
such as Group, Unwind, and Lookup.

Synthesizing data transformation scripts. Many synthesizers
aim to automatically generate data transformation scripts from
high-level specifications [6], [12], [14], [18], [200, [27], [S1],
[52]. For example, HADES [51] synthesizes scripts to handle
hierarchically structured data such as file systems, XML, and
HDF files. MITRA [52] aims to synthesize scripts to convert
hierarchical data into relational tables. DYNAMITE [49] trans-
forms data between various types of databases by synthesizing
Datalog programs. In contrast, NOSDAQ is designed to handle
complex data structures in document databases and leverage
collection abstractions to efficiently synthesize queries from
examples, which is beyond the capability of prior work.
For instance, HADES focuses on structure changes in the
transformation but does not support aggregations, but NOSDAQ
can synthesize aggregate queries with Group operations.

IX. CONCLUSION

This paper presents a technique that automatically synthe-
sizes document database queries from input-output examples.
To achieve better performance, we develop a novel abstrac-
tion for collections containing hierarchical and nested data
structures and leverage this abstraction for deduction to prune
the search space of target queries. An evaluation of 110
benchmarks from various sources demonstrates our technique
is effective and efficient in solving 108 benchmarks.
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