
Synthesizing Database Programs

for Schema Refactoring

Yuepeng Wang
University of Texas at Austin

Austin, Texas, USA
ypwang@cs.utexas.edu

James Dong
University of Texas at Austin

Austin, Texas, USA
jdong@cs.utexas.edu

Rushi Shah
University of Texas at Austin

Austin, Texas, USA
rshah@cs.utexas.edu

Isil Dillig
University of Texas at Austin

Austin, Texas, USA
isil@cs.utexas.edu

Abstract

Many programs that interact with a database need to undergo
schema refactoring several times during their life cycle. Since
this process typically requires making significant changes to
the program’s implementation, schema refactoring is often
non-trivial and error-prone. Motivated by this problem, we
propose a new technique for automatically synthesizing a
new version of a database program given its original version
and the source and target schemas. Our method does not re-
quire manual user guidance and ensures that the synthesized
program is equivalent to the original one. Furthermore, our
method is quite efficient and can synthesize new versions of
database programs (containing up to 263 functions) that are
extracted from real-world web applications with an average
synthesis time of 69.4 seconds.

CCS Concepts • Software and its engineering → Pro-

gramming by example; Automatic programming; • In-
formation systems → Database utilities and tools.

Keywords Program Synthesis, Program Sketching, Rela-
tional Databases
ACM Reference Format:

Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019.
Synthesizing Database Programs for Schema Refactoring. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’19), June 22–26, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3314221.3314588

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314588

1 Introduction

Database-driven applications have been, and continue to be,
enormously popular for web development. For example, most
contemporary websites are built using database-driven ap-
plications in order to generate webpage content dynami-
cally. As a result, database applications form the backbone
of many industries, ranging from banking and e-commerce
to telecommunications.
A common theme in the evolution of database applica-

tions is that they typically undergo schema refactoring sev-
eral times during their life cycle [4, 21]. Schema refactoring
involves a change to the database schema, with the goal of
improving the design and/or performance of the application
without changing its semantics. Despite the frequent need
to perform schema refactoring, this task is known to be non-
trivial and error-prone [3, 59]. In particular, changes to the
database schema often require re-implementing parts of the
database program to make the program logic consistent with
the underlying schema. This task is especially non-trivial in
the presence of structural schema changes, such as those that
involve splitting and merging relations or moving attributes
between different tables.
While prior work has addressed the problem of verify-

ing equivalence between two database programs before and
after schema refactoring [54], generating a new version of
the program after a schema change still remains an ardu-
ous and manual task. Motivated by this problem, this paper
takes a step towards simplifying the evolution of programs
that interact with a database. Specifically, we consider data-
base programs that consist of a set of database transactions
written in SQL. Given an existing database program P that
operates over source schema S and a new target schema S′
that P should be migrated to, our method automatically syn-
thesizes a new database program P ′ over the new schema
S′ such that P and P ′ are semantically equivalent. Thus,
our technique automates the schema evolution process for
these kinds of database programs while ensuring that no
desirable behaviors are lost and no unwanted behaviors are
introduced in the process.

286

https://doi.org/10.1145/3314221.3314588
https://doi.org/10.1145/3314221.3314588
https://doi.org/10.1145/3314221.3314588

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig

Schema S

Schema S'

Val. Corr.
Generator

Sketch
Generator

Sketch
Solver

P'

Sketch

Program P

Figure 1. Synthesis methodology.

Our methodology for automatically migrating database
programs to a new schema is illustrated schematically in
Figure 1. Rather than synthesizing the new version of the
program in one go, our algorithm decomposes the problem
into three simpler sub-tasks, each of which leverages the
results of the previous task in the pipeline. Specifically, given
the source and the target schemas S,S′, our algorithm starts
by guessing a candidate value correspondence relating S and
S′. At a high level, a value correspondence Φ specifies how
attributes inS′ can be obtained using the attributes inS [37].
Intuitively, learning a value correspondence is useful because
(a) it is relatively easy to guess the correct correspondence
based on attribute names in the schema, and (b) having a
value correspondence dramatically constrains the space of
programs that may be equivalent to the original program P.

While the value correspondence holds important clues as
to what the transformation should look like, it nonetheless
does not uniquely determine the target program P ′. Thus,
given a candidate value correspondence Φ, our synthesis
algorithm generates a program sketch Ω that represents the
space of all programs that may be equivalent to the original
program P according to Φ. In this context, a program sketch
is a database program where some of the tables, attributes,
or boolean constants are unknown. Furthermore, assuming
the correctness of the candidate value correspondence Φ,
the sketch Ω is guaranteed to have a completion that is
equivalent to P (if one exists).

The third, and final, step in our synthesis pipeline “solves”
the sketch Ω by finding an instantiation P ′ of Ω that is
equivalent to P. However, unlike existing sketch solvers that
use the counterexample-guided inductive synthesis (CEGIS)
methodology, we use a different approach that does not
require symbolically encoding the semantics of database
programs into an SMT formula. Specifically, since database
query languages like SQL are not easily amenable to symbolic
reasoning using established first-order theories supported
by SMT solvers, our approach instead performs enumera-
tive search over the space of all possible completions of the
sketch. However, because this search space is typically very
large, a naïve search algorithm is difficult to scale to realistic
database programs. Our approach deals with this difficulty
by using a novel algorithm that leverages minimum failing
inputs (MFIs) to dramatically prune the search space.

Overall, our synthesis algorithm for automatically migrat-
ing database programs to a new schema has several useful
properties: First, it is completely push-button and does not
require the user to provide anything other than the original

update addInstructor(int id, String name, Binary pic)
INSERT INTO Instructor VALUES (id, name, pic);

update deleteInstructor(int id)
DELETE FROM Instructor WHERE InstId = id;

query getInstructorInfo(int id)
SELECT IName, IPic FROM InstructorWHERE InstId = id;

update addTA(int id, String name, Binary pic)
INSERT INTO TA VALUES (id, name, pic);

update deleteTA(int id)
DELETE FROM TA WHERE TaId = id;

query getTAInfo(int id)
SELECT TName, TPic FROM TAWHERE TaId = id;

Figure 2. An example database program.

program and the source and target schemas. Second, our ap-
proach is sound in that the synthesized program is provably
equivalent to the original program and does not introduce
any new, unwanted behaviors. Finally, since our method
performs backtracking search over all possible value corre-
spondences, it is guaranteed to find an equivalent program
over the new schema if one exists.

We have implemented our proposed approach in a proto-
type tool called Migrator for automatically migrating data-
base programs to a new schema. We evaluate Migrator on
20 benchmarks and show that it can successfully synthesize
the new versions for all twenty database programs with an
average synthesis time of 69.4 seconds per benchmark. Thus,
we believe these experiment results provide preliminary, but
firm, evidence that the proposed synthesis technique can be
useful to database program developers during the schema
evolution process.

In all, this paper makes the following key contributions:
• We propose a new synthesis technique for automatically
migrating database programs to a new schema.
• Wedescribe aMaxSAT-based approach for lazily enumerat-
ing possible value correspondences between two schemas.
• We describe a technique for generating program sketches
from a given value correspondence.
• We propose a new sketch solver based on symbolic search
and conflict-driven learning from minimum failing inputs.
• We evaluate the proposed technique on 20 schema refac-
toring scenarios and demonstrate that our method can
automate the desired migration task in all cases.

2 Overview

In this section, we give an overview of our technique using a
simple motivating example. Consider the database program
shown in Figure 2 for managing and querying a course-
related database with the following schema:

Class (ClassId, InstId, TaId)
Instructor (InstId, IName, IPic)

TA (TaId, TName, TPic)

287

Synthesizing Database Programs for Schema Refactoring PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

update addInstructor(int id, String name, Binary pic)
INSERT INTO ??1 { PictureZ Instructor, PictureZTAZ Instructor,
Picture Z TA Z Class Z Instructor } VALUES (id, name, pic);

update deleteInstructor(int id)
DELETE ??2 { [Picture], . . ., [Picture, Instructor, TA, Class] }
FROM ??3 { PictureZ Instructor, PictureZTAZ Instructor,
Picture Z TA Z Class Z Instructor }WHERE InstId = id;

query getInstructorInfo(int id)
SELECT IName, Pic FROM ??4 {
Picture Z Instructor, Picture Z TA Z Instructor,
Picture Z TA Z Class Z Instructor }WHERE InstId = id;

update addTA(int id, String name, Binary pic)
INSERT INTO ??5 { Picture Z TA, Picture Z Instructor Z TA,

Picture Z Instructor Z Class Z TA } VALUES (id, name, pic);

update deleteTA(int id)
DELETE ??6 { [Picture], . . ., [Picture, Instructor, TA, Class] }

FROM ??7 { Picture Z TA, Picture Z Instructor Z TA,
Picture Z Instructor Z Class Z TA }WHERE TaId = id;

query getTAInfo(int id)
SELECT TName, Pic FROM ??8 {
Picture Z TA, Picture Z Instructor Z TA,
Picture Z Instructor Z Class Z TA }WHERE TaId = id;

Figure 3. Generated sketch over the new database schema.

This database has three tables that store information about
courses, instructors, and TAs respectively. Here, the Instruc-
tor and TA tables store profile information about the course
staff, including a picture. Since accessing a table containing
large images may be potentially inefficient, the programmer
decides to refactor the schema by introducing a new table for
images. In particular, the desired new schema is as follows:

Class (ClassId, InstId, TaId)
Instructor (InstId, IName, PicId)

TA (TaId, TName, PicId)
Picture (PicId, Pic)

As a result of this schema change, the program from Figure 2
needs to be re-implemented to conform to the new schema.
We now explain how Migrator automatically synthesizes
the new version of the program.

Value correspondence generation. As mentioned in Sec-
tion 1, Migrator lazily enumerates possible value corre-
spondences (VCs) between the source and target schemas.
For this example, the first VC Φ generated by Migrator
contains the following mappings:

Instructor.IPic → Picture.Pic
TA.TPic → Picture.Pic

In addition, all other attributes T .a in the source schema are
mapped to the same T .a in the target schema.

Sketch generation. Next, Migrator uses the candidate VC
Φ to generate a program sketch that encodes the space of
all programs that are consistent with Φ. The corresponding
sketch for this example is shown in Figure 3. Here, each hole,
denoted ??{c1, . . . , cn}, corresponds to an unknown constant
drawn from the set {c1, . . . , cn}. As will be discussed later in
Section 3, we use the statement:

INSERT INTOT1 Z T2 VALUES · · ·

as short-hand for:
INSERT INTO T1 VALUES · · ·
INSERT INTO T2 VALUES · · ·

Thus, the first function in the sketch corresponds to the
following three possible implementations of addInstructor :

INSERT INTO Instructor VALUES (id, name, v0);
INSERT INTO Picture VALUES (v0, pic);
or
INSERT INTO Instructor VALUES (id, name, v1);
INSERT INTO TA VALUES (v2, v3, v1);
INSERT INTO Picture VALUES (v1, pic);
or
INSERT INTO Instructor VALUES (id, name, v4);
INSERT INTO Class VALUES (v5, id, v6);
INSERT INTO TA VALUES (v6, v7, v4);
INSERT INTO Picture VALUES (v4, pic);

where v0,v1, . . . ,v7 are unique values.
Observe that the program sketch shown in Figure 3 has

an enormous number of possible completions — in partic-
ular, it corresponds to a search space of 164, 025 possible
re-implementations of the original program.

Sketch completion. Given a sketch Ω and the original pro-
gram P, the goal of sketch completion is to find an instanti-
ation P ′ of Ω such that P ′ is equivalent to P, if such a P ′
exists. Unfortunately, it is difficult to solve this sketch using
existing solvers (e.g., [47, 49]) because the symbolic encoding
of the program is quite complex due to the non-trivial se-
mantics of SQL. In this paper, we deal with this difficulty by
(a) encoding the space of all possible programs represented
by the sketch using a SAT formula Ψ, and (b) using mini-
mum failing inputs to dramatically prune the search space
represented by Ψ.

Going back to our sketch Ω from Figure 3, Migrator gen-
erates the following SAT formula that encodes all possible
instantiations of Ω:
⊕(b11,b

2
1,b

3
1) ∧ ⊕(b

1
2, . . . ,b

15
2) ∧ ⊕(b

1
3,b

2
3,b

3
3) ∧ ⊕(b

1
4,b

2
4 ,b

3
4)∧

⊕(b15,b
2
5,b

3
5) ∧ ⊕(b

1
6, . . . ,b

15
6) ∧ ⊕(b

1
7,b

2
7,b

3
7) ∧ ⊕(b

1
8 ,b

2
8,b

3
8)

Here, ⊕ denotes n-ary xor, and b ji is a boolean variable that
is assigned to true iff hole ??i in the sketch is instantiated
with the j-th constant in ??i ’s domain.

Given this formula Ψ, Migrator queries the SAT solver
for a model. For the purpose of this example, suppose the
SAT solver returns the following model for Ψ:

b31 ∧ b
2
2 ∧ b

3
3 ∧ b

3
4 ∧ b

1
5 ∧ b

4
6 ∧ b

3
7 ∧ b

3
8 (1)

288

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig

update addInstructor(int id, String name, Binary pic)
INSERT INTO Instructor VALUES (id, name, UID0);
INSERT INTO Picture VALUES (UID0, pic);

update deleteInstructor(int id)
DELETE Instructor FROM Picture JOIN Instructor
ON Picture.PicId = Instructor.PicIdWHERE InstId = id;

query getInstructorInfo(int id)
SELECT IName, Pic FROM Picture JOIN Instructor

ON Picture.PicId = Instructor.PicIdWHERE InstId = id;

update addTA(int id, String name, Binary pic)
INSERT INTO TA VALUES (id, name, UID1);
INSERT INTO Picture VALUES (UID1, pic);

update deleteTA(int id)
DELETE TA FROM Picture JOIN TA
ON Picture.PicId = TA.PicIdWHERE TaId = id;

query getTAInfo(int id)
SELECT TName, Pic FROM Picture JOIN TA

ON Picture.PicId = TA.PicIdWHERE TaId = id;

Figure 4. The synthesized database program.

which corresponds to the following assignment of the holes:

??1 = ??3 = ??4 = Picture Z TA Z Class Z Instructor
∧ ??2 = [Instructor] ∧ ??5 = Picture Z TA ∧ ??6 = [TA]
∧ ??7 = ??8 = Picture Z Instructor Z Class Z TA

(2)
However, instantiating the sketch with this assignment

results in a program P ′ that is not equivalent to P. Now, we
could block this program P ′ by conjoining the negation of
Equation 1 with Ψ and asking the SAT solver for another
model. While this strategy would give us a different instanti-
ation of sketch Ω, it would preclude only one of the 164, 025
possible instantiations of Ω. Our key idea is to learn from
this failure and block many other programs that are incorrect
for the same reason as P ′.
Towards this goal, our approach computes a minimum

failing input, which is a shortest sequence of function invo-
cations such that the result of P differs from that of P ′. For
this example, such a minimum failing input is the following
invocation sequence ω:

addTA(ta1, name1, pic1); getTAInfo(ta1) (3)

This input establishes that P ′ is not equivalent to P because
the query result for P is (name1, pic1) whereas the query
result for P ′ is empty.
Our idea is to utilize such a minimum failing input ω to

prune incorrect programs other than just P ′. Specifically,
let F denote the functions that appear in the invocation se-
quenceω, and letH be the holes that appear in the sketch for
functions in F . Our key intuition is that the assignments to
holes inH are sufficient for obtaining a spurious program, as
ω is a witness to the disequivalence between P and P ′. Thus,

Prog := Func+
Func := update Name(Param+)U

| query Name(Param+) Q
UpdateU := InsStmt | DelStmt | UpdStmt | U ;U
Query Q := Πa+(Q) | σϕ (Q) | J

Join J := T | JaZaJ
Pred ϕ := a op a | a op v | a ∈ Q | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ
InsStmt := ins(J , {(a : v)+})
DelStmt := del([T+], J ,ϕ)
UpdStmt := upd(J ,ϕ,a,v)

Param ∈ Variable Name ∈ String
T ∈ Table a ∈ Attribute v ∈ Value ∪ Variable

Figure 5. Syntax of database programs. + denotes the previ-
ous construct appears once or multiple times.

rather than blocking the whole model, we can extract the
assignment to the holes inH and use this partial assignment
to obtain a much stronger blocking clause. For our example,
this yields the clause ¬(b15 ∧ b

3
8) because only the fifth and

eighth holes appear in the sketches for addTA and getTAInfo.
Using this blocking clause, we can eliminate a total of 18, 225
incorrect programs rather than just P ′.

Continuing in this manner, Migrator finally obtains the
following model for Equation 2:

b11 ∧ b
2
2 ∧ b

1
3 ∧ b

1
4 ∧ b

1
5 ∧ b

4
6 ∧ b

1
7 ∧ b

1
8

This model corresponds to the programP ′ shown in Figure 4,
which is indeed equivalent to the original program from
Figure 2. Thus, Migrator returns P ′ as the synthesis result.

3 Preliminaries

In this section, we introduce the syntax and semantics of
database programs and review what equivalence means in
this context.

3.1 Syntax and Semantics of Database Programs

For the purpose of this paper, a database program consists of
a set of functions, where each function is either a query or
update to the database. As shown in Figure 5, every function
consists of a name, a list of parameters, and a function body.
The body of a query function is a relational algebra ex-

pression involving projection (Π), selection (σ), and join (Z).
As is standard, Πa1, ...,an (Q) recursively evaluates sub-query
Q to obtain a table T and then constructs a table T ′ that is
the same as T but containing only the columns a1, . . . ,an .
The filter operation σϕ (Q) recursively evaluates Q to obtain
a tableT and then filters out all rows inT that do not satisfy
predicate ϕ. A join expression J1a1Za2 J2 corresponds to the
equi-join of J1 and J2 based on predicate a1 = a2, where a1
is an attribute in J1 and a2 is an attribute in J2. In the rest
of this paper, we use the terminology join or join chain to
refer to both database tables as well as (possibly nested) join

289

Synthesizing Database Programs for Schema Refactoring PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

expressions of the form J1a1Za2J2. Furthermore, since natural
join is a special case of equi-join, we also use the standard
notation J1 Z J2 to denote natural joins where the equality
check is implicit on identically named columns.

In contrast to query functions that do not change the state
of the database, update functions can add or remove tuples to
database tables. Specifically, an insert statement ins(T , {a1 :
v1, . . . ,an : vn}) inserts the tuple {a1 : v1, . . . ,an : vn} into
relation T . To simplify presentation in the rest of the paper,
we use the syntax

ins(T1fk1Zpk2T2, {a1 : v1, . . . ,an : vn ,a′1 : v
′
1, . . . ,a

′
m : v ′m})

as short-hand for the following sequence of insertions:

ins(T1, {pk1 : u0, a1 : v1, . . . ,an : vn , fk1 : u1});
ins(T2, {pk2 : u1, a′1 : v

′
1, . . . ,a

′
m : v ′m})

where u0,u1 are unique values, and the schema for T1,T2 are
T1(pk1,a1, . . . ,an , fk) and T2(pk2,a′1, . . . ,a

′
m) respectively.

A delete statement del([T1, . . . ,Tn], J ,ϕ) removes from
tablesT1, . . . ,Tn exactly those tuples that satisfy predicate ϕ
in join chain J . As an example, consider the delete statement
del([T1], T1a1Za2T2, ϕ). Here, we first computeT1a1Za2T2 to
obtain a virtual table T where each tuple in T is the union
of a source tuple in T1 and a source tuple in T2. We then
obtain another virtual table T ′ that filters out predicates
satisfying ϕ. Finally, we delete from T1 all tuples that occur
as (a prefix of) a tuple in T ′. In contrast, if the statement
is del([T1,T2], T1a1Za2T2, ϕ), the deletion is performed on
bothT1 andT2. We refer the reader to [38] for a more detailed
discussion of the semantics of delete statements. 1
An update statement upd(J ,ϕ,a,v) modifies the value of

attribute a to v for all tuples satisfying predicate ϕ in join
chain J [39]. For instance, consider the update statement
upd(T1a1Za2T2, ϕ, T1.a3, v). Like delete statements, we first
computeT1a1Za2T2 and get a virtual tableT where each tuple
inT is the union of a source tuple inT1 and a source tuple in
T2. Then we filter out tuples satisfying predicate ϕ in T and
get another virtual table T ′. Finally, we update attribute a3
in T1 to value v for all T1 tuples that appear in T ′.

Example 3.1. Consider a simple database with two tables:

Car

cid model year

1 M1 2016
2 M2 2018

Part

name amount cid

tire 10 1
brake 20 1
tire 20 2
brake 30 2

The delete statement

del([Car, Part], Car Z Part, model = M1)

would delete tuple (1,M1, 2016) from the Car table and tuples
(tire, 10, 1), (brake, 20, 1) from the Part table. On the other

1We consider this form of delete statement rather than the more standard
del(T , ϕ) as it dramatically simplifies presentation in the rest of the paper.

hand, the update statement

upd(Car Z Part, model = M2 ∧ name = tire, amount, 30)

would modify the third record of Part to (tire, 30, 2).

3.2 Equivalence of Two Database Programs

Since our goal is to synthesize a program P ′ that is equiva-
lent to another database program P with a different schema,
we review the definition of equivalence introduced in prior
work [54].

Consider a database program P over schema S that has a
set of update functions U = (U1, . . . ,Un) and a set of query
functionsQ = (Q1, . . . ,Qm). First, an invocation sequence for
P is of the form

ω = (f1,σ1); . . . ; (fk−1,σk−1); (fk ,σk)

where fk is the name of a query function in Q , f1, . . . , fk−1
refer to names of updates functions inU , and σi corresponds
to the arguments for function fi . Given a program P, we use
the notation JPKω to denote the result of executing P on ω.
Now, consider two programs P,P ′ over schemas S,S′.

Following [54], we say that P is equivalent to P ′, writ-
ten P ≃ P ′, if for any invocation sequence ω, we have
JPKω = JP ′Kω — i.e., executing ω on P yields the same
query result as executing ω on P ′ starting with an empty
database instance. Thus, if two database programs are equiv-
alent, then they yield the same query result after performing
the same sequence of update operations on the database.

4 Synthesis Algorithm

In this section, we present our algorithm for automatically
migrating database programs to a new schema. We start
with an overview of the top-level algorithm and then discuss
value correspondence enumeration, sketch generation, and
sketch completion in more detail.

4.1 Overview

Our top-level synthesis algorithm is summarized as pseudo-
code in Algorithm 1. Given the original program P over
schema S and the target schema S′, Synthesize either re-
turns a program P ′ such that P ≃ P ′ or ⊥ to indicate that
no equivalent program exists.
In a nutshell, the Synthesize procedure is a while loop

(lines 2 - 7) that lazily enumerates all possible value corre-
spondences between the source and target schemas. Formally,
a value correspondence Φ from source schema S to target
schema S′ is a mapping from each attribute in S to a set
of attributes in S′ [37]. Specifically, if T ′.b ∈ Φ(T .a), this
indicates that the entries in column a in the source table T
are the same as the entries in column b of table T ′ in the
target schema. Observe that, if Φ maps some attribute T .a
in S to ∅, this indicates that attribute a of table T has been
deleted from the database. Similarly, if |Φ(T .a)| > 1, this

290

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig

Algorithm 1 Synthesizing database programs
1: procedure Synthesize(P,S,S′)

Input: Program P over source schema S, target schema S′
Output: Program P ′ or ⊥ to indicate failure

2: while true do
3: Φ← NextValueCorr(S,S′);
4: if Φ = ⊥ then return ⊥;
5: Ω ← GenSketch(Φ,P);
6: P ′ ← CompleteSketch(Ω,P);
7: if P ′ , ⊥ then return P ′;

indicates that attribute T .a has been duplicated in the target
schema. 2

Now, given a candidate value correspondence Φ, the GenS-
ketch procedure at line 5 generates a sketch Ω that repre-
sents all programs that may be equivalent to P under the
assumption that Φ is correct. Finally, the CompleteSketch
procedure (line 6) tries to find an instantiation P ′ of Ω such
that P ′ ≃ P. If such a P ′ exists, then the algorithm termi-
nates and returns P ′ as the transformed program. On the
other hand, if there is no completion of the sketch that is
equivalent to P, this indicates that the conjectured value cor-
respondence is incorrect. In this case, the algorithm moves
on to the next value correspondence Φ′ and re-attempts the
synthesis task using Φ′.
As formalized in more detail in the extended version of

this paper [55], our synthesis algorithm is both sound and
relatively complete. That is, if Synthesize returns P ′ as a
solution, then P ′ is indeed equivalent to P by the definition
from Section 3.2. Furthermore, Synthesize is relatively com-
plete, meaning that it can always find an equivalent program
P ′ under the assumption that (a) we have access to a sound
and complete oracle for verifying equivalence of database
programs, (b) P ′ is related to P according to a value corre-
spondence that conforms to our definition, and (c) P ′ has
the same general structure as P.
In the following subsections, we explain the subroutines

used in the Synthesize algorithm in more detail.

4.2 Lazy Enumeration of Value Correspondence

In order to guarantee the completeness of our synthesis al-
gorithm, we need a way to enumerate all possible value
correspondences between the source and target schemas.
However, it is infeasible to generate all such value correspon-
dences eagerly, as there are exponentially many possibilities.
In this section, we describe how to lazily enumerate value
correspondences in decreasing order of likelihood using a
partial weighted MaxSAT encoding.
2 Our notion of value correspondence is a slightly simplified version of
the definition given by Miller et al. [37]. For example, their definition also
allows attributes in the target schema to be obtained by applying a function
to attributes in the source schema. Our technique can be extended to handle
this scenario, albeit at the cost of increasing the size of the search space.

Background on MaxSAT. MaxSAT is a generalization of
the traditional boolean satisfiability problem and aims to
determine the maximum number of clauses that can be sat-
isfied. Specifically, a MaxSAT problem is defined as a triple
(H ,S,W), whereH is a set of hard clauses (constraints), S
is a set of soft clauses, andW is a mapping from each soft
clause c ∈ S to a weight, which is an integer indicating the
relative importance of satisfying clause c . Then, the goal of
the MaxSAT problem is to find an interpretation I such that:

1. I satisfies all the hard clauses (i.e., I |=
∧

ci ∈H ci)
2. I maximizes the weight of the satisfied soft clauses

Variables. To describe our MaxSAT encoding, suppose that
the source (resp. target) schema contains attributesa1, . . . ,an
(resp. a′1, . . . ,a

′
m). In our encoding, we introduce a boolean

variable xi j to indicate that attribute ai in the source schema
is mapped by the value correspondence Φ to attribute a′j in
the target schema, i.e.,

xi j ⇔ a′j ∈ Φ(ai)

Hard constraints. Hard constraints in our MaxSAT encod-
ing rule out infeasible value correspondences:
• Type-compatibility: Since a′j ∈ Φ(ai) indicates that the
entries stored in ai and a′j are the same, xi j must be false if
ai and a′j have different types. Thus, we add the following
hard constraint for type compatibility:∧

i, j

¬xi j where type(ai) , type(a′j)

• Necessary condition for equivalence: If the source program
P queries some attribute ai of the database, then there
must be a corresponding attribute a′j that ai is mapped
to; otherwise, the source and target programs would not
be equivalent (recall Section 3.2). Thus, we introduce the
following hard constraint:∨

1≤j≤m
xi j where ai is queried in P

which ensures that every attribute that is queried in the
original program is mapped to at least one attribute in the
target schema.

Soft constraints. The soft constraints in our encoding serve
two purposes: First, sincemost attributes in the source schema
typically have a unique corresponding attribute in the target
schema, our soft constraints prioritize one-to-one mappings
over one-to-many ones. Second, since attributes with simi-
lar names are more likely to be mapped to each other, they
prioritize value correspondences that relate similarly named
attributes.

To encode the latter constraint, we introduce a soft clause
xi j with weight sim(ai ,a′j) for every variable xi j . Here, sim
is a heuristic metric that measures similarity between the

291

Synthesizing Database Programs for Schema Refactoring PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Prog := Func+
Func := update Name(Param+)U

| query Name(Param+) Q
UpdateU := InsStmt | DelStmt | UpdStmt | U ;U | U ? U
Query Q := Π(??{a+})+(Q) | σϕ (Q) | J | Q ? Q

Join J := T | JaZaJ
Pred ϕ := ??{a+} op ??{a+} | ??{a+} op v

| ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ
InsStmt := ins(J , {(??{a+} : v)+})
DelStmt := del(??{L+}, J , ϕ)
UpdStmt := upd(J , ϕ, ??{a+}, v)
TabList L := [T+]

Param ∈ Variable Name ∈ String
T ∈ Table a ∈ Attribute v ∈ Value ∪ Variable

Figure 6. Sketch Language. ?? represents a hole in the sketch
and the subsequent set indicates the domain of that hole. ?

is a choice operator and s1 ? s2 denotes the statement could
either be s1 or s2. E+ indicates a list of elements of type E.

names of attributes ai and a′j .
3 To encode the former con-

straint, we add a soft clause xi j → ¬xik (with fixed weight
α) for every i ∈ [1,n], j ∈ [1,m] and k ∈ (j,m]. Essentially,
such clauses tell the solver to de-prioritize mappings where
the cardinality of Φ(ai) is large.

Blocking clauses. While our initial MaxSAT encoding con-
sists of exactly the hard and soft constraints discussed above,
we need to add additional constraints to block previously
rejected value correspondences. Specifically, let A be an as-
signment (with corresponding value correspondence ΦA)
returned by the MaxSAT solver, and suppose that there is
no program P ′ that is equivalent to P under ΦA. In this
case, our algorithm adds ¬A as a hard constraint to prevent
exploring the same value correspondence multiple times.

4.3 Sketch Generation

In this section, we explain the GenSketch procedure for
generating a sketch that represents all programs that may be
equivalent to P under a given value correspondence Φ. We
first describe our sketch language and then explain how to
use the value correspondence to generate a suitable sketch.

Sketch language. Our sketch language for database pro-
grams is presented in Figure 6 and differs from the source
language in Figure 5 in the following ways: First, programs
in the sketch language can contain a construct of the form
??{e1, . . . , en}, where the question mark is referred to as a
hole and the set of elements {e1, . . . , en} is the domain of
that hole — i.e., the question mark must be filled with some

3In our implementation, we implement sim as α−Levenshtein(ai , a′j)where
α is a fixed constant and Levenshtein is the standard Levenshtein distance.

A ⊆ Attrs(J) ∀a ∈ A. ∃a′ ∈ Φ(a). a′ ∈ Attrs(J ′)
Φ ⊢A J ∼ J ′

(Attrs)

A = Attrs(J) Φ ⊢A J ∼ J ′

Φ ⊢ J ∼ J ′
(JoinChain)

Figure 7. Inference rules for checking join correspondence
(J , J ′) under value correspondence Φ.

element drawn from the set {e1, . . . , en}. In addition, pro-
grams in the sketch language also contain a choice construct
s1 ? s2, which is short-hand for the conditional statement:

if ??{⊤,⊥} then s1 else s2

where ⊤,⊥ represent the boolean constants true and false,
respectively. Thus, program sketches in this context repre-
sent multiple (but finitely many) programs written in the
syntax of Figure 5.

Join correspondence. In order to generate a sketch from a
program P and value correspondence Φ, our approach first
maps each join chain used inP to a set of possible join chains
over the target schema. We refer to such a mapping as a join
correspondence and say that a join correspondence (J , J ′) is
valid with respect to Φ if Φ can map all attributes used in J
to attributes in J ′.
Figure 7 presents inference rules for checking whether a

join correspondence (J , J ′) is valid under Φ. Specifically, the
judgment Φ ⊢A J ∼ J ′ indicates that every attribute a ∈ A of
join chain J can be mapped to some attribute of join chain J ′

under Φ. Similarly, the judgment Φ ⊢ J ∼ J ′means that every
attribute in the join chain J can be mapped to an attribute
of J ′ using Φ. Observe that, if Φ ⊢ J ∼ J1 and Φ ⊢ J ∼ J2, this
means that join chain J in the source program could map to
either J1 or J2 in the target program.

Sketching approach. Our sketch generation technique uses
the inferred join correspondences to produce a sketch that
encodes all possible programs that may be equivalent to
the source program. However, since a join chain J might
correspond to any one of the join chains J1, . . . , Jn in the
target program, our sketch generation method proceeds in
two phases: In the first phase, we non-deterministically pick
any one of the join chains Ji that J could map to. Then, in
the second phase, we combine the sketches obtained using
J1, . . . , Jn to obtain a more general sketch that accounts for
every possibility.

Sketch generation, phase I. The first phase of our sketch
generation procedure is summarized in Figure 8 and assumes
that every join chain J in the source program maps to a
unique join chain J ′ in the target program. Specifically, the
rules in Figure 8 derive judgments of the form Φ ⊢ s { Ω,
meaning that statement s in the original program can be
rewritten into sketch Ω under the assumption that (a) Φ
is correct and (b) every join chain in the source program

292

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig

Φ ⊢ J ∼ J ′

Φ ⊢ J { J ′
(Join)

Φ(a) = {a′1, . . . ,a
′
n}

Φ ⊢ a { ??{a′1, . . . ,a
′
n}

(Attr)

ai ∈ Attrs(ϕ) Φ ⊢ ai { hi i = 1, . . . ,n
Φ ⊢ ϕ { ϕ[h1/a1, . . . ,hn/an]

(Pred)

Φ ⊢ Q { Ω Φ ⊢ ϕ { ϕ ′

Φ ⊢ σϕ (Q) { σϕ′(Ω)
(Filter)

Φ ⊢ Q(J) { Ω(h) Φ ⊢ aj { hj j = 1, . . . ,m
A = {a1, . . . ,am}∪Attrs(Q) Φ ⊢A J ∼ J ′

Φ ⊢ Πa1, ...,am (Q(J)) { Πh1, ...,hm (Ω(J
′))

(Proj)

A = Attrs(L) ∪ Attrs(ϕ) Φ ⊢ ϕ { ϕ ′

Φ ⊢A J ∼ J ′ TabLists(J ′) = {L1, . . . ,Ln}
Φ ⊢ del(L, J ,ϕ) { del(??{L1, . . . ,Ln}, J ′,ϕ ′)

(Delete)

Φ ⊢ ϕ { ϕ ′ Φ ⊢ a { h
A = Attrs(ϕ) ∪ {a} Φ ⊢A J ∼ J ′

Φ ⊢ upd(J ,ϕ,a,v) { upd(J ′,ϕ ′,h,v)
(Update)

Φ ⊢ J ∼ J ′ Φ ⊢ ai { hi i = 1, . . . ,n
Φ ⊢ ins(J , {a1 : v1, . . . ,am : vm}) {

ins(J ′, {h1 : v1, . . . ,hm : vm})

(Insert)

Figure 8. Rewrite rules for generating sketch from value
correspondence Φ. All holes ?? are annotated with an
index to ensure they are globally unique. The function
TabLists returns all non-empty subset of tables in a join,
i.e. TabLists(T1 Z . . . Z Tn) = PowerSet({T1, . . . ,Tn}) \ ∅.

corresponds to a unique join chain in the target program.
We now explain each of these rules in more detail.

The Attr (resp. Join) rule corresponds to a base case of our
inductive rewrite system and generates the sketch directly
using the value (resp. join) correspondence. The Pred rule
first generates holes h1, . . . ,hn for each attribute ai in ϕ and
then generates a predicate sketch by replacing each ai with
its corresponding sketch. The Filter and Proj rules are similar
and generate the sketch by recursively rewriting the nested
query, predicate, and attributes.
The last three rules in Figure 8 generate sketches for

update statements. Here, the Update and Insert rules are
straightforward and generate the sketch by recursively rewrit-
ing the nested attributes and predicates. For the Delete rule,
recall that deletion statements are of the form del(Tbls, J ,ϕ),
where Tbls can refer to any non-empty subset of the tables
used in J . Thus, the sketch for deletion statements contains a
hole for Tbls, with the domain of the hole being the power-set
of the tables used in J ′.

Sketch generation, phase II. Recall that a join chain in the
source program may correspond to multiple join chains in

Φ ⊢ s { Ω

Φ ⊢ s ↠ Ω
(Lift)

Φ ⊢ Q ↠ Ω Φ ⊢ Q { Ω′

Ω = Ω1 ? . . . ? Ωn Ω′ , Ωi i = 1, . . . ,n
Φ ⊢ Q ↠ Ω ? Ω′

(Query)

Φ ⊢ U ↠ Ω Φ ⊢ U { Ω′

Ω = Ω1 ? . . . ? Ωn Ω′ , Ωi i = 1, . . . ,n
Φ ⊢ U ↠ Ω ? Ω′ ? (Ω • Ω′)

(Update)

Φ ⊢ U1 ↠ Ω1 Φ ⊢ U2 ↠ Ω2

Φ ⊢ U1;U2 ↠ Ω1;Ω2
(Seq)

Figure 9. Inference rules for composing multiple sketches.
The composition operator • is defined in Figure 10.

U1 •U2 = U1;U2 (U1 = ins or del or upd)
(U1;U2) •U3 = U1;U2;U3
(U1 ? U2) •U3 = (U1 •U3) ? (U2 •U3)

Figure 10. Definition of the composition operator.

the target schema — i.e., the target join chain is not uniquely
determined by a given value correspondence. Thus, the sec-
ond phase of our algorithm combines the sketches generated
during the first phase to synthesize a more general sketch
that accounts for this ambiguity.

Figure 9 describes the second phase of sketch generation
using judgments of the form Φ ⊢ s ↠ Ω. At a high level, the
rules in Figure 9 compose the sketches obtained during the
first phase to obtain a more general sketch. To start with,
the Lift rule corresponds to a base case and states that the
↠ relation is initially obtained using the { relation. The
Query rule composes multiple sketches Ω1, . . . ,Ωn for a
query statement Q as Ω1 ? . . . ? Ωn — i.e., the composed
sketch is a union of the individual sketches.

The Update rule is similar to Query, but it is slightly more
involved. In particular, suppose that we have two different
sketches Ω1,Ω2 for an update statement U . Now, we need
to account for the possibility that either one or both of the
updates may happen. Thus, the corresponding sketch for
update statements is Ω1 ? Ω2 ? (Ω1;Ω2) rather than the
simpler sketch Ω1 ? Ω2 for query statements. The Update
rule generalizes this discussion to arbitrarily many sketches
by using a binary operator • (defined in Figure 10) that dis-
tributes sequential composition (;) over the choice (?) con-
struct. Finally, the Seq rule allows generating a sketch for
U1;U2 using the sketch Ωi for eachUi .

Given a statement s in the source program, its correspond-
ing sketch Ω is obtained by applying the rewrite rules from
Figure 9 to a fixed-point. Specifically, let Ω1, . . . ,Ωn be the
set of sketches such that Φ ⊢ s ↠ Ω1, . . . , Φ ⊢ s ↠ Ωn , and

293

Synthesizing Database Programs for Schema Refactoring PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Algorithm 2 Sketch Completion
1: procedure CompleteSketch(Ω,P)

Input: Sketch Ω, Source program P
Output: Target program P ′ or ⊥ to indicate failure

2: Ψ← Encode(Ω);
3: while SAT(Ψ) do
4: M ← GetModel(Ψ);
5: P ′ ← Instantiate(Ω,M);
6: done← Verify(P,P ′);
7: if done then return P ′;
8: E ← MinCex(P,P ′);
9: Ψ← Ψ ∧ Block(M, E);
10: return ⊥;

let us say that a sketch Ω is more general than Ω′, written
Ω ⪰ Ω′, if Ω represents more programs than Ω′. Then, the
resulting sketch for s is the most general sketch Ωi such that
∀j ∈ [1,n].Ωi ⪰ Ωj .

4.4 Sketch Completion

In this section, we explain our algorithm for solving the
database program sketches from Section 4.3. As mentioned
earlier, we do not encode the precise semantics of the sketch
using an SMT formula because relational algebra operators
are difficult to express using standard first-order theories
supported by SMT solvers. Instead, we perform symbolic
search (using SAT) over the space of programs encoded by
the sketch and then subsequently check equivalence. If the
two programs are not equivalent, we employ minimum fail-
ing inputs to further prune the search space by identifying
programs that share the same root cause of failure as a pre-
viously encountered program.

Overview. Our sketch completion procedure is summarized
in Algorithm 2 and takes as input a program sketch Ω to-
gether with the source programP. The output of CompleteS-
ketch is either a completion P ′ of Ω such that P ≃ P ′ or
⊥ to indicate no such program exists.

At a high level, the CompleteSketch procedure first gen-
erates a boolean formula Ψ that represents all possible com-
pletions of the sketch Ω (line 2). While any model of Ψ corre-
sponds to a concrete program P ′ that is an instantiation of
Ω, such a program P ′ may or may not be equivalent to the
input program P. Thus, the sketch solving algorithm enters
a loop (lines 3–9) that lazily explores different instantiations
of Ω, checks equivalence, and adds useful blocking clauses to
the SAT encoding Ψ as needed. In what follows, we explain
the algorithm (and its subroutines) in more detail.

Initial SAT encoding. The goal of the Encode procedure at
line 2 is to generate a SAT formula that encodes all possible
completions of Ω. Specifically, for each hole ??i {e1, . . . , en}
in the sketch, we introduce n boolean variables b1i , . . . ,b

n
i

such that b ji = true if and only if hole ??i is instantiated with

expression ej . 4 Since any valid completion of sketch Ω must
assign every hole ??i to some expression ej in its domain,
our initial SAT encoding is obtained as follows:

Ψ =
∧

??i ∈Holes(Ω)

⊕(b1i , . . . ,b
in
i)

where the domain of ??i consists of expressions e1, . . . ein ,
and ⊕ denotes the n-ary xor operator. Observe that every
model M of formula Ψ corresponds to one particular in-
stantiation of Ω; thus, the procedure Instantiate produces
program P ′ by assigning hole ??i to expression ej if and only
ifM assigns b ji to true.

Verification and blocking clauses. As is apparent from
the discussion above, our symbolic encoding Ψ of the sketch
intentionally does not enforce equivalence between source
and target programs. Thus, whenever we obtain a comple-
tion P ′ of the sketch, we must check whether P,P ′ are
actually equivalent using the Verify subroutine at line 6 of
Algorithm 2. If the two programs are indeed equivalent, the
algorithm terminates with P ′ as a solution. Otherwise, in the
next iteration, we ask the SAT solver for a different model,
which corresponds to a different instantiation of the input
sketch. However, in practice, there are an enormous number
(e.g., up to 1039) of completions of the sketch; thus, a synthe-
sis algorithm that tests equivalence for every possible sketch
completion is unlikely to scale. Our sketch completion algo-
rithm addresses this issue by using minimum failing inputs
to block many programs at the same time.
Specifically, a minimum failing input for a pair of pro-

grams P,P ′ is an invocation sequence ω (recall Section 3.2)
satisfying the following criteria:

1. We have JPKω , JP ′Kω . That is, ω is a witness to the
disequivalence of P and P ′

2. There does not exist another invocation sequence ω ′
such that |ω ′ | < |ω | and JPKω′ , JP ′Kω′

Intuitively, minimum failing inputs are useful in this con-
text because they provide feedback about which assignments
to which holes cause program P ′ to not be equivalent to P.
Specifically, letH (resp.H) be the holes used in functions
that appear (resp. do not appear) in ω, and letAH denote the
assignments to holesH . Then, any program that instantiates
Ω by assigning AH to H will also be incorrect, regardless
of the assignments to holes H . Our sketch completion al-
gorithm uses this observation to rule out many programs
beyond P ′. Specifically, letH = {??1, . . . , ??n} and suppose
that AH assigns expression eki to each ??i . Then, the Block
procedure (line 9 of Algorithm 2) generates the following
blocking clause:

φ = ¬(bk11 ∧ . . . ∧ b
kn
n)

4Since the choice construct s1 ? s2 is just syntactic sugar for
if ??{⊤, ⊥} then s1 else s2, we assume it has been de-sugared before
this SAT encoding.

294

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig

Intuitively, this blocking clause φ rules out all completions of
Ω that agree with P ′ on the assignment to holes inH . Since
minimum failing inputs typically involve a small subset of
the methods in the program, this technique allows us to rule
out many programs in one iteration. Furthermore, as we
discuss in Section 5, minimum failing inputs are inexpensive
to obtain using testing.

5 Implementation

We have implemented the proposed synthesis technique
in a new tool called Migrator, which is implemented in
Java. Migrator uses the Sat4J solver [31] for answering all
SAT and MaxSAT queries and the Mediator tool [54] for
verifying equivalence between a pair of database programs.
In the remainder of this section, we discuss two important
design choices about our implementation.

Sketch generation. Recall from Section 4.3 that our sketch
generation algorithm produces a sketch using a so-called join
correspondence, which in turn is synthesized from a candidate
value correspondence. While our presentation in Section 4.3
presents “type-checking” rules that determine whether a join
correspondence is valid with respect to some value corre-
spondence, it can be inefficient to consider all possible join
chains in the target schema and then check whether they are
feasible. Thus, rather than taking an enumerate-then-check
approach, our implementation algorithmically produces join
correspondences that are feasible with respect to a given
value correspondence.

To see how we infer all target join chains that may corre-
spond to a source join chain J , suppose we are given a value
correspondence Φ and letA be the set of attributes that occur
in J . Our goal is to find all join chains J1, . . . , Jn over the
target schema such that for every attribute a ∈ A, there is a
corresponding attribute a′ ∈ Attrs(Ji). We reduce the prob-
lem of finding all such possible join chains to the problem
of finding all possible Steiner trees [29] over a graph data
structure where nodes represent tables and edges represent
join-ability relations.

In more detail, let A′ be a set of attributes over the target
schema such that for every a ∈ A, there exists some a′ ∈ A′
where a′ ∈ Φ(a), and let T ′ denote the set of tables contain-
ing all attributes in A′. Since the source join chain refers to
all attributes in A, we need to find exactly those join chains
over the target schema that “cover” the relations in whichA′
appears. Towards this goal, we construct a graph data struc-
ture G = (V ,E) as follows: The nodes V are tables in the
target schema, and there is an edge (T ,T ′) if tables T and T ′
can be joined with each other. Now, recall that, given a graph
G = (V ,E) and a set of vertices V ′ ⊆ V , a Steiner tree is a
connected subgraph that spans all verticesV ′. Since our goal
is to “cover” exactly the tables T ′ in the target schema, we
compute all possible Steiner trees spanning T ′ and convert
them to join chains in the expected way.

Generating minimum failing inputs. Recall from Sec-
tion 4.4 that our sketch completion algorithm uses minimum
failing inputs to prune the search space. In our implemen-
tation, we generate such inputs using a bounded testing
procedure. Specifically, we generate a fixed set of constants
for each type (e.g., {0, 1} for integers) as the seed set to be
used for arguments. Then, given such a seed set C of con-
stants, our testing engine generates all possible invocation
sequences containing only constants from C in increasing
order of length. For each invocation sequence ω, we execute
both P and P ′ on ω and check if the outputs are different. If
so, we return ω as a minimum failing input, and otherwise,
we test equivalence using the next invocation sequence.

Verification. Our sketch completion algorithm from Sec-
tion 4.4 invokes a Verify procedure to check if two programs
are equivalent. However, since full-fledged verification us-
ing the Mediator tool [54] can be quite expensive, we first
perform exhaustive testing up to some bound and invoke
Mediator only when no failing inputs are found. In prin-
ciple, it is possible that the testing procedure fails to find a
failing input while the verifier cannot establish equivalence.
We have not encountered this kind of scenario in practice,
but it could nonetheless happen in theory.

6 Evaluation

To evaluate the proposed idea, we use Migrator to auto-
matically migrate 20 database programs to a new schema.

Benchmarks. All 20 programs in our benchmark set are
taken from prior work [54] for verifying equivalence be-
tween database programs. 5 Specifically, half of these bench-
marks are adapted from textbooks and online tutorials, and
the remaining half are manually extracted from real-world
web applications on Github. However, because the input lan-
guage of Migrator is slightly different from that of Media-
tor, we write a translator to convert the database programs
to Migrator’s input language.

Experimental Setup. All of our experiments are conducted
on a machine with Intel Xeon(R) E5-1620 v3 quad-core CPU
and 32GB of physical memory, running the Ubuntu 14.04
operating system. For each synthesis benchmark, we set a
time limit of 24 hours.

6.1 Main Results

Our main experimental results are summarized in Table 1.
Here, the first ten rows correspond to benchmarks taken
from database schema refactoring textbooks, and the latter
ten rows correspond to real-world Ruby-on-Rails applica-
tions collected from Github. The “Description” column in
Table 1 explains how the database schema differs between
5 While prior work considers 21 benchmarks in the evaluation, one of these
benchmarks cannot be verified by Mediator. Since we use Mediator as
our verifier, we exclude this one benchmark from our evaluation.

295

Synthesizing Database Programs for Schema Refactoring PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 1. Main experimental results.

Benchmark Description Funcs

Source Schema Target Schema Value

Iters

Synth Total

Tables Attrs Tables Attrs Corr Time(s) Time(s)

t
e
x
t
b
o
o
k

b
e
n
c
h

Oracle-1 Merge tables 4 2 8 1 6 1 1 0.3 2.7
Oracle-2 Split tables 19 3 17 7 25 1 5 0.5 11.3
Ambler-1 Split tables 10 1 6 2 7 1 2 0.3 2.9
Ambler-2 Merge tables 10 2 7 1 6 1 1 0.3 0.6
Ambler-3 Move attrs 7 2 5 2 5 2 5 0.4 30.6
Ambler-4 Rename attrs 5 1 2 1 2 1 1 0.3 0.5
Ambler-5 Add associative tables 8 2 5 3 6 5 7 0.3 3.1
Ambler-6 Replace keys 10 2 9 2 8 1 1 0.3 0.7
Ambler-7 Add attrs 8 2 7 2 8 1 1 0.3 0.6
Ambler-8 Denormalization 14 3 10 3 13 1 7 0.5 3.1

r
e
a
l
-
w
o
r
l
d

b
e
n
c
h

cdx Rename attrs, split tables 138 16 125 17 131 1 7 11.9 38.9
coachup Split tables 45 4 51 5 55 1 10 1.8 6.7
2030Club Split tables 125 15 155 16 159 1 2 5.2 24.8
rails-ecomm Split tables, add new attrs 65 8 69 9 75 1 6 2.5 10.3
royk Add and move attrs 151 19 152 19 155 1 17 46.1 60.1
MathHotSpot Rename tables, move attrs 54 7 38 8 42 6 11 1.2 5.8
gallery Split tables 58 7 52 8 57 1 11 2.5 9.4
DeeJBase Rename attrs, split tables 70 10 92 11 97 1 8 3.5 9.3
visible-closet Split tables 263 26 248 27 252 1 108 1304.7 1370.8
probable-engine Merge tables 85 12 83 11 78 1 9 4.6 17.5
Average - 57.5 7.2 57.1 7.8 59.4 1.5 11.0 69.4 80.5

the source and target versions, and “Funcs” shows the num-
ber of functions that need to be synthesized. The next two
columns under “Source Schema” (resp. “Target Schema”)
describe the number of tables and attributes in the source
(resp. target) schema. The last four columns report the results
obtained by running Migrator on each benchmark. Specifi-
cally, the column “Value Corr” shows the number of value
correspondences considered byMigrator, and “Iters” shows
the number of programs explored before an equivalent one
is found. Finally, the “Synth Time” column shows synthesis
time in seconds (excluding verification), and “Total Time”
shows total time, including both synthesis and verification.
The key takeaway message from this experiment is that

Migrator can successfully synthesize equivalent versions
of all 20 benchmarks, including the database programs in
real-world Ruby-on-Rails web applications with up to 263
functions. Furthermore, synthesis time (excluding verifica-
tion) ranges from 0.3 seconds to 1304.7 seconds, with the
average time being 69.4 seconds in total or 1.2 seconds per
function. We believe these results provide strong evidence
that our proposed technique can be quite useful for automat-
ing the schema refactoring process for database programs.

6.2 Comparison to Baselines

Given that there are other existing techniques for solving
program sketches, we also evaluate our sketch completion
algorithm by comparing our method against two baselines.
In particular, our first baseline is the Sketch tool [47], and

the second one is a variant of our own sketch completion
algorithm that does not use minimum failing inputs (MFIs).

Comparison with Sketch. To compare our approach with
the Sketch tool [47], we first implemented the semantics
of SQL in Sketch by encoding each SQL statement as a C
function. Specifically, our Sketch encoding models each
database table as an array of arrays, with the nested array
representing a tuple, and we model each SQL operation as a
function that reads and updates the array as appropriate.

The results of this experiment are summarized in Table 2.
The main observation is that Sketch times out on all real-
world benchmarks from Github as well as two textbook ex-
amples, namely Oracle-2 and Ambler-8. For all other bench-
marks, Migrator is significantly faster than Sketch, with
speed-ups ranging between 5.3x to 10455.0x in terms of
synthesis time. 6 We believe this experiment demonstrates
the advantage of our proposed sketch completion algorithm
compared to the standard CEGIS approach implemented
in Sketch.

Comparisonwith enumerative search. Since the key nov-
elty of our sketch completion algorithm is the use of mini-
mum failing inputs to prune the search space, we also com-
pare our approach against a baseline that does not use MFIs.

6 Since Sketch only performs bounded model checking rather than full-
fledged verification, we only report speedup in terms of synthesis time
rather than total time including verification. The speedup in terms of total
time (including verification) ranges from 2.4x to 1358.0x.

296

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig

Table 2. Comparison with Sketch.

Benchmark

Sketch

Synth Time(s) Speedup

t
e
x
t
b
o
o
k

b
e
n
c
h

Oracle-1 88.2 294.0x
Oracle-2 >86400.0 >172800.0x
Ambler-1 3136.5 10455.0x
Ambler-2 71.5 238.3x
Ambler-3 74.7 186.8.5x
Ambler-4 1.6 5.3x
Ambler-5 494.4 1648.0x
Ambler-6 226.2 754.0x
Ambler-7 814.8 2716.0x
Ambler-8 >86400.0 >172800.0x

r
e
a
l
-
w
o
r
l
d

b
e
n
c
h

cdx >86400.0 >7260.5x
coachup >86400.0 >48000.0x
2030Club >86400.0 >16615.4x
rails-ecomm >86400.0 >34560.0x
royk >86400.0 >1874.2x
MathHotSpot >86400.0 >72000.0x
gallery >86400.0 >34560.0x
DeeJBase >86400.0 >24685.7x
visible-closet >86400.0 >66.2x
probable-engine >86400.0 >18782.6x
Average >52085.4 >750.5x

In particular, this baseline uses the same SAT encoding of
the search space but blocks only a single program at a time.
More concretely, given a modelM of the SAT encoding Ψ,
this baseline updates Ψ by conjoining ¬M whenever verifi-
cation fails. Effectively, this baseline performs enumerative
search but does so in a symbolic way using a SAT solver.

The results of this experiment are summarized in Table 3.
As we can see from this table, the impact of MFIs is partic-
ularly pronounced for the Ambler-8 textbook example and
almost all real-world benchmarks. In particular, Migrator is
192.3x faster than enumerative search on average. Moreover,
without using MFIs to prune the search space, two of the
benchmarks do not terminate within a time-limit of 24 hours.
Hence, these results demonstrate that our MFI-based sketch
completion is very important for practical synthesis.

7 Related Work

In this section, we survey related papers on program synthe-
sis, schema refactoring, and analysis of database applications.

Schema evolution. There is a body of literature on automat-
ing the schema refactoring process, including the rewrite
of SQL queries and updates [8, 14, 15, 19, 43, 50]. Among
these works, the most related one is the Prism project and its
successor Prism++ [14, 15]. In addition to the original pro-
gram and the source and target schemas, the Prism approach
requires the user to provide so-called Schema Modification
Operators (SMOs) that describe how tables in the source

Table 3. Comparison with symbolic enumerative search.

Benchmark

Symbolic Enum

Iters Synth Time(s) Speedup

t
e
x
t
b
o
o
k

b
e
n
c
h

Oracle-1 1 0.3 1.0x
Oracle-2 5 0.5 1.0x
Ambler-1 2 0.3 1.0x
Ambler-2 1 0.3 1.0x
Ambler-3 6 0.4 1.0x
Ambler-4 1 0.3 1.0x
Ambler-5 11 0.4 1.3x
Ambler-6 1 0.3 1.0x
Ambler-7 1 0.3 1.0x
Ambler-8 67996 54367.6 108735.2x

r
e
a
l
-
w
o
r
l
d

b
e
n
c
h

cdx 5595 6169.4 518.4x
coachup 1303 76.2 42.3x
2030Club 2 5.2 1.0x
rails-ecomm 2779 602.5 241.0x
royk >31249 >86400.0 >1874.2x
MathHotSpot 115 5.3 4.4x
gallery 21483 32266.2 12906.5x
DeeJBase 605 142.8 40.8x
visible-closet >9512 >86400.0 >66.2x
probable-engine 1661 540.3 117.5x
Average >7116.5 >13348.9 >192.3x

schema are modified to tables in the target schema. The ba-
sic idea is to leverage these user-provided SMOs to rewrite
SQL queries using the well-known chase and backchase al-
gorithms [19, 43]. To deal with updates, they additionally
require the user to provide Integrity Constraint Modification
Operators (ICMOs) and “translate” updates into queries. In
contrast to the Prism approach, our method does not re-
quire users to provide modification operators expressed in
a domain-specific language. Although it is possible to ex-
plore the search space of SMOs and ICMOs to automate the
generation of new database programs, we decided not to
pursue this approach for two reasons: first, the rewriting
technique in Prism requires these modification operators
to be invertible, and, second, the search space of operator
sequences is also potentially very large.

Analysis of database applications. Over the past decade,
there has been significant interest in analyzing, verifying,
and testing database applications [5, 9, 17, 18, 20, 24, 25, 30,
34, 40, 44, 54, 57, 58]. For instance, the WAVE [17, 18] and
VERIFAS [34] projects aim to verify temporal properties of
database applications, and recent work by Itzhaky et al. [30]
proposes a technique to verify pre- and post-conditions of
methodswith embedded SQL statements. There has also been
some work on model checking database applications [24, 40]
as well as automatically generating test cases [5, 9, 20, 58].
Since our goal is to synthesize a new version of the pro-

gram that is equivalent to a previous version, this paper is
particularly related to verification techniques for checking

297

Synthesizing Database Programs for Schema Refactoring PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

equivalence [11–13, 52, 54]. Most of these papers focus on
equivalence between individual SQL queries [11–13, 52]. The
only work that addresses the problem of verifying equiva-
lence between entire database programs is Mediator, which
automatically infers a bisimulation invariant between the
two programs [54]. As discussed in Section 3.2, we adopt the
definition of equivalence proposed in that paper. However,
our synthesis technique does not simply add a CEGIS loop
on top of Mediator’s SMT theory because such an approach
would require solving complex quantified formulas over the
theory of lists. Instead, our approach performs enumera-
tive search but uses minimum failing inputs to significantly
prune the search space.

Program synthesis. This paper is related to a long line
of recent work on program synthesis [1, 2, 6, 7, 22, 26–
28, 32, 35, 36, 41, 42, 45–49, 53, 56]. While the goal of pro-
gram synthesis is always to produce a program that satis-
fies the given specification, different synthesizers use dif-
ferent forms of specifications, including input-output exam-
ples [6, 22, 26, 42, 53], logical constraints [47–49], refinement
types [41], or a reference implementation [27, 35, 45]. Our
technique belongs in the latter category in that it uses the
original implementation as the specification.
Among existing techniques, our synthesis algorithm is

particularly related to Neo [22], which uses conflict-driven
learning to infer useful lemmas from failed synthesis at-
tempts. Our sketch solving algorithm from Section 4.4 can
also be viewed as performing some form of conflict driven
learning in that it uses minimum failing inputs to rule out
many programs that share the same root cause of failure as
the currently explored one. However, our technique is much
more lightweight compared to Neo because it does not com-
pute a minimum unsatisfiable core of the logical specification
for the failing program. Instead, our technique exploits the
observation that only a subset of the methods in a database
program are necessary for proving disequivalence.

Synthesis for database programs. In recent years, there
have been several papers that apply program synthesis to
SQL queries or database programs [10, 16, 23, 33, 51, 60]. For
instance, Sqlizer [60] synthesizes SQL queries from natural
language, whereas Scythe [51] and Morpheus [23] gener-
ate queries from examples. The QBS system uses program
synthesis to repair performance bugs in database applica-
tions [10]. Finally, Fiat [16] performs deductive synthesis to
generate SQL-like operations from declarative specifications.
However, none of these techniques consider the problem of
automatically migrating database programs in the presence
of schema refactoring.

8 Limitations

In this section, we will explain and discuss some limitations
of the Migrator tool.

First, Migrator cannot handle schema changes that are
not expressible using our notion of value correspondence.
For example, one can merge two columns “first name” and
“last name” into a single column “name” and use string oper-
ations to extract first or last names in a query. These types of
schema refactorings cannot be expressed using our definition
of value correspondence. While it is relatively straightfor-
ward to expand our technique to a richer scope of value
correspondences (e.g., by enriching the sketch language to
include a set of predefined functions like concat, split, etc),
this change would require a more sophisticated verifier that
can reason about the semantics of built-in functions.

Second, Migrator does not synthesize database programs
with control-flow constructs such as if statements and loops,
because the underlying equivalence verifier [54] does not
support database programs with those constructs.

Third, the notion of equivalence considered in Section 3.2
characterizes behavioral equivalence between database pro-
grams, which ensures that two corresponding sequences
of transactions yield the same result. However, it does not
enforce that the underlying data stored in the database is
inserted or manipulated in particular ways. For example,
Migrator may choose to delete from one or multiple ta-
bles when performing deletion as long as the new program
satisfies the behavioral equivalence requirement. In some
contexts, it may be desirable to adopt a stronger definition
of equivalence than the one we consider in this paper.

9 Conclusion

In this paper, we have studied the problem of automatically
synthesizing database programs in the presence of schema
refactoring. Our technique decomposes the synthesis proce-
dure into three tasks, namely (i) lazy value correspondence
enumeration, (ii) sketch generation from a candidate value
correspondence, and (iii) sketch completion using conflict-
driven learning with minimum failing inputs. We have im-
plemented the proposed technique in a tool called Migra-
tor and evaluated it on 20 schema refactoring benchmarks,
including real-world scenarios taken from Github. Our eval-
uation shows that Migrator can automatically synthesize
the new versions of all 20 benchmarks and indicates that the
proposed technique would be useful to database application
developers during the schema evolution process.

Acknowledgments

We would like to thank Shuvendu Lahiri for initial discus-
sions on the topic of this paper. We also thank Xinyu Wang,
Kostas Ferles, Shankara Pailoor, and other UToPiA group
members for their useful feedback on earlier drafts. We
would also like to thank our shepherd, Emina Torlak, and the
anonymous reviewers for their constructive suggestions for
improvement. Finally, we are very grateful to the National
Science Foundation for supporting this work under Grants
#1762299, #1712067, and #1811865.

298

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig

References

[1] Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith.
2017. Constraint-Based Synthesis of Datalog Programs. In Proc. of CP.
689–706.

[2] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-
guided synthesis. In Proc. of FMCAD. 1–8.

[3] Scott W Ambler. 2007. Test-Driven Development of Relational
Databases. IEEE Software 24, 3 (2007).

[4] Scott W Ambler and Pramod J Sadalage. 2006. Refactoring databases:
Evolutionary database design. Pearson Education.

[5] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit M.
Paradkar, and Michael D. Ernst. 2010. Finding Bugs in Web Applica-
tions Using Dynamic Test Generation and Explicit-State Model Check-
ing. IEEE Transactions on Software Engineering 36, 4 (2010), 474–494.

[6] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to Write
Programs. In Proc. of ICLR.

[7] James Bornholt and Emina Torlak. 2017. Synthesizing memory models
from framework sketches and Litmus tests. In Proc. of PLDI. 467–481.

[8] Loredana Caruccio, Giuseppe Polese, and Genoveffa Tortora. 2016.
Synchronization of Queries and Views Upon Schema Evolutions: A
Survey. TODS 41, 2 (2016), 9:1–9:41.

[9] David Chays, Saikat Dan, Phyllis G. Frankl, Filippos I. Vokolos, and
Elaine J. Weber. 2000. A framework for testing database applications.
In Proc. of ISSTA. 147–157.

[10] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013.
Optimizing database-backed applications with query synthesis. In
Proc. of PLDI. 3–14.

[11] Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan
Suciu. 2018. Axiomatic Foundations and Algorithms for Deciding
Semantic Equivalences of SQL Queries. PVLDB 11, 11 (2018), 1482–
1495.

[12] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung.
2017. Cosette: An Automated Prover for SQL. In Proc. of CIDR.

[13] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. 2017.
HoTTSQL: proving query rewrites with univalent SQL semantics. In
Proc. of PLDI. 510–524.

[14] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2010.
Update Rewriting and Integrity Constraint Maintenance in a Schema
Evolution Support System: PRISM++. PVLDB 4, 2 (2010), 117–128.

[15] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2013.
Automating the database schema evolution process. VLDB J. 22, 1
(2013), 73–98.

[16] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam
Chlipala. 2015. Fiat: Deductive Synthesis of Abstract Data Types in a
Proof Assistant. In Proc. of POPL. 689–700.

[17] Alin Deutsch, Richard Hull, and Victor Vianu. 2014. Automatic Ver-
ification of Database-Centric Systems. SIGMOD Record 43, 3 (2014),
5–17.

[18] Alin Deutsch, Monica Marcus, Liying Sui, Victor Vianu, and Dayou
Zhou. 2005. A Verifier for Interactive, Data-Driven Web Applications.
In Proc. of SIGMOD. 539–550.

[19] Alin Deutsch and Val Tannen. 2003. MARS: A System for Publishing
XML from Mixed and Redundant Storage. In Proc. of VLDB. 201–212.

[20] Michael Emmi, RupakMajumdar, and Koushik Sen. 2007. Dynamic test
input generation for database applications. In Proc. of ISSTA. 151–162.

[21] Stéphane Faroult and Pascal L’Hermite. 2008. Refactoring SQL Appli-
cations. O’Reilly Media.

[22] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program
synthesis using conflict-driven learning. In Proc. of PLDI. 420–435.

[23] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat
Chaudhuri. 2017. Component-based synthesis of table consolidation

and transformation tasks from examples. In Proc. of PLDI. 422–436.
[24] Milos Gligoric and Rupak Majumdar. 2013. Model Checking Database

Applications. In Proc. of TACAS. 549–564.
[25] Shelly Grossman, Sara Cohen, Shachar Itzhaky, Noam Rinetzky, and

Mooly Sagiv. 2017. Verifying Equivalence of Spark Programs. In Proc.
of CAV. 282–300.

[26] Sumit Gulwani. 2011. Automating string processing in spreadsheets
using input-output examples. In Proc. of POPL. 317–330.

[27] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin C. Rinard, and
Mooly Sagiv. 2011. Data representation synthesis. In Proc. of PLDI.
38–49.

[28] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin C. Rinard, and
Mooly Sagiv. 2012. Concurrent data representation synthesis. In Proc.
of PLDI. 417–428.

[29] Frank K Hwang, Dana S Richards, and Pawel Winter. 1992. The Steiner
tree problem. Vol. 53. Elsevier.

[30] Shachar Itzhaky, Tomer Kotek, NoamRinetzky, Mooly Sagiv, Orr Tamir,
Helmut Veith, and Florian Zuleger. 2017. On the Automated Verifi-
cation of Web Applications with Embedded SQL. In Proc. of ICDT.
16:1–16:18.

[31] Daniel Le Berre and Anne Parrain. 2010. The sat4j library, release 2.2,
system description. Journal on Satisfiability, Boolean Modeling and
Computation 7 (2010), 59–64.

[32] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accel-
erating search-based program synthesis using learned probabilistic
models. In Proc. of PLDI. 436–449.

[33] Fei Li and Hosagrahar Visvesvaraya Jagadish. 2014. NaLIR: an interac-
tive natural language interface for querying relational databases. In
Proc. of SIGMOD. 709–712.

[34] Yuliang Li, Alin Deutsch, and Victor Vianu. 2017. VERIFAS: A Practical
Verifier for Artifact Systems. PVLDB 11, 3 (2017), 283–296.

[35] Calvin Loncaric, Emina Torlak, and Michael D. Ernst. 2016. Fast syn-
thesis of fast collections. In Proc. of PLDI. 355–368.

[36] Fan Long and Martin Rinard. 2015. Staged program repair with condi-
tion synthesis. In Proc. of ESEC/FSE. 166–178.

[37] Renée J. Miller, Laura M. Haas, and Mauricio A. Hernández. 2000.
Schema Mapping as Query Discovery. In Proc. of VLDB. 77–88.

[38] MySQL Tutorial. 2018. Delete from Join. http://www.mysqltutorial.
org/mysql-delete-join.

[39] MySQL Tutorial. 2018. Update from Join. http://www.mysqltutorial.
org/mysql-update-join.

[40] Joseph P. Near and Daniel Jackson. 2012. Rubicon: bounded verification
of web applications. In Proc. of FSE. 60.

[41] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-
gram synthesis from polymorphic refinement types. In Proc. of PLDI.
522–538.

[42] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework
for inductive program synthesis. In Proc. of OOPSLA. 107–126.

[43] Lucian Popa, Alin Deutsch, Arnaud Sahuguet, and Val Tannen. 2000.
A Chase Too Far?. In Proc. of SIGMOD. 273–284.

[44] Dong Qiu, Bixin Li, and Zhendong Su. 2013. An empirical analysis of
the co-evolution of schema and code in database applications. In Proc.
of ESEC/FSE. 125–135.

[45] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic super-
optimization. In Proc. of ASPLOS. 305–316.

[46] Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paris Koutris,
and Mayur Naik. 2018. Syntax-Guided Synthesis of Datalog Programs.
In Proc. of FSE. 515–527.

[47] Armando Solar-Lezama. 2008. Program synthesis by sketching. Citeseer.
[48] Armando Solar-Lezama. 2009. The Sketching Approach to Program

Synthesis. In Proc. of APLAS. 4–13.
[49] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Se-

shia, and Vijay A. Saraswat. 2006. Combinatorial sketching for finite
programs. In Proc. of ASPLOS. 404–415.

299

http://www.mysqltutorial.org/mysql-delete-join
http://www.mysqltutorial.org/mysql-delete-join
http://www.mysqltutorial.org/mysql-update-join
http://www.mysqltutorial.org/mysql-update-join

Synthesizing Database Programs for Schema Refactoring PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

[50] Joost Visser. 2008. Coupled Transformation of Schemas, Documents,
Queries, and Constraints. Electronic Notes in Theoretical Computer
Science 200, 3 (2008), 3–23.

[51] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Synthe-
sizing highly expressive SQL queries from input-output examples. In
Proc. of PLDI. 452–466.

[52] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2018. Speeding
up Symbolic Reasoning for Relational Queries. PACMPL 2, OOPSLA
(2018), 157:1–157:25.

[53] Xinyu Wang, Isil Dillig, and Rishabh Singh. 2018. Program synthesis
using abstraction refinement. PACMPL 2, POPL (2018), 63:1–63:30.

[54] Yuepeng Wang, Isil Dillig, Shuvendu K. Lahiri, and William R. Cook.
2018. Verifying equivalence of database-driven applications. PACMPL
2, POPL (2018), 56:1–56:29.

[55] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthe-
sizing Database Programs for Schema Refactoring. http://arxiv.org/

abs/1904.05498. arXiv:1904.05498
[56] Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2018. Relational Program

Synthesis. PACMPL 2, OOPSLA (2018), 155:1–155:27.
[57] Gary Wassermann, Carl Gould, Zhendong Su, and Premkumar T. De-

vanbu. 2007. Static checking of dynamically generated queries in
database applications. ACM Transactions on Software Engineering
Methodology 16, 4 (2007), 14.

[58] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hi-
roshi Inamura, and Zhendong Su. 2008. Dynamic test input generation
for web applications. In Proc. of ISSTA. 249–260.

[59] Wikimedia. 2018. Schema changes. https://wikitech.wikimedia.org/
wiki/Schema_changes.

[60] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig.
2017. SQLizer: query synthesis from natural language. PACMPL 1,
OOPSLA (2017), 63:1–63:26.

300

http://arxiv.org/abs/1904.05498
http://arxiv.org/abs/1904.05498
http://arxiv.org/abs/1904.05498
https://wikitech.wikimedia.org/wiki/Schema_changes
https://wikitech.wikimedia.org/wiki/Schema_changes

	Abstract
	1 Introduction
	2 Overview
	3 Preliminaries
	3.1 Syntax and Semantics of Database Programs
	3.2 Equivalence of Two Database Programs

	4 Synthesis Algorithm
	4.1 Overview
	4.2 Lazy Enumeration of Value Correspondence
	4.3 Sketch Generation
	4.4 Sketch Completion

	5 Implementation
	6 Evaluation
	6.1 Main Results
	6.2 Comparison to Baselines

	7 Related Work
	8 Limitations
	9 Conclusion
	References

